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Abstract. Software development often involves a set of models defined
in different metamodels, each model capturing a specific view of the sys-
tem. We call this set a multimodel, and its elements partial or local mod-
els. Since partial models overlap, they may be consistent or inconsistent
wrt. a set of global constraints.
We present a framework for specifying overlaps between partial models
and defining their global consistency. An advantage of the framework is
that heterogeneous consistency checking is reduced to the homogeneous
case yet merging partial metamodels into one global metamodel is not
needed. We illustrate the framework with examples and sketch its formal
semantics based on category theory.

1 Introduction
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Software development often involves a set of het-
erogeneous models, such as use cases, process mod-
els, UML design models, and code. These models
are defined by different metamodels, and are often
built by different teams, but collectively represent
a single system. Due to possible overlaps between
models, individually consistent models may be glob-
ally inconsistent if taken together. Many existing
approaches focus on checking consistency of a single
model or a pair of models [1]. However, individual
consistency or pairwise consistency do not guaran-
tee global consistency. For example, Fig. 1 shows
three UML class diagrams D1,2,3, where the classes
connected by a dashed line are considered to be the same class (even though
named differently). Each of the three diagrams is consistent, and each pair of
them is consistent, but taken together the three diagrams are inconsistent: there
is a cycle in the inheritance chain.

The example shows two phases in checking global consistency. First, we need
to specify the models’ overlap. For models like code and UML class diagrams
extracted from code, we may know their overlap by matching the elements by
name. But for models in the conceptual stage, we cannot deduce their overlap



automatically. For example, an entity “Person” created by a business analyst
and a table “Employee” existing in a legacy database may refer to the same
concept despite their different names. Moreover, there are cases when elements in
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different models are related but their relationship cannot be
specified by direct linking and we need something more in-
telligent. For example, Fig. 2 shows two models that present
basically the same information but structure it differently.
Whatever means are used for specifying the overlap, in the
second phase we need to check the global consistency of the
system (= models + overlap).

Sabezadeh et al.[2] proposed to check global consistency
of homogeneous models by their merging. The models’ over-
lap is specified by a correspondence diagram: a set of aux-
iliary models and mappings “in-between” the local model,
which declare some elements in different local models as be-
ing actually the same. Then all local models are merged into one model modulo
the correspondence, i.e., elements declared to be the same in the correspondence
diagram become one element. Finally, consistency of the merged model is checked
against the constraints declared in the metamodel. Thus, verifying global consis-
tency amounts to checking consistency of a single model. However, the approach
was developed for the case of homogeneous models only, and indirect overlaps
(like shown in Fig. 2) were not considered.

The goal of the paper is to adopt the consistency-checking-by-merging (CCM)
idea for the heterogeneous situation. A straightforward solution could be, first,
to merge all involved metamodels so that all local models become instances of the
same global metamodel; then we can merge these instances and check the result
wrt. the constraints in the global metamodel. Though theoretically possible, in
practice this approach leads to dealing with huge models and metamodels result-
ing from the merge, which is cumbersome and not effective. We present another
approach in which merging metamodels is significantly reduced to an unavoid-
able minimum, and merging models is reduced to only merging their relevant
parts. Briefly, we find common views between metamodels, project related mod-
els to spaces of instances (overlaps) determined by those views, and then apply
the CCM approach to each of the homogeneous sets of projections.

Realization of the approach requires several challenging issues to be solved:
type-safe model matching, specification of indirect overlap between metamodels,
inter-metamodel constraints, and constraints over the entire schema of metamod-
els and their overlaps. We will discuss these issues in more detail in Section 2.2
after we briefly outline the basics of CCM-approach in Section 2.1. Section 3
describes our main techniques with simple examples. In Section 4 we abstract
the examples and sketch a much more general framework. Section 5 presents a
brief survey of approaches to heterogeneous multimodeling, and highlights the
advantages of our framework. Section 6 concludes.

The present paper is an extended version of our MDI’2010 Workshop paper
[3]. It presents a new issue of consistency between correspondence spans, and a
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new survey of approaches to heterogeneous multimodeling. Description of our
formal framework is omitted due to space limits but Section 4 presents a rough
sketch of the ideas.

2 From homo- to heterogeneous multimodeling

2.1 Background: Homogeneous overlap and consistency

We briefly review the basics of the CCM-approach, and also show how to manage
conflicts between values.

