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Abstract. Modeling is almost always multimodeling : a system is repre-
sented by a set of interrelated models, each one capturing a specific local
view or aspect of the system. Since local models are models of the same
system, they implicitly overlap and hence may be globally consistent or
inconsistent.
Paper [1] pesents a framework for specifying overlaps between local mod-
els and defining their global consistency. Its essential feature is that over-
lap specifications involve models’ derived elements defined by respective
queries. An advantage of the framework is that heterogeneous consis-
tency checking is reduced to the homogeneous case yet merging partial
metamodels into one global metamodel is not needed.
The goal of the present report is to support the framework with a generic
formal semantics. Genericness means independency of the framework
from specific details of the constraint and query languages employed for
model definition and manipulation. It inevitably leads to a formal frame-
work based on category theory; the notions of a monad and fibration will
be essential.

1 Introduction

Modeling is almost always multimodeling : a system is represented by a set of
interrelated models, each one capturing a specific local view or aspect of the
system. Different views require different modeling means (languages, tools, and
intuitions), and their models are often built by different teams that possess the
necessary experience and background. This makes modeling of complex systems
heterogeneous, collaborative, and distributed.

A fundamental problem of multimodeling is ensuring global consistency of the
set of local models. Indeed, since local models are models of the same system,
they implicitly overlap and hence may be consistent or inconsistent wrt. a set of
global constraints. Specifying overlaps of heterogeneous models is a crucial issue
of multimodeling. This issue is addressed in paper [1].

The key message of [1] is that a multimodel is not just a set of models.
A multimodel is a set of base models and a structure of auxiliary models and
model mappings specifying correspondences between base models. As examples



in [1, Section 3] show, models may overlap in several different ways, and the
correspondence structure may thus be a complex network over which models
interact (“communicate”).

In a nutshell, a heterogeneous multimodel is a pair (A, C) with A = {A1:M1..
..Ak:Mk} a family of base models Ai over their metamodelsMi, and C = {C1:O1..
..Cl:Ol} a system of model correspondence spans Cj over a system of (heads
of) spans Oj specifying metamodel overlap. In other words, the correspondence
part of a multimodel is a network of auxiliary models and mappings in-between
models Ai, which resides over the respective network of auxiliary metamodels
and mappings in-between metamodels Mi. The two-level structure of the overlap
specification is essential: models may overlap only via paths declared in the
metamodel schema.

This Technical Report is a mathematical companion to paper [1]. Its goal is
to show how the brief description above can be made precise. Section 2 prersents
an example of model translation and its semi-formal discussion to guide intu-
ition for more formal subsequent development. Section 3 specifies a very abstract
formal framework for model translation, which takes into account neither con-
straints nor queries and derived elements. Nevertheless, having the translation
mechianism established, Section 4 defines global consistency of a heterogeneous
multimodel and shows that consistency checking can be indeed realized in the
framework of Section 3. Section 5 investigates how the abstract framework of
Section 3 can be implemented with constructs close to modeling practice: typed
structures, query and constraint languages. This is the most technically demand-
ing part of the report, which needs some more advanced category theory (fibra-
tions and monads). Appendix presents basic definitions about spans, multispans
and their colimits.

2 Model translation via arrows and diagrams

This section (taken from [2]) shows that model translation (MT) can be treated
as a view computation, whose view definition is given by a corresponding meta-
model mapping. An algebraic model of the view mechanism is also discussed.

2.1 MT-semantics and metamodel mappings

The MT-task is formulated as follows. Given two metamodels, SSS (the source)
and TTT (the target), we need to design a procedure translating SSS-models into TTT -
models. It can be formally specified as a function f : S→ T between the spaces
of models (instances of the corresponding metamodels). The only role of meta-
models in this specification is to define the source and the target spaces, and
metamodels are indeed often identified with their model spaces [3–5]. However,
a reasonable model translation f : S→ T should be compatible with model se-
mantics. The latter is encoded in metamodels, and hence a meaningful trans-
lation should be somehow related to a corresponding relationship between the
metamodels. A simple case of such a relationship is when we have a mapping
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f : TTT → SSS between the metamodels. Indeed, if we want to translate SSS-model into
TTT -models, the concepts specified in TTT should be somewhere in SSS. The following
example explains how it works.

Suppose that our source models consist of Person objects with attributes
qName and phone: the former is complex and composed of a qualifier (Mr or
Ms) and a string. The metamodel, SSS, is specified in the lower left quadrant of
Fig. 1. Oval nodes refer to value types. The domain of the attribute ’qName’ is
a Cartesian product (note the label ⊗) with two projections ’name’ and ’qual’.
The target of the latter is a two-element enumeration modeled as the disjoint
union of two singletons. Ignore dashed (blue with a color display) arrow and
nodes for a while.

A simple instance of metamodel SSS is specified in the upper left quadrant. It
shows two Person-objects with names Mr.Lee and Ms.Lee (ignore blue elements
again). Types (taken from the metamodel) are specified after colons and give
rise to a mapping tA: A→SSS.

Another metamodel is specified in the lower right quadrant. Note labels disj
and cov “hung” on the inheritance tree: they are diagram predicates (constraints)
that require any semantic interpretation of node Actor (i.e., a set [[ Actor ]] of
Actor-objects) to be exactly the disjoint union of sets [[ Male ]] and [[ Female ]].

We want to translate Person-models (SSS-instances) into Actor-models (TTT -
instances). This intention makes sense if TTT -concepts are somehow “hidden”
amongst SSS-concepts. For example, we may assume that Actor and Person refer
to the same class in the real world.

The situation with Actor-concepts Male and Female is not so simple: they
are not present in the Person-metamodel. However, although these concepts are
not immediately specified in SSS, they can be derived from other SSS-concepts. We
first derive new attributes /name and /qual by sequential arrow composition
(see Fig. 1 with derived elements shown with dashed thin lines and with names
prefixed by slash — a UML notation). Then, by the evident select-queries, we
form two derived subclasses of class Person: mrPerson and msPerson.

Note that these two subclasses together with class Person satisfy the con-
straints disj, cov discussed above for metamodel TTT . It can be formally proved
by first noting that enumeration {Mr,Mrs} is disjointly composed of singletons
{Mr}, {Mrs}, and then using the property of Select queries (in fact, pullbacks)
to preserve disjoint covering. That is, given (i) query specifications defining
classes mrPesron, mrsPerson, and (ii) predicate declarations disj, cov for the
triple ({Mr,Mrs},{Mr},{Mrs}), the same declarations for the triple (Person, mr-
Person, mrsPerson) can be logically derived.

The process described above gives us an augmentation Q[SSS] ⊃ SSS of the
Person-metamodel SSS with derived elements, where Q refers to the set of queries
involved. Now we can relate Actor concepts Male and Female to derived Person-
concepts mrPerson and mrsPerson. Formally, we set a total mapping vvv: TTT → Q[SSS]
that maps every TTT -element to a corresponding Q[SSS]-element. In Fig. 1, links
constituting the mapping are shown by thin curly arrows. The mapping satisfies
two important requirements: (a) the structure of the metamodels (incidence of

3



 

 
 

traceability mapping 

:pho 

:isA 

:/qual

:/qual

:qName 

:qual :name 

:qual :name 

:qName 
P1: Person

P2: Person

Mr_Smith : ⊗ 

P11:/mrPerson

Smith:str 
Mr : {Mr, Ms}

Ms_Smith : ⊗ 

Ms : {Mr, Ms}

P21:/msPerson

:/name 

:/name 
:isA 

(P1•Actor)

(P11•Male)

(P21•Female)

(Smith•str) 

(P2•Actor)

:name 

:name 

:isA

:isA

11:Int 

Model  A Model B 
vA

22:Int 

type mapping t /type mapping tA BB

pho 
isA

View definition  mapping v  

name /name 

/qualname 
qual 

Person 

qName 

⊗ 

str {Mr,Ms} 

{Mr} 

{Ms} /msPerson 

Actor 

str 

Male 

Female 

isA

/mrPerson 

int 

Metamodel S Metamodel  T 

[disj]
[cov]

[disj]
[cov]
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nodes and arrows, and the isA-hierarchy) is preserved; and (b) the constraints in
metamodel TTT are respected (disj, cov-configuration in TTT is mapped to disj,cov-
configuration in SSS).

