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Abstract. The paper presents a novel algebraic framework for specifi-
cation and design of model synchronization tools. The basic premise is
that synchronization procedures, and hence algebraic operations mod-
eling them, are diagrammatic: they take a configuration (diagram) of
models and mappings as their input and produce a diagram as the out-
put. Many important synchronization scenarios are based on diagram
operations of square shape. Composition of such operations amounts to
their tiling, and complex synchronizers can thus be assembled by tiling
together simple synchronization blocks. This gives rise to a visually sug-
gestive yet precise notation for specifying synchronization procedures
and reasoning about them.

1 Introduction

Model driven software engineering puts models at the heart of software develop-
ment, and makes it heavily dependent on intelligent model management (MMt)
frameworks and tools. A common approach to implementing MMt tasks is to
present models as collections of objects, and program model operations as oper-
ations with these objects; object-at-a-time programming is a suitable name for
this style [1]. Since models may contain thousands of interrelated objects, object-
at-a-time programming can be very laborious and error-prone. In a sense, it is
similar to the infamous record-at-a-time programming in data processing, and
has similar problems of being too close to implementation.

Replacing record- by relation-at-a-time frameworks has raised data process-
ing technology to a qualitatively new level in semantic transparency and pro-
grammers’ productivity. Similarly, we can expect that model-at-a-time program-
ming, in which an engineer can think of MMt routines in terms of operations
over models as integral entities, could significantly facilitate development of MMt
applications [1]. This view places MMt into the realm of algebra: models are in-
divisible points and model manipulation procedures are operations with them.

Model synchronization tools based on special algebraic structures called lenses
[2] can be seen as a realization of the algebraic vision. The lens framework was
first used for implementing a bidirectional transformation language for synchro-
nizing simple tree structures [3], and then employed for building synchronization
tools for more complex models closer to software engineering practice [4, 5]. In



[6], a lens-like algebraic structure was proposed to model semantics of QVT, an
industrial standard for model transformation.

Lens-based synchronization is discrete: input data for a synchronizer con-
sist of states of the models only, while mappings (deltas) relating models are
ignored. More accurately, the synchronizer itself computes mappings based on
keys and the structure of the models involved. However, in general a pair of mod-
els does not determine a unique mapping between them. To compute the latter,
some context-dependent information beyond models may be needed, and hiding
model mappings inside the tool rather than allowing the user to control them
may compromise synchronization. For example, discrete composition of model
transformations may be erroneous because in order to be composable, transfor-
mations must fit together on both models and mappings. In the paper we will
consider several examples showing that model (and metamodel) mappings are
crucial for model synchronization, and must be treated as first-class citizens not
less important than models.

In algebraic terms, the arguments above mean that model mappings must
be explicitly included in the arity shapes of MMt operations. A typical MMt
universe should appear as a directed graph (nodes are models and arrows are
mappings) that carries a structure of diagrammatic algebraic operations. The
latter act upon configurations (diagrams) of models and mappings of predefined
arity shapes: take a diagram as the input and produce a diagram as the output.

The world of diagram algebra essentially differs from the ordinary algebra.
A single diagram operation may produce several nodes and arrows that must
satisfy certain incidence relationships between themselves and input elements.
Composition of such operations, and parsing of terms composed from them,
are much more complex than for ordinary tuple-based single-valued operations.
Fortunately, we will see that diagram operations appearing in many model syn-
chronization scenarios have a square shape: the union of their input and output
diagrams is a square composed of four arrows — we will call it a tile. Compo-
sition of such operations amounts to their tiling, and complex synchronization
scenarios become tiled. Correspondingly, complex synchronizers can be assem-
bled by tiling together simpler synchronizing blocks, and their architecture is
visualized in a precise and intuitive way.

The main goal of the paper is to show the potential of the tile language
for specifying synchronization procedures and for stating the laws they should
satisfy. Tiles facilitate thinking and talking about synchronization; they allow
us to draw synchronization scenarios on the back of an envelope, and to prove
theorems about them as well. Specification and design with tiles are useful and
enjoyable; if the reader will share this view upon reading the paper, the goal
may be considered achieved.

How to read the paper. There are several ways of navigating through the
text. The fastest one is given by the upper lane in Fig. 1: rectangles denote
sections (of number n) ) and arrows show logical dependencies between them.

Section 2 is the beginning of the journey: it draws an overall picture of
model synchronization, presents two simple examples (replica synchronization
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Fig. 1: Flow of Content

and view maintenance), and argues that mappings are of primary importance.
It also warns the reader about the dangers of walking through the arrow forest
and declares tile algebra and category theory as a means to meet the challenge.

The subsequent three upper sections present abstract algebraic models of the
examples from Section 2, and develop them into an algebraic framework based on
tiles. Models and model mappings are treated as opaque indivisible nodes and
arrows, and synchronization procedures as abstract algebraic operations over
them. Two families of such operations are considered for two basic scenarios:
replication (Section 4) and view maintenance (Section 5). Section 6 shows how
to build complex synchronizers by putting together basic blocks.

The upper three sections can be viewed as a mini-tutorial on building alge-
braic theories in the diagrammatic setting. We will see how to set signatures of
diagram operations, state equational laws, and define diagram algebras intended
to model synchronization tools. The goal is to present a toolbox of algebraic
instruments and show how to use them; several exercises should allow the reader
to give them a try. Except in subsection 6.2, the mathematics employed in the
upper lane is elementary (although somewhat unusual).

The upper lane of the paper presents an abstract MMt framework: models and
mappings are black-boxes without internal structure (hence its notation: black
opaque nodes and arrows). This setting can be useful for a top-level architectural
design of synchronization tools. A more refined (and closer to implementation)
setting is presented in the concrete MMt branch of the paper formed by Sections
3,C,D connected by transparent arrows. In these sections we look inside models
and mappings, consider concrete examples, and refine the abstract constructs
of the upper lane by more “concrete” algebraic models. In more detail, Section
3 factorizes the fast route 2 → 4 (from examples in Section 2 to abstract con-
structs in Section 4) by providing a formal model for the internal structure of
models and model deltas, and for delta composition as well (including deltas
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with inconsistencies!). Section C refines the fast route 2 → 5 into a “concrete”
path 2 → 3 → C → 5 by providing an algebraic model for the view mechanism
(also based on tiles); and Section D plays a similar role for Section 6 with a
refined model of heterogenous matching.

Both frameworks — abstract and concrete — employ algebraic models and
tiling. A principal distinction of the latter is that metamodels and metamodel
mappings are explicitly included into algebraic constructs and play an essential
role. Indeed, ignoring metamodels and their mappings hides semantic meaning
of operations with heterogeneous models from the user and may provoke ad
hoc solutions in building MMt-tools. Taking metamodels seriously brings onto
the stage an entire new dimension and significantly complicates the technical
side of mapping management. Use of category theory (CT) seems unavoidable,
and two “concrete” sections C and D require certain categorical intuition and
habits of arrow thinking not familiar to the MMt community.1 Therefore, a
special “starter” on CT was written (Sect. A), which motivates and explains
the basics of arrow thinking. Section B is merely a technical primer on graphs
and categories: it fixes notation and defines several basic constructs employed in
the paper (but is not intended to cover all categorical needs). Even though the
presentation in Sect. C and D is semi-formal, all together the four lower sections
are much more technically demanding than the upper ones, and so are placed in
the Appendix that may be skipped for the first reading.

Sections 7 presents diverse comments on several issues considered or touched
on in the paper in a wider context. It also briefly summarizes contributions of the
paper and their relation to other work. Section 8 concludes. Answers to exercises
marked by * can be found on p. 53

A possible reading scenario the author has in mind is as follows. The reader
is a practitioner with a solid knowledge of model synchronization, who knows
everything presented in the paper but empirically and intuitively. He has rather
vague (if any) ideas about diagram algebra and category theory, and is hardly
interested in these subjects, yet he may be interested in a precise notation for
communicating his empirical knowledge to his colleagues or/and students. He
may also be interested in some mathematics that facilitates reasoning about
complex synchronization procedures or even allows their mechanical checking.
Such a reader would take a look through numerous diagrams in the paper with an
approximate understanding of what they are talking about, and hopefully could
find a certain parallelism between these diagrams and his practical intuition.
Perhaps, he would remember some terms and concepts and, perhaps, would
take a closer look at those concepts later on. Eventually, he may end up with
a feeling that viewing model synchronization through the patterns of diagram
algebra makes sense, and category theory is not so hopelessly abstract.

Now it is the reader’s turn to see if this scenario is sensible.

1 It could explain why many known algebraic approaches to MMt ignore the meta-
modeling dimension.
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2 Model Sync: A Tangled Story

By the very nature of modeling, a system to be modeled is represented by a
set of interrelated models, each one capturing a specific view or aspect of the
system. Different views require different modeling means (languages, tools, and
intuitions), and their models are often built by different teams that possess the
necessary experience and background. This makes modeling of complex systems
heterogeneous, collaborative, and essentially dependent on model synchroniza-
tion.

This section presents a tale of model synchronization: we begin with a tangle,
then follow it and get to an arrow forest, which we will try to escape by paving
our way by tiles.

2.1 The tangle of relationships and update propagation

The task of model synchronization is schematically presented in Fig. 2. A snap-
shot of a design project appears as a heterogeneous collection M of models
(shown by nodes A,B,C...) interrelated in different ways (edges r1, r2, r3...).
The diversity of node and edge shapes is a reflection of the diversity of models
and the complexity of their mutual relationships that emerge in software design.
The image of a tangle in the center of the figure is intentional.

Typically, models in a project’s snapshot are only partially consistent, i.e.,
their relationships partially satisfy some predefined consistency conditions. That
is, we suppose that inconsistencies are partially detected, specified and recorded
for future resolution. Inconsistency specifications may be considered as part of
the intermodel relationships and hence are incorporated into intermodel edges.

Now suppose that one of the models (say, A in the figure) is updated to a
new state (we draw an arrow uA : A→ A′), which may violate existing consis-
tent relationships and worsen existing inconsistencies. To restore consistency or
at least to reduce inconsistency, other related models must be updated as well
(arrows uB : B → B′, uC : C → C ′ etc). Moreover, relationships between models
must also be updated to new states r′i, i = 1, 2, ..., particularly by incorporating
new inconsistencies. Thus, the initial update uA is to be propagated from the
updated model to other related models and relationships so that the entire re-
lated fragment (“section” M of the model space) is updated to state M′. We
call this scenario a single-source update propagation.