Software models are typed graphs. We follow the approach to metamod-
eling developed by the graph transformation community, and treat models as
typed graphs. A metamodel is a pair M = (GM , CM ) with GM a graph and
CM a set of constraints. A model (M ’s instance) is a graph typed over M , i.e.,
a pair D = (GD, tD) with GD a graph (typically much bigger than GM ) and
tD : GD → GM a graph mapping (which preserves the incidence relationship be-
tween arrows and nodes) such that all constraints in set CM are satisfied.

For example, Fig. 3 shows how to represent a UML class diagram D as a
typed graph tD : GD → GM with GM being the graph representing a simple
metamodel mmD for class diagrams. Classes, attributes, primitive values and
generalization relations are represented as nodes; their relationships are captured
by arrows. The value of mapping tD at element e ∈ GD is given after colon, e.g.,
expression “10:Class” means tD(10)=Class for node 10; identifiers of arrows are
omitted but their types are kept.

Any UML class diagram can be represented by a typed graph as above but
not the converse. To ensure that a typed graph is a correct diagram, constraints
must be declared and added to the metamodel. Examples of constraints are (C1)
a class has only one name; (C2) a class has only one parent class; (C3) classes
with stereotype ’singleton’ are instantiated with at most one object.

Matching models via spans. Suppose two business analysts have indepen-
dently built two UML diagrams, D1 and D2 in Figure 4. To check their global
consistency, we first need to specify overlap between the diagrams. Suppose we
know that class ’OnlineOrder’ in diagram D1 and class ’Order’ in D2 refer to
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Fig. 4. Homogeneous Model Matching. Frames of models provided by the user are
solid, those computed automatically are dashed; user-defined mappings are shaded,
computed mappings are blank.

the same class of objects, and their ’price’ attributes refer to the same attribute.
We could write the following two informal equations: (E1) OnlineOrder@D1 =
Order@D2; (E2) price@D1 = price@D2.

These equations conform to the type system of class diagrams: we match a
class to a class and an attribute to an attribute. Hence, we can represent the set
of equations by a class diagram D0 shown in the middle of Fig. 4 equipped with
two functions fi : D0 → Di, i = 1, 2, mapping “equations” to their left and right
terms resp. Formally, f1 and f2 are graph mappings which map nodes to nodes
and arrows to arrows so that their incidence is preserved. The question mark
indicates that the name of the class is unknown and the corresponding Name-slot
is empty (see the fragment in the top-right corner of the figure). Thus, equation
(E1) encodes two formal equations (for classes and Name-slots) and (E2) gives
three (equating, in addition, two string values).

We call a pair of mappings with a common source a (binary) span. The source
(model D0) is called the head of the span, mappings f1, f2 are legs and their tar-
gets (models D1, D2) are feet (these names are borrowed from category theory).
Thus, an overlap of two homogeneous models is specified by a correspondence
span over the same metamodel; for n models we need an n-ary span with n legs
and feet. Note that the span pattern allows us to record inconsistencies and keep
them for future resolution according to the living with inconsistencies paradigm
[4]. A precise formalization and details can be found in [5, Section 3].

Merging and conflicts. After specifying the overlap by a correspondence span,
we merge two models into one and check whether it satisfies all constraints
declared in the metamodel.

The merge procedure consists of two parts. We first disjointly merge the
graphs underlying the models, and then glue together elements declared to be
the same by the span. The result is shown as diagram DΣ in Fig. 4, in which
the merged graph has five rather than six class nodes because of gluing. Class
named {OnlineOrder,Order} has one Name-slot because the two local slots were
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glued, but this slot holds two names since they are not (and cannot be) equated
in the head. Besides graph DΣ , merging also produces two graph mappings
gi : Di → DΣ that show how the local models are embedded into the merge.

The merge procedure is fully automatic and can be precisely formalized in
terms of the colimit operation developed in category theory. A detailed expla-
nation and examples of how colimit works can be found in [6] or [5]. It follows
from general properties of colimit that the merged graph GDΣ

is correctly typed
over graph GM (with M denoting the metamodel of class diagrams).

To make reading figures like Fig. 4 easier, we adopt the following notation.
Frames of models provided by the user, and those computed automatically, are
solid and dashed resp; user-defined mappings are shaded whereas computed map-
pings are blank.