2.2 MT via tile algebra

This section shows that data specified above are sufficient to automatically trans-
late any SSS-model into a TTT -model by applying to them two diagram operations.
Since these operations are based on the square shape, they will be called tile
operations; more about tile algebra is in [2].

1) Query execution. Query specifications used in augmenting SSS with derived
elements can be executed for SSS-models. For example, given a model A, each pair
of A’s arrows typed with :qName and :name produces a composed arrow typed
with :/name (see the left upper quadrant in Fig. 1), and similarly any pair of
some model’s arrows :qName and :qual produces an arrow :/qual (these are not
shown in the figure to avoid clutter). Then each object typed by :Person and
having the value Mr along the arrow :/qual, is cloned and typed :/mrPerson.1

The result is that the initial typing mapping tA: A→SSS is extended to typing
mapping tQ[A]: Q[A]→QQQ[SSS], in which Q[A] and QQQ[SSS] denote augmentations of
the model and the metamodel with derived elements.

Remark 1 (On notation). Note that a model is a pair A = (DA, ta) with DA

its carrier graph and tA: DA → S its typing mapping. To easy notation (but
abusing it), we will write A for DA too. Note also that bold Q[SSS] is a query
specification while Q[A] is provided by the query execution.

The extended typing mapping tQ[A] is again structure preserving. Moreover,
it is a conservative extension of mapping tA in the sense that (a) types of elements
in A are not changed by tQ[A], and (b) each derived elements (from Q[A]\A) has
a new type (from Q[SSS] \ SSS). Formally, the inverse image of submodel SSS ⊂ QQQ[SSS]
wrt. the mapping tQ[A] equals to A, and restriction of tQ[A] to A is again tA.

The configuration we obtained is specified by the left square diagram in
Fig. 2(a). Framed nodes and solid arrows denote the input for the operation of
query execution, dashed arrows and non-framed nodes denote the result. Label
qExe means that the entire square is produced by the operation; the names of
arrows and nodes explicitly refer to query QQQ[] (whereas q is part of the label,
not a separate name).

2) Retyping. The pair of mappings,

typing tQ[A]: Q[A]→ Q[SSS], and view QQQ[SSS]
vvv←− TTT ,

1 With a common semantics for inheritance, we should assign the new type label /mr-
Person to the same object P1. To avoid multi-valued typing, inheritance is straight-
forwardly formalized by cloning the objects. In fact, such cloned objects are roles
played by “real” objects.
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Fig. 2. Model translation via tile operations (the upper arrow in diagram (c) is derived
and must be dashed but the Diagram software does not draw dashed triple arrows).

provide enough information for translating model Q[A] into TTT -metamodel. All
that we need to do is to assign to elements of Q[A] new types according to
the view mapping: if an element e ∈ Q[A] has type X = tQ[A](e) ∈ Q[SSS] and
X = vvv(Y ) for some type Y ∈ TTT , we set the new type of e to be Y . For example,
since Q[A]-element P11 in Fig. 1 has type mrPerson, which (according to the
view mapping vvv) corresponds to type Male in TTT , this elements must be translated
into an instance of type Male; we denote it by (P11 •Male). If no such TTT -type
Y exists, the element e is not translated and lost by the translation procedure
(e.g., phones of Person-objects). Indeed, non-existence of Y means that the X-
concept of metamodel SSS is beyond the view defined by mapping vvv and hence all
X-instances are to be excluded from vvv-views.

Thus, translation is just retyping of some of Q[A]-elements by TTT -types, and
hence elements of the translated model B are, in fact, pairs (e, Y ) ∈ Q[A]×TTT
such that tQ[A](e) = vvv(Y ). In Fig. 1, such pairs are denoted by a bullet between
the components, e.g., P1•Actor is a pair (P1,Actor) etc. If we now replace bullets
by colons, we come to the usual notation for typing mappings. The result is that
elements of the original model are retyped by the target metamodel according
to the view mapping, and if B denotes the result of translation, we may write

B ∼=
{

(e, Y ) ∈ Q[A]×TTT : tQ[A](e) = vvv(Y )
}

(1)

We use isomorphism rather than equality because elements of B should be ob-
jects and links rather than pairs of elements. Indeed, the translator should create
a new OId for each pair appearing in the right part of (1).

First components of pairs specified in (1) give us a traceability mapping
vvvA: B → A as shown in Fig. 1. Second components provide typing mapping
tB : B → TTT . The entire retyping procedure thus appears as a diagram operation
specified by the right square in Fig. 2(a): the input of the operation is a pair
of mappings (tQ[A], vvv), and the output is another pair (vvvQ[A], tB). The square
is labeled pb because equation (1) specifies nothing but an instance of pullback
operation.

Remark 2. If view vvv maps two different TTT -types Y1 6= Y2 to the same SSS-type X,
each element e ∈ Q[A] of type X will gives us two pairs (e, Y1) and (e, Y2) sat-
isfying the condition above and hence translation to TTT would duplicate e. How-
ever, this duplication is reasonable rather than pathological: equality vvv(Y1) =
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vvv(Y2) = X means that in the language of TTT the type X simultaneously plays two
roles (those described by types Y1 and Y2) and hence each X-instance in Q[A]
must be duplicated in the translation. Further examples of how specification (1)
works can be found in [6]. They show that the pullback operation is surprisingly
“smart” and provides an adequate and predictive model of retyping.

Moreover, Since the construct of inverse image is also nothing but a special
case of pullback, the postcondition for operation qExe stating that tQ[A] is a
conservative extension can be formulated by saying that the square qExe is a
pullback too. To be precise, if we apply pullback to the pair (iQA, tQ[A]), we get
the initial mapping tA.

Constraints do matter. To ensure that view model B is a legal instance of
the target metamodel TTT , view definition mapping vvv must be compatible with
constraints declared in the metamodels. In our example in Fig. 1, the inheritance
tree in the domain of vvv has two constraints disj,cov attached. Mapping vvv respects
these constraints because it maps this tree into a tree (in metamodel SSS) that has
the same constraints attached. Augmentation of model A with derived elements
satisfies the constraints, A |= disj ∧ cov, because query execution (semantics)
and constraint derivation machinery (pure logic, syntax) work in concert (the
completeness theorem for the first order logic). Relabeling does nothing essential
and model B satisfies the original constraint in TTT as well (details can be found
in [7]).

Arrow encapsulation. Query execution followed by retyping gives us the op-
eration of view execution shown in Fig. 2(b). In the tile language, the outer tile
vExe is the horizontal composition of tiles qExe and pb. Note that queries are
“hidden” (encapsulated) within double arrows: their formal targets are ordinary
models but in the detailed elementwise view their targets are models augmented
with derived elements.