Another scenario is when several models (say, A,B,C) are updated concur-
rently, so their updates must be mutually propagated between themselves and
other models and relationships. Such multi-source propagation is more complex
because of possible conflicts between updates. However, even for single-source
propagation, different propagation paths may lead to the same model and gen-
erate conflicts; cycles in the relationship graph confuse the situation even more.
The relationship tangle generates a propagation tangle.

Propagation is much simpler in the binary case when only two interrelated
models are considered. This is a favorite case of theoreticians. For binary situ-
ations, multi-source propagation degenerates into bi-directional (in contrast to
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Fig. 2: Models and their relationships: From a tangle to mD-space

unidirectional single-source propagation) — an essential simplification but still
a challenge [7]. Practical situations enjoy a mix of single- and multi-source, uni-
and bi-directional propagations. We will generically refer to them as synchro-
nization procedures.

The description above shows that understanding intermodel relationships is
crucial for design of synchronization procedures, and it makes sense to establish
a simple taxonomy. For the binary case, one model in relation to another model
may be considered as its
– replica (e.g., a Google replica of a Microsoft Outlook calendar),
– updated version (two versions of the same replica),
– view (a business view of a calendar),
– refinement (an hourly refinement of a daily schedule),
– instance (an actual content of a diary book – the metamodel for the content).

The list could be be extended and gives rise to a family of binary relations
Ri ⊂Mod×Mod, i = 1, 2.. over the space of modelsMod. Unfortunately, a more
or less complete classification of such relations important for MMt seems to be
missing from the literature.

An observation of fundamental importance for model synchronization is that
intermodel relationships are not just pairs of models (A,B) ∈ Ri, they are
mappings r : A⇒ B linking models’ elements. That is, edges in Fig. 2 have
extension consisting of links. Roughly, we may think of an edge r : A⇒ B as a
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set of ordered pairs (a, b) with a ∈ A and b ∈ B being similar model elements
(a class and a class, an attribute and an attribute etc). We may write such a

pair `=(a, b) as an arrow a
`:r- b and call it a link (note the difference in the

bodies of arrows for mappings and links). In the UML jargon, links ` are called
instances of r. In the arrow notation for links as above, the name of the very
link ` may be omitted but the pointer to its type, :r, is important and should
be there.
Table 1: Intermodel re-
lationships & mappings

Relationship Mapping
replicaOf match
versionOf update
viewOf view trc.

instanceOf typing

Table 1 presents a brief nomenclature of in-
termodel relations and mappings (’trc.’ abbreviates
’traceability’). Normally mappings have some struc-
ture over the set of links they consist of, and we should
distinguish between a mapping r and its extension |r|,
i.e., the set links the mapping consists of. Yet we will
follow a common practice and write ` ∈ r for ` ∈ |r|.
In general, a mapping’s extra structure depends on
the type of the relationship, and so mappings listed in

the table are structured differently and operated differently.

2.2 Mappings, Mappings, Mappings...

In this section we consider how mappings work for synchronization. We will begin
with two simple examples. The first considers synchronization of two replicas of a
model. In the second, one model is a view of the other rather than an independent
replica. Then we will discuss deficiencies of state-based synchronization. Finally,
we discuss mathematics for mapping management.

To make tracing examples easier, our sample models will be object diagrams,
whose class diagrams thus play the role of metamodels (and the metamodel of
class diagram is the meta-metamodel).

2.2.1 Replica synchronization.

Suppose that two developers, Ann and Bob, maintain their own replicas of a
simple model Fig. 3i(a). The model consists of Person-objects with mandatory
attribute ‘name’ and any number of ‘phone’s with an optional extension number
‘ext’ (see the metamodel in the leftmost square; attribute multiplicities are shown
in square brackets).

Diagram in Fig. 3i(b) presents an abstract schema of a simple synchroniza-
tion scenario. Arrow m : A⇒ B denotes some correspondence specification, or
a match, between the models. Such specifications are often called (symmet-
ric) deltas, and are computed by model differencing tools.2 Similarly, arrow
u : A⇒ A′ denotes the delta between two versions of Ann’s replica, and we call
it an update. The task is to propagate this update to Bob’s replica and update
the match. That is, the propagation operation ppg must compute an updated

2 The term directed delta refers to an operational (rather than structural) specification:
a sequence of operations (add, change, delete) transforming A to B (an edit log).
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model B′ together with update u∗ and new match m′. Note that derived arrows
are dashed (and the derived node is blank, rather than shaded). When reading
the paper in color, derived elements would be blue (because the color blue re-
minds us of machines and mechanical computation). We will continue with this
pattern throughout the paper.

Fig. 3ii demonstrates that the results of update propagation depend on the
input mappings u and m. All four cases presented in the figure have the same
input models A,A′, B, but different mappings m or/and u, which imply — as
we will see — different outputs B′, u∗,m′.

Consider Fig. 3ii(a). Models’ elements (their OIDs) are denoted by letters
P, a, ..., Q, x, .... We match models by linking those elements that are different
replicas of the same objects in the real world (note the label =). Some of such
links are provided by the user (or a matching tool) while others can be derived
using the metamodel. For example, as soon as elements P@A and Q@B are
linked, their ’name’ attributes must be linked too because the metamodel pre-
scribes a mandatory unique name for any Person object. In contrast, linking
the phone attributes b@A and y@B is an independent (basic rather then de-
rived) datum because the metamodel allows a person to have several phones.
The match shown in the figure says that b and y refer to the same phone. Then
we have a conflict between models because they assign different numbers to the
same phone.In such cases the link is labeled by (red) symbol 6= signaling a con-
flict. The set of all matching links together with their labels is called a matching
mapping or just a match, m : A⇒ B.

An update mapping u : A⇒ A′ specifies a delta between models in time.
Mapping u in Fig. 3ii(a) consists of three links. Note that in general the OIDs
of the linked (i.e., the “same”) objects may be different if, for example, Ann
first deleted object P but later recognized that it was a mistake and restored it
from scratch as a fresh object P ′. Then we must explicitly declare the “same-
ness” of P and P ′, which implies the sameness of their ’name’ attributes. In
contrast, the sameness of phone numbers is an independent datum that must be
explicitly declared. Different values of linked attributes mean that the attribute
was modified, and such links are labeled by ∼ (the update analog of 6=-label for
matches).

Now we will consecutively consider the four cases of update propagation
shown in Fig. 3ii. In all four cases, link PP ′ ∈ u means that object P is not
deleted, and hence its model B’s counterpart, object Q, is also preserved (yet in
Fig. 3ii =-links QQ in mapping u∗ are skipped to avoid clutter.) However, Q’s
attribute values are kept unchange or modified according to mappings u and m.

Case (a). Name change in A is directly propagated to B, and addition of
phone extension specified by u is directly propagated to u∗. The very phone
number is not changed because match m declared a conflict, and our propagation
policy takes this into account. A less intelligent yet possible policy would not
propagate the extension and keep the entire y unchanged.

Case (b): conflicting link b → y is removed from the match, i.e., Ann and
Bob consider different phones of Jo. Hence, the value of y@B should not change.
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Case (c): link b→ b′ is removed from mapping u, i.e., Jo’s phone b was deleted
from the model, and a new phone b′ is added. Propagation of this update can
be managed in different ways. For example, we may require that deletions are
propagated over both =- or 6=-matching links, and then phone y must be deleted
from B′. Or we may set a more cautious policy and do not propagate deletions
over conflicting matching links. Then phone y should be kept in B′ (this variant
is shown in square brackets and is grey). Assuming that additions to A are always
propagated to B, we must insert in B a new phone z “equal” to b′.

Case (d) is a superposition of cases (b,c): both links b → y and b → b′ are
removed from resp. m and u. A reasonable update policy should give us model B′

as shown: phone y is kept because it was not matched to the deleted b, and phone
z is the new b′ propagated to B′. This result can be seen as a superposition of
the results in (b) and (c), and our propagation policies thus reveal compatibility
with mappings’ superposition.

Discussion. In each of the four cases we have an instance of the operation
specified in Fig. 3i(b): given an input diagram (u,m), an output diagram (u∗,m′)
is derived. What we call an update propagation policy is a precise specification
of how to build the output for any input. Three points are worth mentioning.

1. Policies are based on the metamodel: for example, a policy may prescribe
different propagation strategies for different attributes (say, phone changes
are propagated but name changes are not).

2. Recall that in cases (a,c) we discussed different possibilities of update propa-
gation. They correspond to different policies rather than to different outputs
of a single policy. That is, different policies give rise to different algebraic
operations but a given policy corresponds to a deterministic operation pro-
ducing a unique output for an input.

3. The mapping-free projection of the four cases would reveal a strange result:
the same three input models A,B,A′ generate different models B′ for a given
policy. That is, the mapping-free projection of a reasonable propagation
procedure cannot be seen as an algebraic operation.

2.2.2 View update propagation.

Now we consider a different situation when Bob’s model is a view of Ann’s
one, see Fig. 4i(a). Ann is interested in objects called Persons, their full names,
i.e., pairs (fstName, lstName), and phone numbers. Bob calls these objects
Mates, and only considers their first names but call the attribute ‘name’.

To specify this view formally, we first augment Ann’s metamodel SSS with
a derived attribute ’fstName’ coupled with the query specification Q defining
this element. Query Q says “take the first component of a name”; formally,

fstName
def
= Q(name)=proj1(name). Then we map Bob’s metamodel TTT into Ann’s

one as shown in the figure, where the view definition mapping vvv : TTT ⇒ SSS consists
of two links. Link v1 says that Bob’s class Mate is Ann’s class Person. Link v2
says that Mate attribute ’name’ is Person’s ‘fstName’ computed by query Q.
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Now let A be a model over Ann’s metamodel SSS shown in the left lower
corner of Fig. 4i(a). We may apply to it the query Q specified in the metamodel,
and compute the derived attribute c = proj1(Jo Lee)=Jo. Then we select those
elements of the model, whose types are within the range of mapping vvv, and
relabel them according to this mapping.

The result is shown in the right-lower corner as model B, and links f1,2
trace the origin of its elements. These links constitute the traceability mapping
f = {f1, f2}. In this way, having the view definition mapping vvv, any Ann’s model
A (an instance of SSS) can be translated into a TTT ’s instance B computed together
with traceability mapping f : B ⇒ A. (A more complex example can be found
in Sect. C.)

Thus, we have a diagram operation specified by square diagram ASSSTTT B in
Fig. 4i(b). It takes two mappings — view definition vvv and typing of the source
model tA, and produces model B (together with its typing tB) and traceabil-
ity mapping f : B ⇒ A. This is nothing but an arrow formulation of the view
execution mechanism; hence the name vExe of the operation.