After the merged graph is built, we can check whether it satisfies all con-
straints declared in the metamodel (say, with a checking tool). In our example,
we find that constraints (C1) and (C2) specified above are violated.

2.2 The problems

Existing CCM-approaches [2] handle the homogeneous case well, but software
models are often heterogeneous. For example, Fig. 5 presents three UML models
of the same system developed independently by three teams: a class diagram cd,
a sequence diagram sd, and a statechart sc (with their simplified metamodels).
Since the models are developed independently, we need to specify their overlap
and check the global consistency. However, the heterogeneity of the models gives
rise to several new problems.

A) Type-safety is important for overlap specification. In the homogeneous
situation, we allow only elements of the same type to be matched to ensure
type safety. However, in heterogeneous cases different models are declared in
different metamodels, and hence their elements have disjoint types. We need a
new method to ensure type-safety in overlap specifications.
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B) Indirect overlap often occurs in heterogeneous multimodeling. For exam-
ple, in class diagrams operations are linked to their owning classes. Such linking
also exists but is implicit in sequence diagrams (through consecutive linking
Classes, Objects, Lifelines, Messages, and MsgTypes). Hence, we cannot
use direct matching to describe overlap between sets of Class-Operation links in
class diagrams and Class-MsgType links in sequence diagrams.

C) Inter-metamodel constraints appear in heterogeneous multimodeling. For
example, we may require that the interaction described by the sequence dia-
gram should conform to the state machine described by the state chart. Such
constraints regulate interaction of partial models, and hence are not captured by
metamodels of any of them. Such constraints are inherently global and should
be explicitly specified.

D) Metamodel inter-relations are crucial for heterogeneous multimodeling.
“The metamodel” of a heterogeneous multimodel is a system of metamodels to-
gether with their relationships rather than a discrete set of isolated metamodels.
We need a language for specifying systems of interacting metamodels.

3 Heterogeneous overlap and consistency by examples

In this section we incrementally introduce our approach. We will consider very
simple examples addressing the four challenges.

3.1 Type-safety and indirect overlap

To ensure type-safety in heterogeneous case, we first need to know which types
are safe to be matched. We get this information by asking the user to specify the
overlap between metamodels first. For example, suppose in Fig. 5 we know that
class Order together with methods addItem, setSettled in cd refer to the same
elements as class Order together with message types addItem, settled in sd.
To match these elements, we first match their metamodels, mmCD and mmSD,
as shown in Fig. 6. Since metamodels are graphs, we can match them as homo-
geneous models. We state that metaclasses Class@mmCD and Class@mmSD
refer to the same concepts, and Operation@mmCD and MsgType@mmSD are
also “the same”.

6



However, as we described in the previous section, there is also an indirect
overlap between the metamodels: operations and message types are both related
to classes, but operations are directly related by an association while message
types are indirectly related via four associations. To declare this indirect overlap,
we augment metamodel mmSD with a new element mtp (read “messageType”)
and specify how it is derived (e.g., in OCL):

context Class

inv: self.mtp=self.objects.lifeline.messages.type.

Now we declare the sameness of associations oper@mmCD and mtp@mmSD
by placing association act into the head of the span as shown in Fig. 6, and
defining m1(act) = oper, m2(act) = /mtp. The indirect overlap in Fig. 2 can
be specified in a similar way. We first augment diagram D2 with two derived
subclasses of class Order (defined by the respective two queries), and then declare
their sameness with the corresponding classes in diagram D1.

After we have the overlap of metamodels, we can match models type-safely.
Consider again the span we declared. We may consider the head of the span
mmCA as a view on both models, and the two legs m1 and m2 as view defini-
tions. Then the view definitions can be executed on models. For example, view
definition m1 : mmCA → mmCD can be executed for any instance of mmCD
(i.e., for any class diagram) by extracting its mmCA-portion and its respective
retyping. A concrete view execution is shown in Fig. 7, where class diagram cd
shown in left upper corner is translated into diagram cd′ typed over metamodel
mmCA. We write cd′ = getm1(cd) with getm1 denoting the operation of view
execution (getView) determined by view definition m1 (in figures we omit the
superscript). We will also say that model cd is projected into the overlap space
mmCA, and call model cd′ the mmCA-projection of cd. Note also that getView
not only produces cd′ but also the traceability mappings m1 : cd′ → cd.