Diagram (c) present the operation in an even more encapsulated way. The
top triple arrow denotes the entire diagram (b): the source and target nodes are
models together with their typing mappings, and the arrow itself is the pair of
mappings (vvv,vvvA). Although the source and the target of the triple arrow are
typing mappings, we will follow a common practice and denote them by pairs
(model:metamodel), e.g., A:SSS, leaving typing mappings implicit. Two vertical
arrows are links, i.e., pairs (A,SSS), (B,TTT ); a similar link from the top arrow to
the bottom one is skipped. Note that diagram (c) actually presents a diagram

operation: having a metamodel mapping SSS vvv⇐= TTT and a model A:SSS, view exe-
cution produces a model A�vvv:TTT along with a traceability mapping (triple arrow)
vvvA:vvv encoding the entire diagram Fig. 2(b). An abstract formulation of this
construction is called fibration; it will be central later in Sect. 5.

2.3 Properties of the view execution operation

The view mechanism has three remarkable algebraic properties.
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X

A ⇐
vvvA

= =⇐===========
f :vvv

B

:uni⇒ !:1TTT
?

:vEx↗↗e
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?
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vvv
TTT
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Fig. 3. Laws of the view execution mechanism

1) Universality. Suppose we have a model X and a mapping Q[A]
f←− X that

maps some of X’s elements to derived rather than basic elements of A as shown
in Fig. 4.

A A⎡v

S Tv

f
X

!
vAQ[A]

Q [S]
:qExe :pb

:uni

tX

Fig. 4. Universal property of view
computation

The mapping must be compatible with
typing so that the outer right square with
vertex X is required to be commutative:
f ;Q[tA] = tX ;vvv. Then owing to the uni-
versal properties of pullbacks, there is a

uniquely defined mapping A�vvv
!←− X such

that the triangles commute (note that map-
ping ! is a homogeneous model mapping over
identity 1TTT : TTT → TTT ).

By encapsulating queries, i.e., hiding
them inside double-arrows (see transition

from diagram (a) to (b) in Fig. 2), we can formulate the property as shown
in Fig. 3(b1), where arrows f :vvv and !:1TTT actually denote square diagrams whose
vertical arrows are typing mappings and bottom arrows are pointed after semi-
colon. In the categorical jargon, it means that mapping vvvA is weakly Cartesian.

2) Unitality. If a view definition is given by the identity mapping, view execu-
tion is identity as well, as shown by diagram Fig. 3(b2)

3) Compositionality. Suppose we have a pair of composable metamodel map-
pings vvv : TTT ⇒ SSS and www: UUU → TTT , which defines UUU as a view of a view of SSS. Execu-
tion of a composed view is normally composed from the execution of components
so that for any SSS-model A we should have

vvv;wwwA = wwwB ; vvvA with B standing for A�vvv

as shown in Fig. 3(b3).
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3 Abstract multimodeling framework

Building the definition. An abstract multimodeling framework Fabstr is a
tuple of constructs defined below.

1) A category MMod whose objects are called metamodels and arrows are
metamodel mappings.

2) Each metamodel M is assigned with two categories, one being a subcat-

egory of the other, [[ M ]] ⊂ [[ M ]]
?
. Intuitively, objects of [[ M ]]

?
are structures

properly typed over M but perhaps violating M ’s constraints (hence the ques-
tion mark); we will call them structural instances. Objects of [[ M ]] are (legal)
models: structural instances of M satisfying, in addition, all constraints in M .

We require all categories [[ M ]]
?

to be closed under colimits (merging). This
is the case for many classes of structures carrying metamodels and models like
graphs or attributed graphs. But we do not require this property for [[ M ]].
Examples in [1] show that in practically interesting situations [[ M ]] is not closed
under colimits.

3) Any metamodel mapping m: M → N ::MMod is assigned with a getView

functor get?m: [[ N ]]
? → [[ M ]]

?
that maps in the opposite direction (think of m as

a view definition and get?m as its execution). Moreover, functor get?m is required
to map legal N -models to legal M -models because we implicitly assume that
mapping m is compatible with constraints declared in the metamodels. Below in
Section 4 we will see how it works. Thus, the restriction of get?m to the category

of models [[ N ]] ⊂ [[ N ]]
?

is a functor getm: [[ N ]]→ [[ M ]]
Moreover, if m = 1M is the identity mapping of metamodel M , then both

get?m and getm are equal to identity functors on [[ M ]]
?

and [[ M ]] resp, and for

two consecutive mappings M
m1- N

m2- O,

getm1;m2 = getm2 ; getm1 : [[ O ]]→ [[ M ]]

(a sequentially composed view definition is executed consecutively). The same
condition holds for get?. To be precise, we must require natural isomorphism
rather than equality in the equation above: our formal framework assumes that
the result of view computation is an ordinary model like other models (the
view is “materialized”), and hence its elements have arbitrarily chosen object
identifiers. Then the result of view computation is defined up to isomorphism,
and composition is also preserved up to isomorphism.

4) Any injective mapping i: M → N is assigned with a retyping functor

rtp?
i : [[ M ]]

? → [[ N ]]
?

(think of retyping described in [1, Section 3.2]). Note that
in contrast to operation get, rtp? maps structural instances (particularly, mod-
els) to structural instances (not necessarily models): if even an instance A is an
M -model, we cannot guarantee that rtp?

i (A) would satisfy all constraints in N .
However,we require that for any i, functor rtp?

i be the left adjoint to get?i .

Similarly to get, we require rtp?
111M

to be the identity functor on [[ M ]]
?
, and

for two consecutive mappings m1, m2 as above,

rtp?
m1;m2

= rtp?
m1

; rtp?
m2

: [[ M ]]
? → [[ O ]]

?
.
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We will write an abstract multimodeling framework in a short form as a
tuple Fabstr = (MMod, get?, get, rtp?) assuming that the [[ ]]-part of the con-

struction is “included” into get, and the [[ ]]
?

part is “included” into (get?,rtp?).
That is, for an object (metamodel) M ∈MMod0, we set [[ M ]] = get0(M) and

[[ M ]]
?

= get?0(M) = rtp?
0(M), which will make mappings get?,get,rtp? functors

from MMod into “the” category of all categories Cats.

Partial metamodel mappings. A partial mapping m : M ⇀ N between meta-

models (note the harpoon-like arrow head) is, formally, a diagramM �im Dm
fm- N

with Dm ⊂ M a metamodel called the domain of m (while M is the source of
m), im is the corresponding inclusion, and fm is an ordinary (total) metamodel
mapping (the function of m).

Evidently, sequential composition rtp?
im
◦ get?fm provides a functor [[ M ]]

? ←
[[ N ]]

?
translating N ’s structural instances and their mappings into M ’s ones.

Thus, operations get? and rtp? together provide model translation over partial
mappings. By some abuse of notation, we will denote this composition by get?m
(so that the actual meaning of get?m depends on whether m is a total or a partial
mapping).

4 Multimodels and their consistency

Let Fabstr = (MMod, get, rtp?) be an abstract multimodeling framework.

Homogeneous multimodels and their consistency. A homogeneous mul-
timodel over Fabstr is a pair (M,A) with M ∈ MMod a metamodel and A a
diagram in [[ M ]]. Below, we will often write such a pair as A:M .

For simplicity, we will assume that this diagram has a multispan shape (see
Appendix). Then a homogeneous multimodel A can be seen as a set FeetA of
base models with a systems of correspondence spans over them.

A multimodel is called discrete if A is simply a set of models without cor-
respondence spans. It means that we a priori assume that all local models are
entirely independent.