Now suppose that the view is updated with mapping u : B ⇒ B′, and we
need to propagate the update back to the source as shown by the lower square
in Fig. 4i(b). Update propagation is a different type of diagram operation, and
it is convenient to consider the two diagrams as orthogonal: view execution is
the top face of the semi-cube and propagation is the front. Note that an output
element of operation vExe, mapping f , is an input element for operation ppg;
diagram Fig. 4i(b) thus specifies substitution of one term into another (and we
have an instance of tiling mentioned above).

Fig. 4ii presents two cases of update propagation. In case (a), the name
of Mate-object M was modified, and this change is propagated to object P –
the preimage of M in the source model. Elements of model A not occurring in
the view are kept unchanged. In case (b), the update mapping is empty, which
means that object M was deleted and a new object M ′ added to the model.
Correspondingly, object P is also deleted and a new object P ′ is added to A.
Since the view ignores last names and phones numbers, these attributes of P ′ are
set to Unknown (denoted by ?). The attribute b′ is shown in brackets (and grey)
because a different propagation policy could simply skip P ′’s phone number as
it is allowed by the metamodel (but the last name cannot be skipped and its
value must be set to Unknown).

The results of Discussion at the end of the previous section applies to the
view update propagation as well.

2.2.3 Why state-based synchronization does not work well

Examples above show that synchronization is based on mappings providing
model alignment, particularly, update mappings. Nevertheless, state-based frame-
works are very popular in data and model synchronization. Being state-based
means that the input and the output of the synchronizer only include states of
the models while update mappings are ignored. More accurately, model align-
ment is done inside the synchronizer, as a rule, on the basis of keys (names,
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identifying numbers or other relevant information, e.g., positions inside a prede-
fined structure). However, this setting brings with it several serious problems.

First of all, update mappings cannot be, in general, derived from the states.
Identification based on names fails in cases of synonymy or homonymy that are
not infrequent in modeling. Identification numbers may also fail, e.g., if an em-
ployee quit and then was hired back, she may be assigned a new identification
number. “Absolutely” reliable identification systems like SSNs are rarely avail-
able in practice, and even if they are, fixing a typo in a SSN creates synonymy.
On the other hand, identification based on internal immutable OIDs also does
not solve the problem if the models to be aligned reside in different computers.
Even for models in the same computer, OID-based identification fails if an ob-
ject was deleted but then restored from scratch with a new ID, not to mention
the technological difficulties of OID-based alignment. Thus, update mappings
cannot be computed entirely automatically, and there are many model differenc-
ing tools [8–10] employing various heuristics and requiring user assistance to fix
the deficiencies of the automatic identification. In general, alignment is another
story, and it is useful to separate concerns: discovering updates and propagating
updates are two different tasks that must be treated differently and addressed
separately.

uX
2 uX

1

S

A

A′

X

f2 :v2

ppg 2uA

f2′:v2

uB

T

f1:v1

ppg 1

f1′:v1

v2 v1

X B

X′ B′

v

u′X u′Bppg 1

X′′ B′′
f1′′:v1

Fig. 5: Mappings do matter in update
propagation (cont’d).

Second, writing synchronization
procedures is difficult and it makes
sense to divide the task into simpler
parts. For example, view update prop-
agation over a complex view can be
divided into composition of update
propagations over the components as
shown in Fig. 5: XXX is some interme-
diate metamodel and view definition
vvv is composed from parts, vvv = vvv1;vvv2.
It is reasonable to compose the proce-
dure of update propagation over view
vvv from propagation procedures over
the component views as shown in the
figure. It is a key idea for the lens
approach to tree-based data synchro-
nization [2], but lens synchronization
is state-based and so two propagation
procedures ppg1 and ppg2 can be composed if the output states of the first are
the input for the second. Hence, the composed procedure will be erroneous if
the components use different alignment strategies (e.g., based on different keys)
and then we have different update mappings u1X , u2X as shown in the figure.

Finally, propagation procedures are often compatible with update composi-
tion: the result of propagating a composed update uB ;u′B is equal to composition
of updates uX ;u′X obtained by consecutive application of the procedure. How-
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ever, if alignment is included into propagation, this law rarely holds — see [11]
for a detailed discussion.

2.3 The Arrow Forest and Categories

Mappings are two-folded constructs. On one hand, they consist of directed links
and can be sequentially composed; the arrow notation is very suggestive in this
respect. On the other hand, mappings are sets of links and hence enjoy set
operations (union, intersection, difference) and the inclusion relation (defined for
mappings having the same source and target). Mappings can also be composed in
parallel: given mi : Ai ⇒ Bi (i = 1, 2), we can build m1⊗m2 : A1⊗A2 ⇒ B1⊗B2,
where ⊗ may stand for Cartesian product or disjoint union (so that we have two
types of parallel composition).

Mapping compositions complicate the relationship tangle in Fig. 2 even more:
the set of basic relationships generates derived relationships. If the latter are
not recognized, models remain unsynchronized and perhaps inconsistent. Living
with inconsistencies [12] is possible if they are explicit and specified; implicit
inconsistencies undermine modeling activities and their automation.

Thus, our tale of unraveling the tangle of relationships led us to an arrow
forest. Updates, matches, traceability and typing mappings are all important
for model synchronization. Together they give rise to complex structures whose
intelligent mathematical processing is not evident and not straightforward.

In the paper we will only consider one side of the rich mapping structure:
directionality and sequential composition. Even in this simplified setting, spec-
ifying systems of heterogeneous mappings needs special linguistic means: right
concepts and a convenient notation based on them. Fortunately, such means
were developed in category theory and are applicable to our needs (the reader
may think of “paved trails in the arrow forest”); the concrete MMt sections of
the paper will show how they work.

Arrows of different types interact in synchronization scenarios and are com-
bined into tiles. The latter may be either similar and work in the same plane,
or be “orthogonal” and work in orthogonal planes as, for example, shown in
Fig. 4i(b). Complex synchronization scenarios are often multi-dimensional and
involve combinations of low-dimensional tiles into higher-dimensional ones. For
example, update propagation for the case of two heterogeneous models with
evolving metamodels gives rise to a synchronization cube built from six 2D-tiles
(Sect. 6.2). Higher-dimensional tiles are themselves composable and also form
category-like structures. In this way the tangled collection of models and model
mappings can be unraveled into a regular net in a multi-dimensional space, as
suggested by the frame of reference on the left of Fig. 2. (Note that we do not
assume any metric and the space thus has an algebraic rather than a geometric
structure. Nevertheless, multi-dimensional visualization is helpful and provides
a convenient notation.)
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3 Inside models and model deltas

Diagrammatic models employ a compact concrete syntax, which is a cornerstone
of practical applications. This syntax hides a rich structure of relationships and
dependencies between model’s elements (abstract syntax), which does matter in
model semantics, and in establishing relations between models as well. In this
section we will take a look “under the hood” and consider structures underly-
ing models (Sect. 3.1) and symmetric deltas (binary relations) between models
(Sect. 3.3). To formalize inconsistencies, we introduce object-slot-value models
and their mappings (Sect. 3.2). We will use the notions of graph, graph mapping
(morphism) and span; their precise definitions can be found in Appendix B.

3.1 Inside models: Basics of meta(meta)modeling

A typical format for internal (repository) model representation is, roughly, a
containment tree with cross-references, in fact, a directed graph. The elements
of this graph have attributes and types; the latter are specified in the metamodel.
An important observation is that assigning types to model elements constitutes
a mapping t : A→M between two graphs underlying the model (A) and its
metamodel (M) resp. What is usually called a model graph [9, 10, 13] is actually
an encoding of a typing mapping t. Making this mapping explicit is semantically
important, especially for managing heterogeneous model mappings.

Example. The upper half of Fig. 6 presents a simple metamodel AAA (in the
middle) and its simple instance, model A (on the left), with a familiar syntax
of class and object diagrams. The metamodel is a class diagram declaring class
Person with two attributes. Expressions in square brackets are multiplicities:
their semantic meaning is that objects of class Person have one and only one
name (multiplicity [1..1] or [1] in short), and may have any number of phones,
perhaps none (multiplicity [0..*]).

Symbols in round brackets are beyond UML and say whether or not the value
of the attribute may be set to Unknown (null, in the database jargon). Marking
an attribute by ? means that nulls are allowed: every person has a name but
it may be unknown; we call attributes uncertain. An attribute is called certain
(and marked by !) if nulls are not allowed and the attribute must always have
an actual value. If a person has a phone, its number cannot be skipped.

Model A is an object instance of AAA. It declares two Person objects: one with
an unknown name (which is allowed by the metamodel) and phone number 11,
and the other with name Jo and without phones (which is also allowed). Symbol
’?’ is thus used as both a quasi-value (null) in the models and a Boolean value
? ∈ {?, !} in the metamodel.

In its turn, the metamodel is an instance of the meta-metamodel specified by
a class diagramMMM in the right upper corner. It says that metamodels can declare
classes that own any number (perhaps, zero) of attributes, but each attribute
belongs to one and only one class (this is a part of the standard semantics for
“black diamond” asscoiations in UML). Each attribute is assigned one primitive
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name=?
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(b) Abstract syntax

: Person
name=Jo

Q: Person

“Jo”:Str
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[1]

m1:mlty

m2:mlty

c1: crty

!: {!,?}c2: crty
(0,*): Int

crty

mlty [1]

[1]

Fig. 6: From models to graphs

type, a pair of integers specifying its multiplicity, and a Boolean value for cer-
tainty; neither of these can be skipped (marker !). We will use model element
names (like Person, pho, etc) as OIds, and hence skip the (important) part of
MMM specifying element naming: certainty and uniqueness of names.

Remark 1. As is clear from the above, an attribute’s multiplicity and certainty
are orthogonal concepts. Below we will see that their distinction matters for
model synchronization. It also matters for query processing and is well known
in the database literature [14]. Surprisingly, the issue is not recognized in UML,
whose metamodel for class diagrams does not have the concept of certainty, and
handbooks suggest modeling an attribute’s uncertainty by multiplicity [0..1] [15].

Example cont’d: Abstract syntax. In the lower half of Fig. 6, the concrete
syntax of model diagrams is unfolded into directed graphs: model elements are
nodes and their relationships are arrows. We begin our analysis with the meta-
model graph G+

AAA (in the middle of the figure). Bold shaded nodes stand for
the concepts (types) declared in the class diagram AAA: class Person and its two
attributes. Bold arrows relate attributes with their owning class and value do-
mains. The bold elements together form an instantiable subgraph GAAA of the
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entire graph G+
AAA. Non-instantiable elements of G+

AAA specify constraints on the
intended instantiations.