Similarly, sequence diagram sd in the top right corner of Fig. 7 is translated
into diagram sd′ = getm2(sd) also typed over mmCA, along with its traceability
mapping m2 . (This translation involves execution of the OCL-query specified
above). Since both views are instances of the same metamodel, we can type-
safely build a span (ca1, f1, f2) to match them and check consistency. This span
and the corresponding merge (colimit) are shown in the middle part of Fig. 7,
and the two models are consistent with respect to the constraints in mmCA.

3.2 Inter-metamodel constraints

So far we only checked the constraints declared in the head of the correspon-
dence span (mmCA in our examples). These constraints are common for both
feet metamodels (mmCD and mmSD). However, there may be important con-
straints residing in neither of the feet metamodels. For example, traces of actions
exhibited by a sequence diagram must conform to the state machine specified by
the corresponding statechart. We will denote this constraint by ttt]smsmsm meaning
“Traces are to conform to the StateMachine”. Since constraint ttt]smsmsm involves
elements of both metamodels, mmSD and mmSC, it cannot be declared in either
of them. Hence, a new metamodel in which ttt]smsmsm could be specified has to be
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built. Below we first show how to build such a metamodel; then we show how
to project partial models sd and sc to the space of this metamodel instances, in
which projections can be matched, merged and checked against ttt]smsmsm.

To declare ttt]smsmsm, we need a metamodel encompassing metaclasses for Classes,
Traces (sequences of actions), StateMachines, and related notions: States, Tran-
sitions, Events as specified by metamodel mmCTrSM in the middle of Fig. 8.
The upper half of this metamodel is “taken” from the sequence diagram meta-
model mmSD as specified by mapping m1 in Fig. 8. Note that m1 maps class
Trace@mmCTrSM to derived class /Trace@mmSD, whose instances are sequences
of actions described by the sequence diagram and hence can be computed by a
suitable query. The lower half of mmCTrSM is taken from the statechart meta-
model mmSC as specified by mapping m2 in Fig. 8 (and we again use derived
elements). Having built metamodel mmCTrSM, we declare in it the constraint
ttt]smsmsm with its intended semantics. We call the configuration (m1,mmCTrSM,m2)
a partial span because mappings m1 and m2 are partially defined (on the up-
per and lower halves of mmCTrSM resp.). In Fig. 8 and other figures below, a
semi-arrow head indicates partiality of the mapping.
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The next step is to project models sd and sc to the metamodel mmCTrSM.
We cannot directly execute view definitions m1, m2 because they are partial,
but we can execute them in three steps.
Step 0. We explicitly specify the domains mmCTr and mmCSM of mappings
mj on which they become totally defined mappings m!j (j = 1, 2; see Fig. 9);
inclusion mappings ij embed the domains into the head of the span.
Step 1. Total view definitions m!j are executed for models sd and sc and produce
views sd∗ and sc∗ over metamodels mmCTr and mmCSM resp.
Step 2. As the two latter metamodels are included into mmCTrSM, we may con-
sider their instances as “partial” instances of mmCTrSM. Formally, we compose
typing mappings of models sd∗, sc∗ with inclusion mappings i1, i2 and get new
typing mappings into mmCTrSM (marked by ∗ in Fig. 9).

The three steps are performed automatically and may be hidden from the
user, for whom operations getm1 and getm2 appear as if mappings mj were
ordinary total view definitions.

Now we have two models sd∗ and sc∗ over the same metamodel mmCTrSM.
To finish consistency checking, the user must match the models and build a cor-
respondence span, say, (f1, ca2, f2). The head is denoted by ca2 because it is an
instance of metamodel mmCA built in Section 4.2 (it can be formally proved).
After that, models are automatically merged modulo the span and checks the
result against the constraints in mmCTrSM, including the inter-metamodel con-
straint ttt]smsmsm. The right half of Fig. 9 specifies the entire procedure: data provided
by the user are shown with bullet nodes and solid arrows (and are black), data
automatically computed are shown with blank nodes and dashed arrows (and
are blue). Note that span (f1, ca2, f2) is a part of the multimodel.