A multimodel is consistent if colimit ΣA of the multispan A (which always

exists in [[ M ]]
?
) satisfies M ’s constraints, i.e., ΣA ∈ [[ M ]].

Heterogeneous multimodels and their consistency. A heterogeneous mul-
timodel is a pair (AA,S), in which

AA = (A1:M1 . . .An:Mn)

is a family of homogeneous multimodels Ai (multispans) with their metamodels
Mi ∈ MMod (i = 1..n), and S is a diagram in MMod called the metamodel
schema of the multimodel.
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Consistency of a heterogeneous multimodel is much more involved than in
the homogeneous situation, and we will begin with two simplifying assumptions.

1) Each homogeneous multimodel Ai is discrete, i.e., is a set of models with-
out mappings between them.

2) The metamodel schema S is a multispan, that is, a set of total and partial
spans over the set of metamodels {M1...Mn} considered as feet (see Appendix).

With these assumptions, the algorithm for checking global consistency is as
follows.

The global consistency of AA is checked at the heads of all spans in S. That
is, for each span S in S we perform the following procedure.

Let H = headS be the head of S. First, we project to the space [[ H ]]
?

of
structural H-instances all models Ai, whose metamodels Mi are reachable from
H by the legs of the span. If the span is total, projecting is provided by the
view mechanism. If the span is partial, projecting needs both view execution
and model retyping as explained above. In this way we obtain a set of instances

AH = {getmi
(A) : (mi: H →Mi) ∈ legsS, A ∈ Ai} ⊂ [[ H ]]

?

Second, instances in AH are matched by a multispan (i.e., a family of corre-
spondence spans) CH . Note that CH -data are provided by the user and are, in
fact, part of the multimodel’s state. That is, a multimodel is actually a triple
(AA,S, CC) with CC = {CH : H = headS, S ∈ S} a family of multispans indexed
by S.

Third, for each multispan CH its colimit is computed, that is, all instances
in AH are merged modulo the correspondence CH into a structural instance

ΣCH =
(⊎
AH
)
/CH ∈ [[ H ]]

?
.

Finally, for each span we check whether ΣCH ∈ [[ H ]], i.e., whether the colimit⊎
AH/CH satisfies all constraints declared in metamodel H.

Definition 1 (global consistency) The multimodel (AA,S, CC) is considered
to be (globally) consistent if ΣCH ∈ [[ H ]], H = headS, for all spans S in S.

Now we return to our two simplifying assumptions.
1) The general case with Ai being diagrams rather than sets can be treated

similarly to the above. The key point is that translation operations get and
rtp? are functors, that is, they translate not only instances but also instance
mappings, and hence correspondence diagrams as well. Then the projection
AH ⊂ [[ H ]]

?
will be a diagram rather than a set of instances, and diagram

CH will provide a second level correspondence structure. As colimit operation
consumes any sort of input diagrams, the algorithm works well for the general
case too.

2) Building a generic consistency checking algorithm for the case of meta-
model schema being more complex than a set of spans is harder. When we
have spans over spans like in the example in [1], we should have a possibility
to declare commuttaivity of some diagrams in the metamodel schema. Then the
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metamodel schema becomes a construct called a sketch [8] rather than a graph.
Generalization in this direction is a work in progress.

5 Concrete multimodeling framework

In a nutshell, a concrete multimodeling framework (CMF) consists of three com-
ponents: (i) a base category G of graph-like structures to be thought of as the
carriers of metamodels and models, (ii) a constraint language cntr together with
binary relations |= of constraints’ satisfiability by a model, and (iii) a query
language Q together with operations of query execution over a model. We will
consecutively consider the corresponding constructs

5.1 The carrier structure.

We fix a category G, whose objects are to be thought of as graphs, or many-
sorted (colored) graphs, or attributed graphs [9]. The key point is that they
are definable by a metametamodel itself being a graph with, perhaps, a set of
equational constraints. In precise categorical terms, we require G to be a presheaf
topos [8], and hence possessing limits, colimits, and other important properties.
We will call G-objects ‘graphs’.

For a ‘graph’ G thought of as a metamodel, an instance of G is a pair A =
(DA, tA) with DA another ’graph’ and tA: DA → G a mapping (arrow in G) to
be thought of as typing. An instance mapping f : A→ B is a ’graph’ mapping
f : DA → DB commuting with typing: f ; tB = tA. This defines the category G/G
of G-instances (in category theory such categories are called sliced).

Any mapping m: G1 → G2 :: G determines a functor

pb(m): G/G2 → G/G1

built with pullback operation in the standard way (see e.g.[10, p.48]); note that
the arrow is reversed. To ease notation, given an instance B ∈ G/G2, we will
often write pbm(B) for pb(m)(B).

We can join all local categories G/G into one category G·→· whose ob-
jects are G-arrows t: D → G and morphisms t1 → t2 are pairs fD: D1 → D2,
fG: G1 → G2 such that fD; t2 = t1; fG. In other words, morphisms in G·→· are
commutative squares. It is well known that the codomain assignment cod: G·→· → G
is a fibration, whose Cartesian lifting is given by pullbacks (see Background sec-
tion below).

The retyping operation rtp? is defined by composition: given an instance
A ∈ G/G1 and a ‘graph’ mapping m: G1 → G2 :: G, we define rtp?

m(A) = tA;m.
It is easy to see that it makes rtp?

m a functor:

rtp?
m: G/G1 → G/G2.

It is well known that functor rtp?
m is a left adjoint to pbm for any m [11].

12



Background: Fibrations. Let ppp: E→ B be a functor. We say that an arrow
e: E1 → E2 :: E is above arrow b :: B if ppp(e) = b. Arrow e is called vertical (wrt.
ppp) if it is above an identity arrow in B.

An arrow e: E1 → E2 is called (weakly) Cartesian wrt. ppp, or ppp-Cartesian, if
for any arrow e′: E′ → E2 to the same target s.t. ppp(e) = ppp(e′), there is a unique
vertical arrow !: E′ → E1 with !; e = e′. The prefix ’ppp-’ will be often skipped if
the functor ppp is clear.

It is easy to prove that all Cartesian arrows with the same target are isomor-
phic (i.e., their domains are isomorphic and the respective triangle commutes).
All identity arrows in E are Cartesian.

Functor ppp is called a fibration if
(a) For any object E′ ∈ E0 and arrow v: V → pppE′ :: B, there is a Cartesian

arrow e: E → E′ s.t. ppp(e) = v. We say that arrow e is the Cartesian lifting of v
at object E′.

(b) Sequential composition of two Cartesian arrows is again Cartesian.
Thus, properties of the view mechanism in Fig. 3 mean that the functor

assigning to each model its metamodel is a fibration.

5.2 Constraints

We follow the lines of the institution theory and define constraints abstractly
via a functor cntr: G→ Sets. To ease understanding, we first consider how this
functor acts on objects, and then proceed with mappings.

Constraints and metamodels. We assume that for any ‘graph’ G (to be
thought of as the carrier of some metamodel), there are defined (i) a set cntr(G)
of all constraints that can be specified over G, and (ii) a binary satisfiability
relation

|=G ⊂ G/G× cntr(G)

betweenG’s instances and constraints. For an instance A ∈ G/G and a constraint
c ∈ cntr(G), we write A |=G c for (A, c) ∈|=G and say that instance A satisfies
the constraint c.