Graph GA (the leftmost) corresponds to the object diagram A and specifies
an instantiation of graph GAAA. Each GA’s element has a type (referred to after
the colon) taken from graph GAAA. Nodes typed by Person are objects (of class
Person) and nodes typed by attributes are slots (we use a UML term). Slots are
linked to their owning objects and to values they hold. Slot a1 is empty : there
are no value links going from it. Thus, the abstract syntax structure underlying
a class diagram is a graph G+

AAA containing an instantiable subgraph GAAA and
noninstantiable constraints. A legal instance of graph GAAA is a graph mapping
tA : GA → GAAA satisfying all constraints from G+

AAA \GAAA.
The same pattern applies to the pair (G+

AAA, GMMM), where GMMM is the instan-
tiable subgraph of graph G+

MMM specifying the metametamodel (the rightmost in
Fig. 6). Multiplicities in Fig. 6(b) are given in the sugared syntax with square
brackets, and can be converted into nodes and arrows as it is done for graph
G+
AAA; association ends without multiplicities are assumed to be [0..*] by default.

Finally, there is a metameta... graph GMMMMMM providing types and constraints for
G+
MMM; it is not shown in the figure.

GA
tA
- GAAA

G+
AAA

|= ?
∩

t+AAA

- GMMM

tAAA
-

GMMM
+

|= ?
∩

Fig. 7: Models as graphs

The entire configuration appears as a chain of
graphs and graph mappings in Fig. 7. Horizontal and
slanted arrows are typing mappings; vertical arrows
are inclusions and symbols |= remind us that typing
mappings on the left-above of them must satisfy the
constraints specified in the noninstantiable part. This
compact specification is quite general and applicable
far beyond our simple example. To make it formal, we
need to formalize the notion of constraint and its sat-
isfiability by a typing mappings. This can be done along the lines described in
[16].

Two models are called similar if they have the same metamodel, and hence
all layers below the upper one are fixed. In our example, two object diagrams
are similar if they are instances of the same class diagram.

3.2 Object-slot-value models and their mappings

Our definition of models as chains of graph mappings does not distinguish be-
tween objects and values: they are just nodes in instance graphs. However, ob-
jects and values play different roles in model matching and updating, and for
our further work we need to make their distinction explicit. Below we introduce
object-slot-value (osv) models, whose mappings (morphisms) treat objects and
values differently. This is a standard categorical practice: a distinction between
objects is explicated via mappings (in Lawvere’s words, “to objectify means to
mappify”).

In the previous section we defined a metamodel as a graph mapping t+AAA : G+
AAA → GMMM.

Equivalently, we may work with the inverse mapping (t+AAA)−1, which assigns to
each element E ∈ GMMM the set of those G+

AAA’s elements e for which t+AAA(e) = E.
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Fig. 8: Osv-models and their mappings

It is easy to check that this mapping is compatible with incidence relationships
between nodes and arrows and hence can be presented as a graph morphism
(t+AAA)−1 : GMMM → Sets into the universe of all sets and (total) functions between
them. (Indeed, multiplicities in graph G+

MMM require all its arrows to be functions).
To simplify notation, below we will skip the metametamodel’s syntax and write
E instead of (t+AAA)−1(E) (where E stands for Class, Attr, type etc. elements in graph
GMMM). Given a model, we will also consider sets Obj and Slot of all its objects
and slots.

Definition 1. (Osv-models) An object-slot-value model is given by a collec-
tion of sets and functions (i.e., total single-valued mappings) specified by diagram
Fig. 8(a); the hooked arrow i! denotes an inclusion. The functions are required
to make the diagram commutative, and to satisfy two additional constraints
(1,2) (related to mlty and crty) specified below after we discuss the intended
interpretation of sets and functions in the diagram.

The bottom row gives a system of primitive types for the model, and the
right “column” specifies a class diagram without associations (the metamodel).
For example, model A in Fig. 6 is an instance of the osv-model definition with
sets Class={Person}, Attr={name, pho}, pType={Str, Int} and Value consisting
of all strings and all integers. Classes Int and Bool have their usual extension
consisting, resp., of integers (including “infinity” *) and Boolean values (denoted
by ?,!).3 The functions are defined as follows: type(name) = Str, type(pho) =
Int; class(name) = class(pho) = Person; mlty(name) = (1,1), mlty(pho) = (0,*);
crty(name) = !, crty(pho)= ?

The left column specifies the “changeable/run-time” part of the model — an
object diagram over the class diagram; hence, there are typing mappings tobj,
tslt and the requirement for the upper square diagram to be commutative. For

3 For a punctilious reader, values in classes Int and Bool live in the metalanguage and
are different from elements of set Value.
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example, for model A in Fig. 6, we have sets Obj = {P,Q}, Slot = {a1, a2, b1}
and functions: tobj(P ) = tobj(Q) = Person; tslt(a1) = name, etc; obj(a1) = P , etc.

Slots in set Slot! are supposed to hold a real value extracted by function
val. This value should be of the type specified for the attribute, and the lower

polygon is also required to be commutative. Slots in set Slot?
def
= Slot \ Slot! are

considered empty, and function val is not defined on them. For model A, we
have Slot! = {a2, b1} val(a2) = ’11’, val(b1) = ’Jo’ whereas a1 ∈ Slot?. We will
continue to use our sugared notation val(s) =? for saying that slot s ∈ Slot? and
hence val(s) is not defined.

The following two conditions hold.
(1) For any attribute a ∈ Attr and object o with tobj(o) = class(a), if mlty(a) =
(m,n), then m ≤ |obj−1(o)| ≤ n (i.e., the number of a-slots that a class(a)-object
has must satisfy a’s multiplicity).
(2) If for a slot s ∈ Slot we have s.tslt.crty = 1 (i.e., the attribute is certain),
then s ∈ Slot!.

Definition 2. (Osv-model mappings) Let A,B be two osv-models over the
same class diagram, i.e., they have the same right “column” in diagram Fig. 8(a)
but different changeable parts distinguished by indexes A,B added to the names
of sets and functions (see Fig. 8(b) where the class diagram part is not shown,
and bottom double-line denotes identity). We call such models similar.

A mapping f : A→ B of similar osv-models is a pair f = (fobj, f slt) of func-
tions shown in Fig. 8(b) such that the upper square in the diagram commutes,
and triangles formed by these functions and typing mappings (going into the

“depth” of the figure) are also commutative: fobj; tobjB = tobjA and f slt; tsltB = tsltA .
In addition, the following two conditions hold.

(3) Let f slt! : Slot!A→ SlotB be the composition i!A; f slt, i.e., the restriction of
function f slt to subset Slot!A. We require function f slt! to map a non-empty slot to
a non-empty slot. Then we actually have a total function f slt! : Slot!A→ Slot!B,
and the upper diamond in diagram (b) is commutative.
(4) The lower diamond is required to be commutative as well: a non-empty slot
with value x is mapped to a non-empty slot holding the same value x.

To simplify notation, all three components of mapping f will often be denoted
by the same symbol f without superscripts.

Remark 2. Condition (3) says nothing about B-slot f slt(s) for an empty A-slot
s ∈ Slot?A: it may be be also empty, or hold a real value. That is, a slot with
’?’ can be mapped to a slot with either ’?’ or a real value (but a slot with a real
value v is mapped to a slot holding the same v by condition (4)).

Commutativity of diagram Fig. 8(b) is the key point of Definition 2 and essen-
tially ease working with model mappings. (Categorically, commutativity means
that model mappings are natural transformations). This advantage comes for
a price: condition (4) prohibits change of attribute values in models related by
a mapping, and hence we need to model attribute changes somehow differently.
We will solve this problem in the next section.
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Fig. 9: Reification of matches

3.3 Model matching via spans.

Comparing two models to discover their differences and similarities is an impor-
tant MMt task called model differencing or matching. Since absolutely reliable
keys for models’ elements are rarely possible in practice, model matching tools
usually employ complex heuristics and AI-based techniques (like, e.g., similarity
flooding [17]), which are tailored to specific kinds of models or/and to specific
contexts of model comparison [8, 10, 18]. Whatever the technic is used for model
matching, the result is basically a set of matching links between the models’
elements. Such sets have a certain structure, and our goal in this section is to
specify it formally.

A simple example of model matching is shown in Fig. 9(a). Two similar
models are matched by a family m of links m0,1,2 between model elements (ob-
jects and slots). Linking slots implies linking their values; hence we have two
additional links m′1 : Jo→ Jo and m′2 : 11→ 22. The latter link shows a conflict
between the models.

All matching links respect typing: we cannot match an attribute and an
object, or two attributes belonging to unmatched classes. The set of matching
links is itself structured similarly to models being matched, and hence can be
seen as a new model, say, M as shown in Fig. 9(b). (Name M stands for Mary
— an MMt administrator who did the comparison of Ann’s and Bob’s models.)
In the UML jargon, this step can be called reification of links: each one becomes
an object holding two references (p and q) to the matched elements.

Note that some matching links can be derived from the others. For example,
the metamodel says that all Person objects must have one ’name’ slot. Then as
soon as we have objects P and Q matched, their name slots must be automat-
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ically matched (the link is thus derived and shown dashed). In contrast, since
several phone slots are possible for a person, matching link m2 between slots
b@A and y@B is an independent datum (solid line).

Whatever the way two slots are matched, their matching means that they
should hold the same value. If it is not the case, for example, note different
numbers in slots b@A and y@B, we have a conflict between models. This conflict
is represented by setting the value in slot m2@M to ’?’ (which is allowed by the
metamodel AAA in Fig. 9(a)). Note that the metamodel also allows us to skip
attribute ’phone’, but then we would not have any record of the conflict. By
introducing a slot for the conflicting attributes but keeping it empty, we make
the conflict explicit and record it in model M . Moreover, two conflicting slots
in models A,B can be traced by links m2.p

slt, m2.q
slt. Then we may continue to

work with models A,B leaving the conflict resolution for a future processing (as
stated by the famous Living with inconsistencies principle [12]).

Note that if models were conflicting at their name-attributes, we should re-
solve this conflict at once because the metamodel in Fig. 9(a) does not allow
having null values for names. In this way metamodels can regulate which con-
flicts can be recorded and kept for future resolution, and which must be resolved
right away. Note also that whether two models are in conflict or consistent is
determined by the result of their matching, and hence is not a property of the
pair itself.

Definition 3. (Osv-model match) Let A,B be two similar osv-models. An
(extensional) model match is an osv-model M together with two injective model

mappings A
p←M

q→ B (see Fig. 10).