3.3 Metamodel inter-relations

We consider our full example with three models, cd, sd and sc.
First we build a ternary span (mmCA,m1,m2,m3) specifying “the sameness”

of the concepts of operation, message and transition in the respective metamodels
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Fig. 10. Consistency checking of the example in Fig. 5

as shown in Fig. 10(a); superscript ’+’ near a target metamodel indicates that
it is augmented with derived elements defined by queries. Ternary span mmCA
is a straightforward extension of binary span mmCA built in Section 3.1 with a
new leg towards mmSC. Then we turn to models. We project the three models
to head mmCA (see Fig. 10(b)), match projections ca′, sd′, sc′ with a ternary
correspondence span ca3, merge projections modulo ca3, and finally check the
merge against the constraints declared in mmCA.

In a similar way we check consistency of models sd and sc wrt. the inter-model
constraint ttt]smsmsm declared in mmCTrSM as explained above (span ca2 describes
correspondences between projections sc∗ and sd∗). However, now a new aspect of
global consistency checking appears: we need to check that model correspondence
spans ca3 and ca2 are consistent between themselves.

An important property of the metamodel schema in Fig. 10(a) is commuta-
tivity of the two triangle diagrams (denoted by “=” labels):

(=)m m6;m4 = m2 and m6;m5 = m3.

Because view execution and retyping are compatible with metamodel map-
ping composition, we have commutativity for view execution mappings as well:

(=)get getm4;getm6=getm2 and getm5;getm6=getm3.

Hence, the mmCA-views of xx∗-models must be equal to the respective xx′-
models. Now we can check the consistency between spans. We first derive a
binary projection ca32 of the ternary span ca3, which relates sd′ and sc′. Then
we check whether the mmCA-view of the span ca2 is equal to ca32.

The simple example above shows how local model interaction is governed by
the multimodel schema specifying metamodels’ inter-relationships. The example
also demonstrates that N-ary multimodeling may exhibit sufficiently complex
metamodels schemas bearing their own constraints like commutativity.
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4 Making multimodeling precise: A general framework

A key message of the paper is that a multimodel is not just a set of models.
A multimodel is a set of base models and a structure of auxiliary models and
model mappings specifying correspondences between base models. For instance,
the multimodel of our example in the previous section consists of three models
(cd,sd,sc) and two inter-model spans (ca3, ca2) shown in Fig. 10(b). Respectively,
the metamodel of a multimodel is a graph consisting of base metamodels and a
system of spans specifying their overlap like shown in Fig. 10(a); we call it the
metamodel schema.

In a nutshell, a heterogeneous multimodel is a pair (A, C) with A = {A1:M1..
..Ak:Mk} a family of base models Ai over their metamodels Mi, and C = {C1:O1..
..Cl:Ol} a system of model correspondence spans Cj over a system of (heads of)
spans Oj specifying metamodel overlap. In other words, the correspondence part
of a multimodel is a network of auxiliary models and model mappings in-between
models Ai, which resides over the respective network of auxiliary metamodels
and mappings in-between metamodels Mi. The two-level structure of the overlap
specification is essential: models may overlap only via paths declared in the
metamodel schema.

Our formal framework [7] provides a detailed description of the sketch above.
The three basic ingredients are (a) metamodels and their mappings, (b) models
and their mappings, and (c) a mechanism of model translation from one meta-
model to another. A (minimal in a sense) mathematical framework integrating
these constructs turns out close to the institution theory [8] — a framework for
model translation developed in mathematical logic and model theory. In more
detail, the concept of abstract multimodeling framework described in [7] is a vari-
ant of the so called liberal institutions, which have two translation mechanisms
corresponding to our view computation and retyping. The framework is fairly
abstract: no details are given on what conformance of a model to a metamodel
is, or how the view mechanism is realized. Nevertheless, the notions of hetero-
geneous multimodel and its consistency can be well defined and give rise to the
corresponding algorithm for global consistency checking.

To bridge the gap between the abstract framework and practical applica-
tions, the notion of a concrete multimodeling framework is also defined in [7].
For a concrete framework, conformance of models to metamodels is realized via
typing mappings (and retyping plainly amounts to mapping composition), and
the view mechanism is realized via an algebra of query operations. A wide class
of multimodeling systems appearing in practice are instances of concrete frame-
works. Any concrete framework gives rise to an abstract framework, and thus
the general algorithm of global consistency checking can be applied.