A metamodel is a pair M = (GM , CM ) with GM ∈ G a carrier graph and
CM ⊂ cntr(GM ) a set of constraints. Instances of GM , i.e., ‘graphs’ typed by GM ,

are called structural instances of M , and we write [[ M ]]
?

for the class G/GM .
Structural instances that satisfy all constraints in CM are (legal)models of M ,

and we write [[ M ]] for the class of all models, [[ M ]]
def
=
{
A ∈ [[ M ]]

?
: A |= CM

}
.

Constraint translation and metamodel mappings. Now we assume that
cntr also acts on mappings: if m: G→ G′ :: G is a ‘graph’ mapping, then cntr(m)
is a function that translates any constraint c ∈ cntr(G) that may be declared
over G to a constraint c′ = cntr(m)(c) over G′.

Informally, mapping cntr(m) works as follows. A constraint c declares some
property Pc of the corresponding fragment Gc ⊂ G of ‘graph’ G. Mapping m
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maps the fragment Gc into a fragment m(Gc) ∈ G′ of the target ‘graph’. Since m
is structure preserving, m(Gc) has a structure similar to Gc, and hence property
P can be declared for m(Gc) as well. Hence, we have a constraint c′ = [m(Gc), P ]
over ‘graph’ G′, and this constraint is the value of function cntr(m) at argument
c. These considerations can be made precise within the framework of generalized
sketches (or diagram predicate graphs, dp-graphs) described in [7].

Thus, translation cntr(m) does not change the property and simply sub-
stitutes a piece of G′ for the corresponding piece of G. Then, if a structural
instance B ∈ [[ G ′ ]]

?
of the target graph satisfies constraint c′ = cntr(m)(c), then

its “inverse image” A = pbm(B) ∈ [[ G ]]
?

must satisfy constraint c. That is,

B |= c′ implies A |= c. (2)

This statement is nothing but the fundamental translation axiom of the insti-
tution theory, which does not define what constraints are, and how they are
translated, but postulates the translation axiom (see Section 6 for a brief primer
on the notion of institution).

A metamodel mapping m: (G,C)→ (G′, C ′) is a ‘graph’ mapping m: G→ G′

compatible with the constraints: cntr(m)(c) ∈ C ′ for all c ∈ C. Hence, if B ∈
[[ (G ′,C ′) ]] is a model of the metamodel M ′ = (G′, C ′), then structural instance

pbm(B) ∈ [[ (G ,C ) ]]
?

is actually a legal model of M = (G,C), that is, pbm(B) ∈
[[ M ]].

Our interpretation of constraint translation also requires to postulate

cntr(m;n) = cntr(m); cntr(n)

for any two consecutive mappings G1
m- G2

n- G3, and

cntr(1G) = 1cntr(G).

It implies that the class of all metamodels and their mappings is a category,
which we will denote by MMod.

Heterogeneous models and their mappings. In the heterogeneous setting,
we redefine the notion of model as a pair A = (MA, tA) with M = (GA, CA) a
metamodel and tA: DA → GA its legal model (instance), tA |= CA.

A model mapping f : B → A is a pair of mappings,

fmeta: MB →MA and finst: DB → DA,

the first being a metamodel mapping and the second an instance mapping, such
that the square commutes: tB ; fmeta = finst; tA. In this way we obtain the cat-
egory of all (heterogeneous ) models and their mappings, which we denote by
Mod.

Moreover, it is easy to see that owing to translation axiom (2) we still have
a codomain fibration ppp: Mod→MMod (with Cartesian lifting via pullbacks),
which projects a model A to its metamodel (GA, CA), and a model mapping f
to its meta-component fmeta.
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5.3 Queries I: Preliminary discussion

We begin in the institution theory fashion and declare a functor quer: MMod→ Sets.
However, this is a very poor model because it says nothing about the fundamen-
tal properties of queries — the possibility to substitute one query into another.
Capturing substitutions in an abstract way needs some technical work to be
done. It is presented below for the general case of any category C for MMod;
and queries can be understood as sets of terms built over C-objects as the car-
riers.

Queries are ordered. For any object M ∈ C0, we assume a partial order on
the set querM : Q1 ≤ Q2 means, informally, that query Q2 subsumes query Q1

(like, e.g., set of terms term {(a+b)∗c, a∗c∗d} built over carrier M = {a, b, c, d, e}
subsumes {a+ b, a ∗ c}). Thus, querM is required to be a poset. Moreover, this
poset is a join semi-lattice because the union of two sets of terms over a carrier is
again a set of terms over the same carrier. We will denote join of queries Q1 and
Q2 by Q1 ∗Q2 (because informally this join is like conjunction — both queries
are used), and let Poset∗ denotes the category of posets with finite joins. Query
translation is required to respect this structure and we thus postulate a functor
quer: C→ Poset∗.

For a map f : M → N ::C and query Q ∈ querM , we will denote query
querf(Q) ∈ querN by Qf .

Queries add derived elements, and are composable. Let M be a C-
object (think of a metamodel or a database schema). Then applying a query
Q ∈ querM can be described by adding to M derived elements specified by Q.
In other words, any query Q is assigned with inclusion ηQ : M ↪→ M.Q. As
always, it is technically easier to work with monic arrows (monics) rather than
inclusions; we may then think that elements of M are considered as queries
extracting those elements, and each element of M can be then considered as
trivially derived.

If Q ∈ querM and Q+ ∈ querM.Q, then we require existence of a unique
query Q′ ∈ querM s.t. ηQ; ηQ+ = ηQ′ . We denote this query Q′ by Q.Q+ and

require Q ≤ Q.Q+. Conversely, if Q1 ≤ Q2, we require existence of a unique
query Q+ ∈ querM.Q1 such that ηQ1

; ηQ+ = ηQ2
. We denote this query Q+ by

Q2/Q1 and require Q1.(Q2/Q1) = Q2. Note that this equality cannot be derived:
although the commutative triangle of η-arrows consists of monic arrows, we do
not exclude the situation when different queries have the same η-arrow.

Background: Algebraic theories in extension form. Let C be a category.
An algebraic theory in extension form over C is a triple T = (T, η, #), in which

T: C0 → C0 maps C-objects to C-objects;

η: C0 → C1 assigns to each C-object A a C-arrow ηA: A→ TA
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#: C( ,T )→ C(T ,T ) assigns to a C-arrow f : B → TA an “extension”
f#: TB → TA, such that the following three axioms hold (see the diagram be-
low):

TC

TA TB �
g�

g
#

C

ηC
6

A

ηA
6

ηA- TA �
f�

f
#

(η
A ) #

-

B

ηB
6

(ηA)
#

= 1TA (3)

ηB ; f# = f (4)

(g; f#)
#

= g#; f# (5)

Lemma 1 (Manes [12]). The notions of monad and algebraic theory in exten-
sion form are equivalent.

Because of this result, we will call the construct above a monad in extension
form or just a monad.

Given a monad T over C, a Kleisli mapping from C-object B to C-object A is
a C-arrow of the following type: f : B → TA. Kleisli mappings can be composed

as shown in the diagram above: g; f
def
= g; f#, and it is easy to prove that their

composition is associative. We thus have the Kleisli category CT of monad T:
it has the same objects as C but Kleisli mappings as morphisms.

Query language: Syntactical part. Example in Section 2 suggests the fol-
lowing definition.

A query language is a monad QD = (QD, ηspec, #) over the category of meta-
models MMod (notation QD is a single letter that refers to “Query Definition”).
This monad augments each metamodel M = (GM , CM ) with all possible derived
elements, together with all new constraints they satisfy, and we have inclusion:

ηdefM : M ⊂ - M.QD = (GM .QD, CM .QD),

where we write the mapping symbol on the right of the argument.