A match is called complete, if for any slot m ∈ SlotM the following holds:

(*) if m.p ∈ Slot!A, m.q ∈ Slot!B and valA(m.p) = valB(m.q), then m ∈ Slot!M.

That is, if a matching slot m links two slots with the same real value, m is not
empty (and holds the same value as well by Definition 2).

ObjA �
pobj

ObjM
qobj- ObjB

SlotA
6
�p

slt

SlotM
6 qslt- SlotB

6

Slot!A
∪6
�p
slt!

Slot!M
∪6 qslt!- Slot!B

∪6

Fig. 10: Matching two osv-
models

The term extensional refers to the fact
that in practice model matches may have some
extra (non-extensional) information beyond
data specified above; we will discuss the is-
sue later in Sect. 4.1. In this section we will
say just ‘match’.

Completion and consistency of matches.
Any incomplete match M can be completed
up to a uniquely defined complete match M∗

containing M : ObjM∗ = ObjM , SlotM∗ = SlotM , and Slot!M∗ ⊃ Slot!M . We
first set Slot!M∗ = Slot!M . Then for any slot m ∈ Slot?M we compute two
values, x(m) = valA(m.p) and y(m) = valB(m.q). If x, y are both real values and
x = y, we move m into set Slot!M∗ and set valM (m) = x, otherwise m is kept
in Slot?M∗. Below we will assume that any match is completed.
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For a match M and a slot m ∈ Slot]M , there are three cases of relationships
between values x(m) and y(m) defined above. (Case A): both values are real
but not equal; it means a real conflict between the models. (B): if exactly one
of the values is null, say, x, we have an easy conflict that can be resolved by
propagating real value y from B to A. Let Slot]M ⊂ Slot?M denotes the set of
slots for which either (A) or (B) holds.

(C) If both values are nulls, the models do not actually conflict although slot
m is empty.

Definition 4. (Consistency) Models A and B are called consistent wrt. their
(complete) match M if set Slot]M is empty. (That is, all matched slots either
hold a real value or link two empty slots, but the situation of linking two slots
with different values is excluded). As a rule, we will say in short that a match
M is consistent.

Remark 3. Links in a match can be labeled according to some four-valued logic:
no conflict between two real values, no conflict because two nulls, a real conflict
(between two real values), and an easy conflict between a value and a null. We
leave investigation of this connection for future work.

3.4 Symmetric deltas and their composition.

What was described above in terms of matching models understood as replicas,
may be also understood in terms of model updates. The following terminology
borrowed from category theory will be convenient.

A configuration like A
p←M

q→ B is called a model span: model M is the
head, models A,B are feet and mappings p, q are the legs or projections. A
model span consists of three set spans, i.e., spans whose nodes are sets and legs
are functions, see Fig. 10. Thus, a (complete) model match is just a (complete)
model span whose legs are injections.

Let A
p←M

q→ B be a complete model span. We may interpret it as an update
specification with A and B being the states of some fixed model before and after
the update. Then elements in sets ObjM and SlotM link elements that were
kept, A’s elements beyond the range of p are elements that were deleted, B’s
elements beyond the range of q were inserted, and elements from set Slot]M (of
“conflicting” links) show the attributes that were changed. Now we will call a
complete span with injective legs a (symmetric) delta, and interpret it as either
an (extensional) match or an update.

A delta as specified by Fig. 10 is a symmetric construct, but to distinguish the
two models embedded into it, we need to name them differently. Say, we may call
model A the left or better the source) model, and model B the right or better the
target model. It is suggestive to denote a delta by an arrow ∆ : A⇒ B, whose
double-body is meant to remind us that a whole triple-span diagram (Fig. 10) is
encoded. The same diagram can be read in the opposite direction from the right
to the left, which means that delta ∆ can be inverted into delta ∆−1 : B ⇒ A
(see Appendix B, p. 61 for a precise definition).
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Suppose we have two consecutive deltas

A ===
∆1⇒ B ===

∆2⇒ C with ∆1 = (A
p1← M1

q1→ B) and ∆2 = (B
p2← M2

q2→ C)

between Ann’s, Bob’s and, say, Carol’s models. To compose them, we need to

derive a new delta A ===
∆
⇒ C from deltas ∆1 and ∆2.

Since deltas are complete spans, each of them is determined by two set spans,
∆obj
i and ∆slt

i , i = 1, 2, which can be sequentially composed. The reader may
think of deltas as representations of binary relations, and their composition
as the ordinary relational composition ./; a precise formal definition of delta
composition via the so called pullback operation is in Appendix B, p. 62.

In this way we derive a new osv-model N determined by sets ObjN
def
=

ObjM1 ./ ObjM2 and SlotN
def
= SlotM1 ./ SlotM2, and by function objN : SlotN → ObjN

defined in the natural way (via the universal property of pullbacks; this is where
the categorical formulation instantly provides the required result). Projections

are evident and thus we have two set spans ∆ = (A
px← xN

qx→ C) with x = obj, slt.
These data give us a span N with empty set Slot!N . However, we can complete
N as described above (we let N denote the completion too), and so obtain a new

delta ∆ = (A
p← N

q→ C) between models. Associativity of so defined composi-
tion follows from associativity of span composition (Appendix B). In addition, a
complete span A← A→ A whose legs consist of identity functions between sets
is a unit of composition. We have thus proved

Theorem 1. The universe of osv-models and symmetric deltas between them is
a category.

Exercise 1. Explain why Slot!N ⊇ Slot!M1 ./ Slot!M2 but equality does not
necessarily hold.

4 Simple update propagation, I: Synchronizing replicas

By a replica we understand a maintained copy of a model, and assume that repli-
cation is optimistic: replicas are processed independently and may conflict with
each other, which is optimistically assumed to appear infrequently [19]. Then
it makes sense to record conflicts to resolve them later, and continue to work
with only partially synchronized replicas. The examples considered in Section
2 (Fig. 3) are simple instances of replica synchronization. We have considered
them in a concrete way by looking inside models and their mappings. The present
section aims to build an abstract algebraic framework in which models and map-
pings are treated as indivisible points and arrows.

Subsection 4.1 introduces the terminology and basic notions of replica syn-
chronization; there is an overlap with the previous section that renders the
present section independent. Subsection 4.2 develops a basic intuition for the al-
gebraic approach to modeling synchronization. Subsections 4.3 and 4.4 proceed
with algebraic modeling as such: constructing algebraic theories and algebras
(instances of theories).
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4.1 Setting the stage: Delta × Delta = Tile

Terminology. There are two main types of representations for model differ-
ences: operational and structural, which are usually called directed and sym-
metric deltas respectively [20]. The former is basically a sequence (log) of edit
operations: add, change, delete (see, e.g., [21]). The latter is a specification of
similarities and differences of the two models ([22]).

A symmetric delta can be seen extensionally as a family of matching links, in
fact, as a binary relation; in the previous section we formalized symmetric deltas
as (complete) spans (reified binary relations). Besides extension, a symmetric
delta may contain non-extensional information: matching links can be annotated
with authorship, time stamps, update propagation constraints and the like. We
also call deltas mappings and denote them by arrows (even symmetric deltas,
see Sect. 3.4).

Now suppose we have two replicas of the same model maintained by our
old friends Ann and Bob, Fig. 11. Nodes A, B are snapshots of Ann’s and
Bob’s replica at some time moment, when we want to compare them. The hor-
izontal arrow m denotes a relationship — match— between the replicas. We
interpret matches as symmetric deltas (spans) with, perhaps, some additional
(non-extensional) data. Ann and Bob work independently and later we have two
updated versions A′ and B′ with arrows a and b denoting the corresponding up-
dates. We may interpret updates structurally as symmetric deltas. Or we may
interpret them operationally as directed deltas (edit logs).

Versions and updates

Replicas and 
matchesA

A′ B′

B

a b

t

Ann’s 
model

t′

m

m′

Bob’s 
model

T: P

Fig. 11: The space of model versioning

The four deltas m, a,m′, b are mu-
tually related by incidence relation-
ships: ∂sm = ∂sa, ∂tm = ∂sb, etc.
(where ∂sx, ∂tx denote the source and
the target of arrow x), and together
form a structure that we call a tile.
The term is borrowed from a series of
work on behavior modeling [23], and
continues the terminological tradition
set up by the Harmony group’s lenses
— naming synchronization constructs
by geometric images.

Visually, a tile is just a square
formed by arrows with correspond-
ingly sorted arrows. To avoid explicit

sorting of arrows in our diagrams, we will always draw them with updates going
vertically and matches horizontally. A tile can be optionally labeled by the name
of some tile’s property (predicate) P . Expression T :P means that T has property
P , i.e., T |= P or T ∈ [[ P ]] with [[ P ]] denoting the extension of P . The name of
the tile may be omitted but the predicate label should be there if T |= P holds.

The tile language: matches vs. updates. To keep the framework sufficiently
general, we do not impose any specific restrictions on what matches and updates
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really are, nor do we assume that they are similar specifications. For example,
matches may be annotated with some non-extensional information that does
not make sense for updates, e.g., priorities of update propagation (say, ’name’
modifications are propagated from Ann’s model to Bob’s, while ’phones’ are not)
or “matching ranks” (how much we are sure that elements e@A and e′@B are
the same, see [24] for a discussion). Furthermore, we may have matches defined
structurally (with annotations or not) whereas updates operationally.

Therefore, we do not suppose that matches can be sequentially composed
with updates (and vice versa). But of course updates can be composed with
updates, and matches with matches, although match composition can be non-
trivial, if at all well-defined, because of non-extensional information. For ex-
ample, let m+ : X → Y denotes a match consisting of symmetric delta (relation,
span) m augmented with some non-extensional information. For two consecutive
matches m+

1 : A→ B, m+
2 : B → C, their extensional parts can be composed as

relations producing delta m = m1;m2 : A→ C, but to make m into a match m+

we need to compose somehow non-extensional parts of the matches. We leave
the issue for the future work and in this paper will not compose matches.

The situation with updates is simpler. Either they are interpreted structurally
as symmetric deltas (spans), or operationally as edit logs, they are sequentially
composable in the associative way. For symmetric deltas it is shown in Sect. 3.4;
and it is evident for edit logs (whose composition is concatenation).

In addition, we assume that for every model A there are an idle update
1bA : A→ A that does nothing, and an identity match 1hA : A→ A that identically
matches model A to itself. For the structural interpretation of arrows, both idle
updates and identity matches are nothing but spans whose legs are identity
mappings (and no extra non-extensional information is assumed for matches).
For the operational interpretation, idle/identity arrows are empty edit logs.