5 Related work and discussion

Approaches to heterogeneous multimodeling can be roughly divided into global
and local. For the global approaches, heterogeneity is managed by relating all lo-
cal models to one global model, and checking consistency wrt. this global model.
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In contrast, there is no global model in local approaches (including ours). An-
other crucial dimension of multimodeling is how correspondences between local
models and their inter-relationships are specified. Below the space of existing
approaches is discussed in more detail.

Global approaches. We distinguish two main types.

1) Monitoring satisfiability of consistency rules. This is the most di-
rect global approach to consistency checking. All local models are considered as
partial instances of some all-embracing global model given a priori, e.g., System
model in [9] or the entire UML model (if UML modeling is treated as suggested
by OMG). Inter-model consistency is given by rules specified in a special lan-
guage “understanding” all local models. For this goal, local models are translated
into an expressive common formalism, e.g., FOL in the well-known Viewpoints
framework [10], XMI in xlinkit [11], description logic in [12], and again FOL in
Egyed’s framework [13]. Configuration of model overlap (which may be very in-
tricate as our examples show) is thus flattened and hidden in arrays of formulas.
As a result, the approaches mainly handle cases with simple overlap structures,
e.g., binary overlaps with elements matched by names.

2) Consistency checking via merging. Close relations between consis-
tency and model merging are noticed in [14] for behavioral, and in [2] for struc-
tural modeling. The global model is not given a priori but is computed by merg-
ing all local models modulo their correspondences; the latter must be explicitly
specified. Much work in this direction is done in databases in the context of view
integration, where they work mainly with enhanced ER-diagrams [15] or similar
but more expressive formalisms [16]. A serious limitation of this work is that
only the homogeneous case is considered because so far it was unclear how to
merge heterogeneous models.

To manage heterogeneity, local models can be translated into an a priori given
common expressive formalism (e.g., generalized sketches [17] or graph transfor-
mation systems [18]), where they are merged. A more intelligent approach is
to build a minimal common formalism by merging together all local metamod-
els. Different versions of this idea have been elaborated in the area of model
composition [19]; a survey can be found in [20]. Of course, composition of local
metamodels requires correspondences between them to be explicitly specified.
Usually only binary cases are considered, but [17, 18, 2] address also the general
N-ary case by using the colimit operation.

Local approaches. Although the idea of local consistency checking seems intu-
itive, we are not aware of its practical realization. A partial reason for this may
be that an abstract general formulation of the framework is not easy (compare
our concrete examples in Section 4 and their abstract description in [7]). The
problem is currently being investigated by the Algebraic Specification commu-
nity within the institution framework [8]. Models are translated into theories in
suitable institutions, and relationships between the latter are specified by spans
(or cospans) of institution comorphisms (resp., morphisms) [21]. The commu-
nity is experimenting with different types of structures specifying institution

12



overlaps, and a recent paper [22] uses mixed pairs (comorphism, morphism) to
relate two institutions. It is not clear how this mixed setting can be extended to
the multi-ary situation.

A fundamental distinction between these and our frameworks is that they
do not consider derived elements in correspondence specifications. It makes the
theory much simpler but much less expressive (and inapplicable to practically
interesting situations we considered in the paper). Another fundamental dis-
tinction is that they consider local models consistent if their projections to the
overlap are equal (or one is a subset of the other), but matches between projec-
tions are not considered. In contrast, in our framework model matches are an
integral part of the multimodel. Other distinctions are (a) they consider only
binary correspondences, (b) do not work with inter-metamodel constraints, and
(c) treat consistency semantically (the set of instances is not empty) rather
than syntactically (as in our framework). However, if the institution satisfies the
corresponding completeness theorem, syntactic and semantic consistencies coin-
cide. Also, we do not translate metamodels into theories: for us metamodels are
theories, and model translation is given by the view execution mechanism.

Correspondences via spans. For local and global-2 approaches, explicit spec-
ification of inter-model correspondences is a central issue, and different types of
notation and techniques were developed [23]. A distinctive feature of our ap-
proach is that the set of correspondences is reified as a special model endowed
with projection mappings — a span. This is a standard categorical idea, which
was repeatedly employed in homogeneous multimodeling frameworks based on
category theory, eg, [24, 17, 18, 6, 25]. Independently, the same idea of reifying
correspondences by a model was discovered in work on model management in
databases [26, 16].