Query language: Semantic part (query execution). Example in Section
2 demonstrates that query execution is an operation that acts in concert with
query definition. Hence, we may join query definition (a monad QD on MMod)
and query execution into a single new monad Q = (Q, η, #) over the cate-
gory of models Mod. Each component of this monad consists of two compo-
nents, syntactical and semantical, which work together as follows. Mapping
Q: Mod0 →Mod0 is a pair (QD,QE), which augments each model A with all
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Fig. 5. Query monad, formally.
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Fig. 6. Query monad “physics”.

its derived elements respectively typed as shown by the left square diagram in
Fig. 5 (notation QE is a single letter that refers to “Query Execution”). Symbol
PB means that the square is a pullback, that is, DA is exactly the inverse image
of ‘subgraph’ GA ⊂ GA.QD under mapping ηdefA and hence queries do not affect
the original data. Note that arrows ηdefA and ηexeA are components of a single
Mod-arrow ηA: A→ QA.

Extension operation # also has two components, but to ease notation we
will denote them by the same symbol. The “physics” of this operation is more
complicated, and to analyze it we will use Fig. 6, in which instead of the biggest-
possible “query” Q (including all possible queries), we consider ordinary queries
Qi.

Let A = (tA.MA) be a model and Q1 a query against it. That is, we have
a query definition Qdef

1 against metamodel MA, and an operation of query ex-
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ecution Qexe
1 for instance tA. Together this data produce the front-left square

diagram in Fig. 6; recall that the diagram is a pullback.

Let A.Q1
f←− B be an injective model mapping, that is, a pair of injective

mappings (fmeta, finst) making the front right square in Fig. 6 commutative.
Suppose that we have another query Q2 against model B (the right-most face

of the prism in Fig. 6), and we want to build mapping A.Q1.Q2
f#

←− B.Q2. That
is, we need to build two mappings, fmeta

# and finst
# as shown in the figure.

Building mapping fmeta
# is easy: on the level of metamodels we only deal

with query definitions, that is, terms, and fmeta
# is given by term substitu-

tion. To wit: we homomorphically extend mapping fmeta to the bigger domain
by adding elements of Q2 to the codomain (and so the bottom-right square is
a pushout). Note also that metamodel MA.Q

def
1 .Qdef

2 equals (up to a natural
isomorphism), to metamodel MA.(Q1∗Q2)def , where ∗ denotes the operation of
term substitution.

We cannot apply substitution on the level of instances because here we deal
with real operations rather than terms. Suppose, however, that our queries are
monotonic, that is, preserve inclusion of datasets over which they operate [13,
p.42]. The right upper-face square Fig. 6 shows that monotonicity of query Q2

provides existence of mapping finst
#. Note also that it is reasonable to assume

that execution of a composed query Q1∗Q2 equals to composition of the respec-
tive executions, which gives us equality of models A.Q1.Q2 and A.(Q1∗Q2) (as
shown by the back-face left square of the prism).

Finally, by combining together all possible monotonic queries Qi into one
biggest-possible monotonic query Q, we come to data shown in Fig. 5. In other
words, it makes sense to define a monotonic query language as a monad Q =
(Q, η, #) over category of models Mod. With a concrete definition of what is a
monotonic query language, we should be able to prove that each such a language
gives rise to a monad as above.

Query translation. Suppose that the front-right square in Fig. 5 is a pullback,
that is, model (DB , tB) is the inverse image of model (DA.QE, tA.QE) (recall that
fmeta is injective). Then the back “diagonal” square should be also a pullback
because of the following.

Let object (metamodel) Qdef = fmeta(MB .QD) be the image of object MB .QD
under mapping fmeta; it can be seen as a query against the model A (a part of
the biggest-possible query Q). The part of model DA.QE, whose types (provided
by tA.QE) are outside of Qdef , does not influence execution of Qdef , it is out of its
scope. Then executing Qdef for model A, i.e., selecting DA.Q

exe inside of DA.QE,
and then projecting it back by pulling back along fmeta

#, gives the same (up to
iso) result as if we first pull back along fmeta, and then execute Qdef against B,
that is, build the right-most face of the prism in Fig. 5. Thus, if the front-right
square is a pullback, then the back-diagonal square is a pullback as well.

Definition 2 (Query language) Let ppp: Mod→MMod be a fibration (of mod-
els over metamodels). A (monotonic) query language is a monad Q = (Q, η, #)

18



Models : ModQ

UQ -
�

FQ

Mod
Ucntr -

�
Fcntr

Mod? ≡ G·→·
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Metamodels : MModQD

pppQ

? UQD -�
FQD

MMod

ppp

? UMcntr -�
FMcntr

G

ppp? ≡ cod

?

Fig. 7. The universe of models and metamodels within a concrete metamodeling frame-
work

over Mod, satisfying two query translation axioms:

for any model A, ηA is ppp-Cartesian (6)

if f : B → A.Q is ppp-Cartesian, then f#: B.Q→ A.Q is ppp-Cartesian as well (7)

Lemma 2. Given a metamodeling framework ppp: Mod→MMod, and a query
language Q over it, we have a fibration pppQ: ModQ →MModQ of the respective
Kleisli categories.

Proof.Cartesian lifting is given by the front-face diagram in Fig. 5, that is, given
a view definition v, first the query involved is executed, and then the result is
relabeled. Axiom (6) ensures that identity is lifted to identity. Condition (b) of
the definition of fibration is provided by axiom (7) (and the definition of Kleisli
arrow composition). ut

In other words, translation axioms ensure good algebraic properties of the
view mechanism described by diagrams in Fig. 3.

5.4 Constraints and queries together: Summary.

A concrete modeling framework (CMF) is a triple

F = (G, (cntr, |=),Q),

consisting of three parts: the structure G, the constraint language (cntr, |=), and
the query language Q.

1) The structural part G gives us the standard codomain fibration cod: G·→· → G.
We prefer to write it as ppp?: Mod? → G because in our context objects of cat-
egory G·→· are instances that are properly typed but may violate constraints;
more accurately, constraints are simply absent so far.

2) The pair (cntr, |=) adds the possibility to declare constraints in metamodels
(functor cntr) and check their validity for instances (relations |=). Together, data
1) and 2) define the right commutative square diagram in Fig. 7, whose nodes
are categories and arrows are functors. Vertical arrows are fibrations: they just
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project the meta-component of Mod-objects and arrows; the translation axiom
plays a crucial role in making projection ppp a fibration. Arrows going from left to
right are functors that forget about constraints, that is, provide the U nderlying
structure for constraint declaration. Arrows going from right to left are functors
that add the empty set of constraint for F ree. Each of the upper functors is a
right adjoint to the lower one.

Finally, pairs of U-fucntors and F-functors are fibration morphisms: them
map Cartesian arrows into Cartesian arrows.

3) Monad Q = (Q, η, #) over category Mod is a formal model of the query
(view) mechanism, i.e., the possibility to define queries over metamodels and
execute them for models. The definition works well if all queries are monotonic.
Since arrows in Mod are, in fact, pairs of arrows (making the respective squares
commutative), each component of Q contains two components working in con-
cert. More accurately, each component of monad Q has a purely syntactical
(definitional) part operating over metamodels. We may project these syntactical
components out and obtain monad QD (of query definitions) over category of
metamodels MMod (of model definitions). Moreover, due to query translation
axioms, fibration ppp gives rise to fibration pppQ: ModQ →MModQD between the
Kleisli categories of the two monads.