Thus, in the abstract setting we have a structure consisting of two reflexive
graphs, Modmch of models and matches, and Modupd of models and updates,
which share the same class of objects Mod but have different arrows. Moreover,
arrows in graph Modupd are composable (associatively) and Modupd is a cat-
egory. We will call such a structure a 1.5-sorted category and denote it by Mod
(if Modmch also were a category, Mod would be a two-sorted category)(see
Sect. B).

Simple synchronization stories via tiles. Despite extreme simplicity of the
language introduced above, it allows us to describe some typical replication situa-
tions as shown in Fig. 12. The diagrams in the figure can be seen as specifications
of use cases (“stories”) that have happened, or may happen, in some predefined
context. The meaning of these stories is easily readable and explained in the
captions of the diagrams (a-d). In diagram (b), symbol ∼= denotes the predicate
of being an isomorphic match (i.e., we assume that a subclass [[∼= ]] of arrows in
graph Modmch is defined).

The stories could be made more interesting if we enrich our language with
diagram predicates, say, Ph and Pv, allowing us to compare matches and updates.
Then, for example, by declaring that tile T belongs to the class [[ Ph ]] (as shown by
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Fig. 12: Several replication stories via tiles

diagram (c)* ), we say that match m′ is “better” than m. Such predicates can be
seen as arrows between arrows, or 2-arrows, and give rise to a rich framework of
2-categories and bicategories (see, e.g., [25]). We leave this direction of modeling
replication for future work.

The “historian’s” view on synchronization scenarios, even with comparison
predicates, is not too interesting. The practice of model synchronization is full
of automatic and semi-automatic operations triggered automatically or by the
user’s initiation. Thus, we need to enrich our language with synchronization
operations.

4.2 Update propagation via algebra: Getting started

As discussed in Sect. 2.2, algebraic operations modeling synchronization proce-
dures should be diagrammatic: they take a configuration (diagram) of matches
and updates that conform to a predefined input pattern, and add to it new
matches and updates conforming to a predefined output pattern. These new el-
ements are to be thought of as computed or derived by the operation. In this
section we consider how diagram operations work with a typical example, and
develop a basic intuition about the algebraic approach to modeling synchroniza-
tion.

Update propagation: A sample diagram operation. Propagating updates
from one replica to another is an important synchronization scenario. We model
it by diagram operation fPpg shown in Fig. 13(a). The operation takes a match
m between replicas and an update a of the source replica, and produces an
update b of the target replica and a new match m′. The input/output arrows
are shown by solid/dashed lines resp.; the direction of the operation is shown
by the doubled arrow in the middle. (To be consistent, we should also somehow
decorate node B′ but we will not so so.)

We write (b,m′) = fPpg(a,m) and call the quadruple of arrows (tile) T =
(a,m, b,m′) an application instance of the operation. Other pairs of input ar-
rows will give other application instances of the same operation; hence, notation
T :fPpg. (The name T is omitted in the diagram). This notation conforms to la-
beling tiles by predicates introduced earlier. Operation fPpg defines a predicate
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Fig. 13: Forward update propagation (a) and its two special cases (b,c)

fPpg∗ of square shape: for a quadruple of arrows (a,m, b,m′) forming a square,
we set fPpg∗(a,m, b,m′) is true iff (b,m′) = fPpg(a,m); in this case we say that
the quadruple (a,m, b,m′) is a fPpg-tile. Later we will omit the star superindex.

Below we will also use the dot-notation for function applications, (b,m′) =
(a,m).fPpg to ease reading complex formulas. Since the operation produces
two elements, we need special projection operations, upd and mch, that select
the respective components of the entire output tuple: b = (a,m).fPpg.upd and
m′ = (a,m).fPpg.mch.

Update policies and algebra. There are two extreme cases of update propa-
gation with fPpg.

One is when nothing is propagated and hence the output update is idle as
shown in diagram Fig. 13(b). Then propagation amounts to rematching : updat-
ing the match fromm tom′. If this special situation, i.e., equality (a,m).fPpg.upd =
1B , holds for any update a originating at m’s source, we have a very strong prop-
agation policy that actually blocks replica B wrt. updates from A.

The opposite extremal case is when the entire updated model is propagated
and overwrites the other replica as shown in diagram (c). A milder variant would
be to propagate the entire A′ but not delete the unmatched part of B, then match
m′ would be an embedding rather than isomorphism.

In-between the two extremes there are different propagation policies as dis-
cussed in Sect. 2.2.1. The possibility of choice is in the nature of synchronization
problems: as a rule, some fragments of information are missing and there are
several possible choices for model B′. To make computation of model B′ de-
terministic, we need to set one or another propagation policy. Yet as soon as
a policy is fixed, we have an algebraic operation of arity shown in Fig. 13(a).
Thinking algebraically, a policy is an operation (cf. Discussion in Sect. 2.2.1).

Remark 4. So-called universal properties and the corresponding operations (see
Appendix A.1) are at the heart of category theory. It explains attempts to model
update policies as universally defined operations [26]. However, our examples
show that, in general, a propagation policy could not be universally defined
simply because many policies are possible (while universally defined operations
are unique up to isomorphism).
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Fig. 14: Replication stories and algebra: Fig. 12 processed algebraically

Algebra: action vs. “history”. The mere assertion that some components of
a story specified by a tile are derived from the other components may be a strong
statement. Let us try to retell our simple synchronization stories in Fig. 12 in
an algebraic way.

Diagram Fig. 14(a1) says that three arrows (a,m, b) are produced by apply-
ing some operation to the identity match, that is, in fact, to model O. This is
evidently meaningless because triple (a,m, b) cannot be derived from O alone.
In contrast, diagram (a2) is a reasonable operation: given two updates of the
same source, a match between them can be computed based on the information
provided by the input data.

Diagram (b1) says that any two matched replicas can be made isomorphic.
It is a very strong statement: we assume that all conflicts can be resolved, and
differences between replicas can be mutually propagated in a coherent way. A
more reasonable algebraic model of conflict resolution is specified by diagram
(b2): the result of the operation is just another match m′ presumably better
(with less conflicts) than m. Augmenting the language with constructs formally
capturing the meaning of “better” (e.g., 2-arrows) would definitely be useful,
and we leave it for future work.

Exercise 2. Diagrams (c1,c2) present two algebraic refinements of the synchro-
nization story specified in Fig. 12(c). Explain why diagram (c1) does not make
much sense whereas (c2) specifies a reasonable operation. Hint : Note an impor-
tant distinction of diagram (c1) from diagram Fig. 14(b2). (Discussions can be
found on 53.)

4.3 An algebraic toolbox for a replica synchronization tool designer

Suppose we are going to build a replica synchronization tool. Before approaching
implementation, we would like to specify what synchronizing operations the
tool should perform, and what behavior of these operations the tool should
guarantee; indeed, predictability of synchronization results is important for the
user of replication/versioning tools (cf. [3]). Hence, we need to fix a signature of
operations and state the laws they must obey; in other words, we need to fix a
suitable algebraic theory. The tool itself will be an instance of the theory, that
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Fig. 15: Replica synchronization operations: update propagation (a), rematching
(b), conflict resolution (c), and Boolean test for consistency of matches (d)

is, an algebra: sorts of the theory will be interpreted by classes of replicas the
tool operates on, and operations will be interpreted by actual synchronization
procedures provided by the tool.

Two main ingredients constituting an algebraic theory are a signature of
operations with assigned arity shapes, and a set of equational laws prescribing
the intended behavior of the operations. In ordinary algebra, operation arities
are sorted sets; in diagram algebra, arities are sorted graphs but the principal
ideas and building blocks remain the same. In this section we specify a pool
of diagram operations for modeling synchronization procedures, and a pool of
laws that they should, or may want, to satisfy. Together they are meant as an
algebraic toolbox with which a tool designer can work.

The carrier structure. All our operations will be defined over 1.5-sorted cat-
egories, i.e., two-sorted reflexive graphs with arrows classified into horizontal
(matches) and vertical (updates); the latter are composable and form a cate-
gory.

Operations. A precise definition of a diagram operation over a two-sorted
graph is given in Sect. B. For the present section it is sufficient to have a semi-
formal notion described above.Recall that in order to avoid explicit sorting of
arrows in our diagrams, we draw them with geometrically vertical/horizontal
arrows being formally vertical/horizontal.

Figure 15 presents a signature of operations intended to model synchroniza-
tion procedures. The input/output arrows are distinguished with solid/dashed
lines, and input/output nodes are black/white.

Diagrams Fig. 15(a1,a2) show operations of forward and backward update
propagation. The former was just considered; the latter propagates updates
against the direction of match and is a different operation. For example, if the
replica at the source is in some sense superior to the replica at the target, for-
ward propagation may be allowed to propagate deletions whereas the backward
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one is not. Diagram (a3) specifies bi-directional update propagation. It takes a
match and two parallel updates and mutually propagates them over the match;
the latter is then updated accordingly.

Diagrams Fig. 15(b1,b2) show operations of forward and backward rematch-
ing. If for a given match m : A→ B, one of the replicas, say, A, is updated,
we may want to recompute the match but do not change the other replica B.
This scenario is modeled by operation fRem in Fig. 15(b1), where the update of
the other replica is set to be idle. Thus, operation fRem actually has two argu-
ments (the left update and the upper match) and produces the only arrow —
an updated match (at the bottom). The backward rematch works similarly in
the opposite direction. The operation of bidirectional rematching does not make
sense (Exercise 1 above). If we were modeling both matches and updates by
relations (spans), then rematch would nothing but sequential span composition
Sect. 3.3. However, as we do not compose updates and matches, we model their
composition by a special tile operations.

Finally, Fig. 15(c) specifies operation Res of conflict resolution. It takes a
match between two replicas that, intuitively, may be inconsistent, and computes
updates a, b necessary to eliminate those conflicts that can be resolved automat-
ically without user’s input.

Other synchronization operations are possible, and the signature described
above is not intended to be complete. Neither is it meant to be fully used in
all situations. Rather, it is a pool of operations from which a tool designer may
select what is needed.

Predicates. To talk about consistency of matches, we need to enrich our lan-
guage with a consistency predicate (think of strongly consistent matches from
Sect. 3.3).

Diagram (d) presents it as a Boolean-valued operation: for any match m a
Boolean value is assigned, and we call m consistent if K(m) = 1. (The letter K
is taken from “K onsistency”: denoting the predicate by C would better fit the
grammar but be confusing wrt. terms Classes and Constraints.) In our diagrams
we will write m:K for K(m) = 1. Semantically, we have a class of consistent
matches K = {m : K(m) = 1}.