The most difficult issue is indirect correspondences, when sets of elements
in different models are related but their relationships cannot be specified by
equating the elements (e.g., Fig. 2). Such correspondences are usually specified
by correspondence rules [23] or expressions [26] attached to nodes reifying cor-
respondences. When such annotated spans are composed, it is not clear how to
compose the rules — the importance and difficulty of this problem was stressed
in [26]. In our approach, the problem is solved with specifying indirect correspon-
dences by equations involving derived elements, then composition amounts to
term substitution (see [5, 27] for examples and details). Moreover, the use of de-
rived elements allows us to specify structural conflicts between models uniformly
by equations; e.g., all structural conflicts considered in [16] can be managed in
this way [28].

6 Conclusion

The paper describes a general approach to global consistency checking of hetero-
geneous multimodels. It is based on finding common views between metamodels
of the models involved, projecting all models to these views, merging projec-
tions and checking the result against the constraints specified in the view. The
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approach gives rise to a novel framework for heterogeneous multimodeling, in
which a network of interrelated metamodels — the metamodel schema — plays
the central role.

The framework has a number of advantages. First, heterogeneous consistency
checking is reduced to homogeneous with a minimal amount of metamodel merg-
ing; the latter is unavoidable if we want to treat inter-metamodel constraints yet
we work as locally as possible. Second, the framework is applicable to a wide
class of models and metamodels satisfying not too restrictive conditions. Third
is the adaptability of the framework to the living with inconsistencies paradigm
[4]: conflicts between models can be recorded in the heads of the correspondence
spans and resolved later. Forth, heterogeneous multimodeling becomes directly
related to the institution theory and hence to a source of important mathemat-
ical results about interrelation of logical theories and their models.

However, the approach still needs practical, and in part also theoretical, vali-
dation. On the practical side, the main question is how effectively a multimodel-
ing tool based on the framework could be implemented. On the theoretical side,
the cornerstone of the approach is a default assumption that our “as local as
possible” consistency checking is equivalent to consistency checking via building
a global metamodel (global-2 approaches). There are strong formal arguments
justifying this assumption but an accurate proof is still to be completed.

Another important theoretical line of future work is to develop a useful classi-
fication of heterogeneous multimodels. We may classify multimodels by the type
of their metamodel schema: whether it is a plain collection of spans, or there
are spans over spans over spans, or perhaps even more complex configurations.
Types of mappings in the metamodel schema are also essential: whether they are
plain projections or complex views involving non-trivial queries. Complexity of
queries involved in the metamodel schema of a multimodel is its important prop-
erty, and many useful results can be found in the database literature. Defining
multimodeling in abstract mathematical terms [7] would allow useful interaction
of the two fields.
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19. Bézivin, J., Bouzitouna, S., Fabro, M.D., Gervais, M., Jouault, F., Kolovos, D.,
Kurtev, I., Paige, R.: A canonical scheme for model composition. In: ECMDA-FA.
(2006) 346–360

20. Vallecillo, A.: On the combination of domain specific modeling languages. In:
ECMFA. (2010) 305–320

21. Wirsing, M., Knapp, A.: View consistency in software development. In: RISSEF.
Volume 2941 of LNCS., Springer (2002) 341–357

22. Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What is a multi-modeling
language? In: WADT. Volume 5486 of LNCS., Springer (2009) 71–87

23. Romero, J., Jaen, J., Vallecillo, A.: Realizing correspondences in multi-viewpoint
specifications. In: EDOC, IEEE Computer Society (2009) 163–172

24. Fiadeiro, J.L., Maibaum, T.S.E.: Interconnecting formalisms: Supporting modu-
larity, reuse and incrementality. In: SIGSOFT FSE. (1995) 72–80

25. Liang, H., Diskin, Z., Dingel, J., Posse, E.: A general approach for scenario inte-
gration. In: MoDELS. (2008) 204–218

26. Bernstein, P.: Applying model management to classical metadata problems. In:
Proc. CIDR’2003. (2003) 209–220

27. Diskin, Z.: Mathematics of generic specifications for model management. In Rivero,
Doorn, Ferraggine, eds.: Encyclopedia of Database Technologies and Applications.
Idea Group (2005) 351–366

28. Diskin, Z., Easterbrook, S., Miller, R.: Integrating schema integration frame-
works, algebraically. Technical Report CSRG-583, University of Toronto (2008)
http://ftp.cs.toronto.edu/pub/reports/csrg/583/TR-583-schemaIntegr.pdf.

15