These data are summarized by the left commutative square in Fig. 7. Again,
horizontal arrows going from left to right are functors that provide the U nderlying
structure for posing and executing queries. Arrows going from right to left are
functors that provide additional “empty” structure for F ree, now identical views
rather than empty sets of constraints. Each of the upper functors is a right ad-
joint to the lower one — this is a standard material of categorical algebra [12].
The pairs of U- and F-functors are again fibration morphisms (axiom (6) is
crucial for this result).

Thus, a CMF gives rise to data specified by Fig. 7.

From concrete to abstract frameworks. Let F = (G, cntr, |=,Q) be a con-
crete multimodeling framework as defined above. It gives rise to an abstract
multimodeling framework F@ = (MMod@, get?, get, rtp?) in the following way.

From F , we derive data specified in Fig. 7 as it was explained above. Then
we define MMod@ = MModQ, and generate from fibrations ppp? and pppQ indexed

categories get?: MMod@op → Cats and get: MMod@op → Cats in the standard
way [10]. Mapping rtp? is given by postcomposition (Section 5.1).

It follows then that the notion of global consistency defined in Section 4 is
applicable to any concrete framework.

6 Relation to other work and historical remarks.

A general discussion of work related to heterogeneous multimodeling can be
found in [1]. The goal of the present section is to trace the history of the formal
framework.
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Both main notions — of an abstract and concrete multimodeling frameworks
(AMF and CMF) — are built within the range of ideas introduced into computer
science in the early 80s by Joseph Goguen and Rod Burstall [14] under the name
of the institution theory. We will briefly review the main definitions.

Institutions and specification frames. An institution is a quadruple I =
(Sign, sen,mod, |=) with Sign a category of signatures (think of signatures of op-
erations, or FOL signatures, or the like), sen: Sign→ Sets and mod: Signop → Cats
are functors that assign to each signature the set of all logical sentences that
can be declared over this signature, and the category of its models, respec-
tively. |= is a mapping that assigns to each signature Σ a binary satisfiability
relation |=Σ⊂ mod0(Σ) × sen(Σ).2 Given a signature morphism σ: Σ1 → Σ2,
functor mod(σ): mod(Σ2)→ mod(Σ1) is often called reduction of Σ2-models to
Σ1-models along σ.

These ingredients must satisfy the following translation axiom: for any sig-
nature morphism (translation) σ: Σ1 → Σ2, any sentence φ ∈ senΣ1 and any
model A ∈ modΣ2,

(TA) A.mod(σ) |=Σ1
φ iff A |=Σ2

φ.sen(σ)

AMF Institution

signature
constraint sentence
metamodel theory
model model
view mechanism reduction
retyping

Table 1. Comparison of AMFs
and institutions

A theory or specification is a pair T =
(Σ,Φ) with Σ ∈ Sign0 a signature and
Φ ⊂ sen(Σ) a set of sentences over it. A
model of T is a model A of Σ satisfying
all sentences in Φ: A |=Σ φ for all φ ∈ Φ.
We write mod0(T ) for the class of all T -
models. A theory morphism T1 → T2 is a
signature morphism m: Σ1 → Σ2 such that
sen(σ)(Φ1) ⊂ Φ2. Translation axiom (TA)
ensures that functor mod(m) maps from
category mod(Σ2) to category mod(Σ2).
That is, we have a functor (indexed cate-
gory) mod: Thr→ Cats defined on the category Thr of all theories. This in-
dexed category is often called the specification frame generated by institution
I.

Abstract multimodeling framework. AMF is a construct in-between the
notions of institution and specification frame derived from an institution (see
Table 1). On one hand, if we consider only functors get between categories of

legal models [[ .. ]] and forget about structural instances [[ .. ]]
?
, we come exactly to

the notion of specification frame. Availability of two categories of models is, in
fact, a way of modeling constraints (logical sentences) without mentioning them,

2 Expressions C0 and C1 denote the class of all objects and all arrows of a category
C resp.
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that is, purely extensionally.3 In addition, the notion of AMF assumes availability
of the left adjoint (retyping) functor, rtp? a get?. For slice categories, this is a
well-known idea first presented (probably) in [11].

Note that we do not require the retyping functor to map legal models to legal
models. The latter condition only holds for special (Horn) logics [?], and hence
the existence of right adjoint to get is a much stronger condition. It is postulated
in the so called liberal institutions [15].

Concrete multimodeling framework. In a nutshell, the idea behind CMF is
to enrich the notion of institution with an algebraic model of query languages.
This enrichment may be seen necessary even from the purely logical perspective
because normally the set of all sentences is a freely generated algebra in some
predefined variety, and a model is a homomorphism into an algebra “extracted”
from a semantic structure (a set or a Kripke frame). Indeed, this is a basic
premise of the algebraic logic in the sense of Polish school.

An early attempt to capture the inductive nature of syntax is Goguen and
Burstall’s parchments [16]; however, they only dealt with syntax. Another early
attempt to capture both syntax and semantics by introducing a monad T over
the category of signatures so that sentences are elements of T -free algebras and
models are homomorphisms into a T -algebra can be found in [17] (where several
such monads = algebraic theories popular in algebraic logic are considered.) A
much more intelligent and general elaboration of these ideas can be found in
[18]; and a database-oriented digest is in [19]. The same idea of introducing a
monad and going along the lines of algebraic logic can also be found in [20]4.

However, considering models as homomorphisms from signatures (dataschemas,
metamodels) into semantic algebras does not fit in the standards of metamod-
eling, where a model/instance is typically a (typing) mapping from a semantic
structure to its schema. A precise elaboration of this switch in semantics for
constraints only (no queries) can be found in [7]. The present report presents
the to-semantics (typing) for the case when both constraints and queries are
considered. Thus, it has taken more than fifteen years to distill finally a man-
ageable notion of an institution with queries. The crucial idea that was not
easy to recognize is that although query execution definitely lives in semantics
(Eilenberg-Moore algebras) rather than in syntax (Kleisli), considering the query
language monad over the arrow category allows us to capture both syntax and
semantics via the Kleisli construction.

7 Instead of conclusion: Future work.

1) Accurate formal proofs of the results presented above are still to be completed.
I do not anticipate any principle problems but several seemingly non-essential
details skipped in the above presentation need to be written down and checked.

3 One of the reviewers of our paper [1], marked the elegance of the idea.
4 without any reference to [17], which I do know from personal communication was

essentially used, at least, as the starting point.
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2) The key feature of the approach is that heterogeneous consistency checking
is reduced to homogeneous with a minimal amount of metamodel merging; the
latter is unavoidable if we want to treat inter-metamodel constraints (see [1])
yet the approach is as local as possible. An alternative approach (let’s call it
total) would be to merge all metamodels into one global metamodel, consider
all models as (partial) instances of that global metamodel, and correspondingly
check their global consistency wrt. the global metamodel.

The latter idea seems to be the most immediate and direct specification of
out intuition of what global consistency of heterogeneous multimodel should be.
Hence, the total approach to global consistency could serve as a basic definition
of what the global consistency is. Then we need to prove that our local definition
of global consistency is indeed equivalent to the total one. Although there are
strong formal arguments that this is indeed the case, an accurate formal proof
is not easy and is a work in progress.

3) The notion and algorithm for global consistency checking described in the
report assume that the metamodel schema is a set of spans. In practice, meta-
models may overlap in more complex ways, and hence the metamodel schema
should be considered, in general, to be a graph. Generalization of the framework
for this situation is an important issue to be addressed.