Remark 5. Consistency is often considered as a binary predicate K′ on models:
replicas (A,B) are consistent if K′(A,B) holds [6]. Our definition is essentially
different and moves the notion of consistency from pairs of replicas to matches.
Indeed, as discussed in sections 2.2, 3.3, multiple matches between replicas are
possible, and it is a match m : A→ B that makes the pair (A,B) consistent or
inconsistent.

Remark 6. The presence of predicates makes our theory non-algebraic. A stan-
dard way to bring it back to algebra is to define predicates via equations between
operations, if it is possible. Another approach is to work in the framework of
order-sorted algebra [27].
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Fig. 16: Replica synchronization: several laws

Equational laws. Equations the operations must satisfy are crucial for alge-
braic modeling. Without them, algebraic theories would define too broad classes
of algebras encompassing both adequate and entirely inadequate algebraic mod-
els.

Equational laws for diagram operations can be concisely presented by dia-
grams as well. Consider, for example, diagram Fig. 16(a1), whose arrows are
labeled by names (identifiers) of matches and updates. The names express the
following equation: for any match m, fPpg(1∂sm,m) = (1∂tm,m). This is a gen-
eral mechanism: if all arrows in the tile have different names, the tile specifies
a generic instance of the operation without any restrictions, but the presence of
common names amounts to equational constraints like above.

The equation expressed by Fig. 16(a1) has a clear interpretation: given a
match m, the idle update on the source is propagated into the idle update on the
target while the match itself is not changed. We call the law IdlPpgf following
a general pattern of naming such laws by concatenating the operation names
(take the idle update and propagate it; index f refers to forward propagation).
The pattern was invented by the Harmony group for lenses and turned out very
convenient.

Diagram Fig. 16(a2) displays two fPpg-tiles vertically stacked (ignore the
boxed label for a while). It means that the output match of the upper appli-
cation of fPpg is the input match for the lower application. Since updates are
composable, the outer rectangle in the diagram is also a tile whose updates are
a; a′ and b; b′. Now the boxed label says that the outer tile is also an application
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instance of fPpg. (In more detail, given a match m and two consecutive updates
a, a′ on its source, we have fPpg(a; a′,m) = (b; b′,m′′) where (b,m′) = fPpg(a,m)
(name m′ is hidden in the diagram) and (b′,m′′) = fPpg(a′,m′).) We will phrase
this as follows: if the two inner tiles are fPpg, then the outer tile is also fPpg
(note also the name of the law). Thus, composed updates are propagated com-
ponentwise.

Diagram Fig. 16(a3) says that if (b,m′) = fPpg(a,m) andm ∈ K, thenm′ ∈ K
as well: consistency of matches is not destroyed by update propagation. We call
an update propagation correct if it satisfies this requirement, hence the name of
the law. Note the conditional nature of the law: it says that the resulting match is
consistent if the original match is consistent but does not impose any obligations
if the original match is inconsistent. This formulation fixes the problem of the
unconditional correctness law stated in [6].

Exercise 3. Explain the meaning of diagrams (b1) and (b2) in Fig. 16

Now we consider laws regulating interaction between the two operations. The
law specified by diagram (ab1) is conditional. The argument of the premise and
the conclusion is the entire tile, and the diagram says: if a tile is an instance
of fRem with output match satisfying K, then the tile is also an instance of
fPpg. Formally, fRem∗(T ) implies fPpg∗(T ) for a tile of the shape shown in the
diagram (recall that starred names denote predicates defined by operations).
That is, if m′ = fRem(a,m) ∈ K then fPpg(a,m) = (m′, 1∂tm). The meaning of
the law is that if we update the source, and the updated match m′ is consistent,
then nothing should be propagated to the target. This is a formal explication of
the familiar requirement on update propagation: “first check, then enforce” (cf.
Hippocraticness in [6]). Hence the name of the law, ChkPpg.

Exercise 4. Explain the meaning of diagram (ab2) Fig. 16

Exercise 5 (*). Formulate some laws for the operation of conflict resolution, and
specify them diagrammatically.

There is no claim that the set of laws we have considered is complete: other
reasonable laws can be formulated. The goal was to show how to specify equa-
tional laws, and how to interpret them, rather then list them “all”.

4.4 Replica synchronization tools as algebras

In this section, we build a simple algebra intended to model a replica synchro-
nization tool as it was explained at the beginning of Sect. 4.3.

We first fix a theory (= signature + laws). For the signature, we take four
operations (to be precise, operation symbols) (fPpg, bPpg, fRem, bRem) with ari-
ties specified in Fig. 15. These operations can be interpreted over any 1.5-sorted
category encompassing any number of replicas. However, we assume that our
synchronization tool will only work with two replicas propagating updates from
one to the other and back. Hence, we need to specify a specific 1.5-sorted cate-
gory adequate to our modest needs.
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Definition 5. A (binary) replication lane r is given by the following data.

(a) Two categories, A and B, whose objects are called replicas (or models),
and arrows are updates. (For a category X, its classes of objects and arrows
are denoted by, resp., X0 and X1.) Specifically, objects of A are called source
replicas and those of B the target ones.

(b) A set M whose elements are called matches from A- to B-replicas, and

two functions (legs), A0
∂s← M

∂t→ B0, from matches to replicas. If for a match
m ∈M, ∂s(m) = A, ∂t(m) = B, we write m : A→ B.

(c) A set K ⊂M of consistent matches.

Figure 17 visualizes the definition: updates are vertical, and matches are hori-
zontal or slanted (solid or dotted-dashed for being consistent or inconsistent).

A BM

A

A′

B

A′′
…

B′

B′′

∂t∂s

Fig. 17: Replica
lane

We denote a replication lane by a bulleted arrow r :

A •→ B. If replicas are considered within the same ver-
sioning space, categories A and B coincide, and we call the
lane unary, r: A •→ A.

Now we define an algebra over a replica lane.

Definition 6. A diagonal replica synchronizer is a pair
δ = (rδ, Σδ

brSync) with rδ a replica lane and Σδ
brSync =

(fPpgδ, bPpgδ, fRemδ, bRemδ) a quadruple of diagram opera-
tions over rδ of the arities specified in Fig. 15. The name diag-
onal refers to the fact that propagation operations act along
diagonals of operation tiles, and bidirectional propagation (for

parallel updates) is not considered.

It is convenient to denote a replica synchronizer by an arrow δ : A •→ B
whose source and target refer to the source and target of the replica lane rδ.

A diagonal synchronizer is called well-behaved (wb) if the pair (fPpg, fRem)
satisfies the laws IdlPpgf ,Corrf ,IdlRemf ,ChkPpgf specified in Fig. 16, and the pair
(bPpg, bRem) satisfies the backward counterparts of those laws. A wb diagonal
synchronizer is called very well-behaved (vwb) if the laws PpgPpgf ,RemRemf and
their backward counterparts hold too.

Modularization of the set of laws provided by the notions of wb and very wb
synchronizer is somewhat peculiar from the categorical standpoint because it
joins unitality (preservation of units of composition, ie, idle updates) with other
laws but separates it from compositionality, and the very terms are not very con-
venient. However, this modularization and terminology follow the terminology
for lenses [2] and make comparison of our framework with lenses easier (see [28]
for an analysis of these laws in the discrete setting).

The definition above is intuitively clear but its precise formalization needs
a careful distinction between syntax and semantics of a diagram operation, see
Sect. B.
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Fig. 18: View maintenance: Forward (a) and backward (b) update propagation

5 Simple update propagation II: Forward and backward
view maintenance

In this section we consider synchronization of a source model and its view. The
content is parallel to replica synchronization and the algebraic model is developed
along the same lines. Yet view synchronization is essentially different from replica
synchronization.

5.1 View vs. replica synchronization

Examples in Sect. 2.2 and Appendix C show that a view definition can be mod-

eled by a metamodel mapping SSS vvv←− TTT that sends elements of the view (target)
metamodel TTT to basic or derived elements of the source metamodel SSS.4 In ad-
dition, the mapping must be compatible with the structure of the metamodels
(and send a class to a class, an attribute to an attribute etc.) Such a view defi-
nition can be executed for any instance A of SSS, and produce a vvv-view of A, i.e.,

a TTT -instance denoted by A�vvv , along with a traceability mapping A
vvvA←− A�vvv (see

Sect. C for details).5 In fact, we have a diagram operation specified by the top
face of cube (a) in Fig. 18, where B = A�vvv and f = vvvA.

If the source A is updated, the update is propagated to the view by operation
getvvv (“getView”) shown in the front face of the cube Fig. 18(a). The operation
takes a source update a and view mapping f , and produces a view update b
together with a new view traceability mapping f ′. A reasonable requirement is
to have f ′ = vvvA′ and B′ = A′�vvv . In the database literature, such operations
have been considered as view maintenance [29].

If the view is updated via b : B → B′ (the front face of cube Fig. 18(b)),
we need to update the source correspondingly and find an update a : A→ A′

4 Derived elements of SSS are, in fact, queries against SSS seen as a data schema.
5 View A�vvv can be seen as vvv-projection of model A to space of TTT -models, hence symbol
� denoting restriction.
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such that B′ = A′�vvv ; simultaneously, a new traceability mapping f ′ = vvvA′

is computed. Since normally a view abstracts away some information, many
updates a may satisfy the condition. To achieve uniqueness, we need to consider
additional aspects of the situation (metamodels, view definition, the context) —
this is the infamous view update problem that has been studied in the database
literature for decades [30]. Yet we assume that somehow an update propagation
policy ensuring uniqueness is established, and hence we have an operation putvvv

(“put update back”) specified by the front face of the cube. Names ’get’ and
’put’ are borrowed from the lens framework [2], but in the latter neither update
nor view mappings are considered. Also, lenses’ operation get corresponds to our
vExe0.

Despite similar arity shapes of bidirectional pairs (get,put) in view synchro-
nization and (fPpg,bPpg) in replica synchronization, the two tasks are different.

First we note that in the view update situation, consistency relation K can
be derived rather than independently postulated: we set

(Cons) K
def
=
{
A

f←− B : f = vvvA

}
.

Next we assume that the view is entirely dependent on the source: once the source
is updated, the view is automatically recomputed so that the source update does
not create inconsistency. On the other hand, if the view is updated, it at once
becomes inconsistent with the source since only one view corresponds to the
source. Hence, there is no need for the “first-check-then-enforce” principle, and
any view update must be propagated back to the source to restore consistency.