4) The notion of concrete multimodeling frameworks defined in Section 5
actually defines a rather abstract construct. It is less abstract than an abstract
framework of Section 3 in that constraints and queries are taken into account,
but they are modeled in a fairly abstract way. There are neither predicate nor
operation symbols in the framework (and so neither formulas nor terms are
explicit), only summarizing/cumulative effects of having constraints and queries
are specified while their syntax is ignored. It implies that much work is to be
done in order to prove that a particular multimodeling framework/tool is indeed
an instance of the notion of concrete framework.

To facilitate this work, it is useful to have a less abstract notion of the mul-
timodeling framework, in which the syntax of constraint and query declarations
would be captured. However, we need a fairly abstract model of syntax, which
would be applicable to a wide diversity of multimodeling languages and tools
in practical use. An abstract model of syntax for constraints is provided by the
notion of generalized sketch (or dp-graph), whose presentation tailored towards
the metamodeling patterns can be found in [7]. A similar model for queries is
described in [21] but in the database context, in which semantics of a metamodel
is given by a functor from the metamodel into category Sets (from-semantics).
Hence, it is important to redescribe the notion of query for the metamodeling
context within the to-semantics (typing-mapping-based).
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A Appendix. Networks of model interaction

This section consists of a series of simple definitions and their direct conse-
quences. We will not split them into numerous explicit Definitions and simply
point to defined notions by italicizing them.

Spans and cospans. A category C is a directed graph with composable arrows;
C0 and C1 denote the classes of its nodes and arrows resp. A diagram in a
category C is a graph mapping D: GD → C with graph GD called the shape of
the diagram. We will follow presentation in [22] and identify diagram D with
its image {D(e) : e ∈ GD}. It is imprecise but makes presentation simpler. The
difference becomes essential when D maps different elements in GD into the same
element in C; we will make special reservations about it where appropriate.

In this section we will consider several diagrams important for heterogeneous
multimodeling. To ease understanding, C-elements may be interpreted as graphs
and graph mappings.

H
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?
F2

p
2
-

F3
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-

C

q1

?�

q 3

�
q 2

Fig. 8.
Sample
span

An n-ary span (n ≥ 1) in C is a subgraph S consisting of n-
arrows with a common source. The latter is called the head of the
span and denoted by HS , arrows pSi are projections or legs , and
their targets FSi, (i = 1..n) are feet ; the index S may be skipped.
For example, the triple of arrows going out of node H in Fig. 8 is
a ternary span.

We write feetS and legsS for sets {F1..Fn} and {p1..pn} resp.
We will say that a span is over its feet, and will often refer to a
span by referring to its head. Our main interpretation of span’s
feet is by a set of similar software artifacts to be matched, and
the head is an artifact encompassing a set of n-ary matching links
between feet.

An n-ary cospan is defined similarly but arrows go from the feet
to the cohead and are called coprojections or colegs. For example,
the triple of arrows in Fig. 8 heading into C is a ternary cospan.

Colimits of spans. A cospan completion of n-ary span (H, p1..pn) is an n-ary
cospan (C, q1..qn) over the same feet (see Fig. 8). We call the entire diagram
formed by n legs and n colegs an n-ary diamond, and write D = (S,C) for such
diagrams. A cospan completion is commutative if the corresponding diamond is
commutative: p1; q1 = . . . = pn; qn. As a rule, we will only deal with commutative
cospan completions and call them simply completions to ease wording.

A cospan completion C of S is called a colimit of S if it is universally minimal
amongst the class of all (commutative) cospan completions. Universal minimal-
ity means that for any other completion C ′, there is one and only one arrow
!: C → C ′ such that the entire diagram commutes: qi; ! = q′i. In this case, we also
call C a colimit completion of S, and diamond D = (S,C) a colimit diamond.

It can be shown that if at least one colimit completion exists, then all such
completions are canonically isomorphic. Hence, colimit completion can be con-
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sidered an operation up to isomorphism: it takes a span S as input and produces
its cospan completion denoted by ΣS — we choose one amongst the class of iso-
morphic completions.

Informally, the idea is that we first disjointly merge the feet of the span, and
then glue together those elements that are related via the head and legs of the
span. For the example in Fig. 8, if nodes are sets and arrows are functions, then
we glue together elements fi ∈ Fi, i = 1, 2, 3 if pi(h) = fi for some h ∈ H;
this gives us an element in the colimit ΣS. Since projections are not necessarily
injections, colimit computation maybe be more complex but it can be shown that
if C is the category of graphs then any span has colimit. Moreover, if all legs are
injective graph mappings, all colegs of ΣS are also injections. In addition, colegs
of the colimit jointly cover the cohead, i.e., any element in the cohead is in the
range of at least one coleg.

Because colimit of a span is, basically, a disjoint union of its feet factorized by
some equivalence relation determined by the head (together with projections),
we will often denote the head of the colimit cospan ΣS by ]F/S with F denoting
the family of S’s feet, and say that this head is the result of merging F modulo
the correspondence S.

Partial spans. Informally, a partial span is a span some of whose legs may be
partially defined mappings. Though intuitively clear, a precise formal explication
of the notion of partial mapping needs some work.
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(b) computing overlaps

A partial mapping m : A ⇀ B between graphs
A,B is a triple (im, Dm, fm) specified by diagram

A �
im

Dm
fm- B with Dm ⊂ A a graph called the

domain of m (while A is the source of m), im is the inclu-
sion mapping, and fm a total graph mapping (the function
of m). (Actually this definition works for any category in
which the notion of sub-object and inclusion is defined). A
total mapping is a particular case for which Dm = A and
im = 1A. A partial mapping m is injective if its function
fm is injective.

Colimits of partial spans are intricate. We first need to
compute limits (intersections) of the domains, and then
proceed with the colimit procedure (see the inset figure).
After all, we hide all intricacies inside of implementation
and for the user partial legs and partial spans appear as
just subtypes of their total counterparts.

Multispans. The notion of multispan aims to generalize examples considered
in [1]. The goal is to accurately specify the idea that there can be multiple
correspondences over the same set of models.

Briefly, a multi-span is a set of (total and partial) spans sharing their feet. In
more detail, let F be a set of objects (in a category C carrying the diagrams). A
multi-span over F is a finite set S of spans with feetS ⊂ F for all S ∈ S. Hence,
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feetS def
=
⋃
{feetS : S ∈ S} ⊂ F but equality is not required, that is, there may

be elements in F not occurring in any span. We write FeetS for F and Feet0S
for FeetS \ feetS. (For unification, we may consider set Feet0S as a discrete span
S0 without head and include it into S; then feetS = FeetS = F).
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Fig. 9. Sample
multispan

In multimodeling, different spans usually have different
heads and legs, HS 6= HS′ and legsS ∩ legsS′ = ∅ for S 6= S′

(as shown in Fig. 9). We write HeadsS and LegsS for sets{
HS : S ∈ S

}
and {l : l ∈ legsS, S ∈ S} resp. Multi-span is

called discrete if set HeadsS (and hence LegsS) is empty.

Lemma 3. For any pair H ∈ HeadsS and F ∈ FeetS there
is at most one leg lHF : H → F in LegsS.

In more complex situations, we may have spans over spans,
that is, a foot of a span may be the head of another span. Then
we may have several arrow paths between the same head and
foot. In such cases we require commutativity, i.e., equality of
arrow compositions along the paths. Then the conclusion of
the lemma restores.
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