The result is that in contrast to replica synchronization, it is reasonable to as-
sume that view update propagation always acts on consistent matches as shown
by the front faces of cubes in Fig. 18(a,b), and produces consistent matches. We
may thus ignore inconsistent matches completely. It implies that the correctness
and ”first-check-then-enforce” laws of replica synchronization become redundant,
and we do not need rematching operations. This setting greatly simplifies the
theory of update propagation over views. The rest of the section described the
basics of such a theory.

5.2 The signature and the laws

Figure 19 (a,b,c) presents arity shapes of the three operations we will consider.
As before, the input nodes and arrows are black and solid, the output ones are
white and dashed. The meaning of the operations is clear from the discussion
above. Operation (d) will be discussed later.

Figure 20 specifies some laws the three operations must satisfy. The laws
IdlGet, IdlPut, GetGet, and PutPut in cells (b1,b2,c1,c2) are quite similar to the
respective laws for forward and backward propagation discussed in Sect. 4. They
say that idle updates on one side result in idle updates on the other side, and
composition of updates is propagated componentwise.

The PutGet law in cell (bc) states that any put-tile is automatically a get-tile.
In the string-based notation, if (a, f ′) = put(b, f) then (b, f ′) = get(a, f).
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Fig. 20: View synchronization: the laws

The Exe! law in cell (a!) states that any match (the empty premise) is a correct
view traceability mapping produced by vExe applied to the target of the match.
This implies that put and get only apply to correct matches as discussed above.
We could a priori postulate this, and rearrange operation get into operation Get
specified in Fig. 19(d), which both computes the views and propagates updates.
It is a possible way to go (cf. the functorial approach to the view update problem
[26]), but this paper explores a different setting, in which vExe computes the view
model only and get propagate updates using view traceability mappings.

Exercise 6. Formulate the horizontal counterparts of GetGet and PutPut, and
explain their meaning. Hint : consider a composed view definition in Fig. 5.

5.3 View synchronization

Definition 6. A view lane v is given by the following data.

(a) Two categories A and B, whose objects are called models and arrows are
updates. Objects of A are called source models and those of B are views.
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(b1) A span of sets, A0
∂t← V

∂s→ B0 with ∂t and ∂s being total functions
giving the target and the source for each view traceability mapping f ∈ V. We

write A
f←− B if ∂t(f) = A and ∂s(f) = B.

(b2) An operation vExe : A0 → V of view execution such that for any model
A ∈ A0 and any mapping v ∈ V, the following two laws hold:

(ExeDir) ∂tvExe(A) = A

(Exe!) if ∂tv = A, i.e., A
v←− B, then v = vExe(A)

A′

VA B
∂t

A B

A′′

…

B′

B′′′A′′′

∂s

vExe

Fig. 21: View lane

Thus, for any A ∈ A0 we have a unique traceability

mapping A �
vExe(A)

B targeting A, and any traceability
mapping is of this form.

We denote the composition vExe; ∂s, which gives the
source of the arrow vExe(A), by vExe0. Then, given a
source A, its view B = vExe0(A).

Evidently, A 6= A′ implies vExe(A) 6= vExe(A′), but it
may happen that B = vExe0(A) = vExe0(A′) for different
A,A′ because view abstracts away some information.

Fig. 21 visualizes the definition: updates are vertical arrows, and view trace-
ability mappings are horizontal. (Compare this figure with Fig. 17 and note the
difference between the carrier structures for replication and view updates.)

Definition 8. A view synchronizer over a lane v is a pair of diagram opera-
tions λ = (get, put) whose arities are specified in Fig. 19. Notation λ reminds us
lenses.

We will denote view synchronizers by arrows λ : A→ B and write ∂sλ for
A and ∂tλ for B. With this notation, operations get of forward view mainte-
nance and vExe of view computation go in the direction of arrow λ whereas
the backward operation put goes in the opposite direction. Thus, although vExe
computes from A to B, all view traceability mappings computed by vExe are
directed from B to A.

A view synchronizer is called well-behaved (wb) if the pair (get, put) satisfies
the laws IdlGet IdlPut, and PutGet specified in Fig. 20. A wb synchronizer is
called very well-behaved if the laws GetGet and PutPut hold as well.

Exercise 7. Prove that in the discrete setting (mappings are just pairs of mod-
els), a (very) wb view synchronizer becomes a (very) wb lens [2].

Exercise 8. Let λ1 : A→ B, λ2 : B→ C be view synchronizers defined in Sect. 5.2.
Define a view synchronizer λ1;λ2 : A→ C and prove that it is (very) well-
behaved as soon as the components λi are such.

Hint : Define Vλ def
=
{

(v1, v2)A : v1 = vExeλ1(A), v2 = vExeλ2(v1.∂s), A ∈ A0

}
and

vExeλ(A)
def
= (v1, v2)A.
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6 Complex update propagation: Managing heterogeneity

In this section we consider scenarios in which the operation of update propaga-
tion is assembled from simpler propagation blocks.

6.1 Synchronization of heterogeneous models

Suppose that models to be synchronized are instances of different metamodels,
for example, we need to keep in sync a class diagram and a sequence diagram.
If one of the models is updated, say, a method in the class diagram is renamed,
we need to update the sequence diagram and rename messages calling for the
renamed method. Thus, we need to propagate updates across a match between
heterogeneous (non-similar) models.

We will approach this problem by adapting constructions developed in Sect. 4
for homogeneous replication. Surprisingly, a precise realization of this idea is not
too complicated. We will first find “the right” constructs using the metamodels,
and then proceed with algebras over spaces models like in the previous section.

Matching. Discussion in Appendix D shows that heterogeneous model match-

ing is based on metamodel matching via a span ooo =AAA vvv←OOO www→ BBB in the space of
metamodels, where AAA and BBB are metamodels of models to be synchronized, OOO
is a metamodel specifying their overlap, and mappings vvv,www are view definitions
that make OOO a common view to AAA, BBB. Recall that each metamodel MMM deter-
mines a 1.5-sorted category Mod(MMM) whose objects areMMM-instances (models),
vertical arrows are their updates and horizontal arrows are matches (Sect. 4.1).
To simplify notation, we will use the following abbreviations. For a given span

ooo = AAA vvv←OOO www→ BBB, bold letters A, B denote the vertical categories (of updates)
in Mod(AAA) and Mod(BBB) resp; bold letter O denotes the horizontal graph (of
matches) in Mod(OOO).

We assume that the metamodel span is consistent, that is, there are no
conflicts between the metamodels.

Definition 9. A heterogeneous match of type ooo is a triple h = (A,m,B) with
A ∈ A0, B ∈ B0, and m : A�vvv → B�www a match between the corresponding
projections in graph O. Match h is called consistent if match m is such.

Given a metamodel span ooo, we will denote heterogeneous matches of type

ooo by arrows A
h:ooo- B or hooo : A→ B. The typing discipline then implies that

models A and B are instances of metamodels AAA = ∂sooo and BBB = ∂tooo resp.

Propagation. Suppose we are given a matched heterogeneous pair of models
hooo : A→ B. If one of the models, say A, is updated and consistency between
models gets worse, we may want to propagate update a : A→ A′ to model B and
restore consistency as much as possible. Thus, we need to compute an update
b : B → B′ along with an updated match h′ooo : A′ → B′ of the same type ooo.
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If both legs of the span ooo are maintainable views, and the replication space
Mod(OOO) is equipped with synchronization, a reasonable idea would be to com-
pose update propagation from A to B from the blocks provided by synchro-
nization mechanisms of vvv, OOO, and www. That is, having lenses λvvv and λwww, and a
homogeneous replica synchronizer δ over Mod(O), we may try to build a het-
erogeneous replica synchronizer spanning model spaces A and B. The rest of
the section is devoted to a precise realization of this idea.

After metamodels have helped us to figure out the right concepts, we may
forget about them and work within model spaces only.

Definition 10. A triple lane t is a pair of view lanes (vl,vr) referred to as
the left and the right lanes, with a replica lane in-between them:

A
vl

- O
r
•→ O �

vr

B.

Categories A, B are called the ends of the triple lane and category O is the
overlap.

A triple synchronizer τ over a triple lane t is a pair of view synchronizers for
the pair of view lanes and a diagonal replica synchronizer for the replica lane:

τ = (λl, δ, λr) with A
λl

- O
δ
•→ O �

λr

B.
A triple synchronizer is called (very) well-behaved if all its three components

are such.

Theorem 2. Any triple synchronizer τ = (λl, δ, λr) gives rise to a diagonal
replica synchronizer ∆τ . Moreover, the latter is (very) well-behaved as soon as
all three components are such.

The principle idea of the proof is easy and well explained by Fig. 22.
The binary replica lane for ∆τ is formed by the ends of A and B of the

triple lane, and with the class of matches formed by heterogeneous matches
(A,m,B) as described in Definition 6.1. The subclass of consistent matches is
also described in Definition 6.1.

The four operations of diagonal update propagation specified in Fig. 15 are
defined by tiling the corresponding operations of the three component synchro-
nizers: Fig. 22 shows this for forward propagation (a) and rematching (b). Ap-
plications of the operations are numbered, and concurrent applications have the
same number. Algebraically, diagrams (a) and (b) specify terms that can be ab-
breviated by diagrams (a*) and (b*). It is exactly similar to definitions by equal-

ity in the ordinary algebra: when we write, say, ∆(x, y)
def
= ax ∗ (b1x+ b2y) ∗ cy

with x, y variables and a, b, c fixed coefficients, expression ∆(x, y) can be consid-
ered as an abbreviation for the term on the right-hand side of equality symbol.
Backward propagation and rematching are defined in exactly the same way but
in the opposite direction.

Finally, we need to check that composed operations in diagrams (a*,b*) and
their backward analogs satisfy the laws specified in Fig. 16. With tiling notation,
this check is straightforward. Ancient Indian mathematicians used to prove their
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Fig. 22: Heterogeneous update propagation

results by drawing a picture and saying ”Look!”. The reader is encouraged to
follow this way and appreciate the benefits of diagram algebra. ut

Similarly to unidirectional heterogeneous update propagation, heterogeneous
bi-directional operation can be built from lenses and bi-directional synchroniza-
tion over the overlap as suggested by Fig. 23 (where δ⇔ denotes the operation
of homogeneous bi-directional update propagation). A special case of this con-
struction for synchronizing data presented by trees was described in [3].

Exercise 9 (*). Define an algebra for modeling synchronization of materialized
views, for which view data are managed independently, and inconsistency with
the source is possible (though undesirable). Hint : The possibility of inconsis-
tency makes this case somewhat similar to replication (Sect. 4) and distinct
from ordinary views (Sect. 5.2).

6.2 Synchronization with evolving metamodels: a sketch

A
tA - AAA

:bPpgε↙↙

A′

a
?

tA′
- AAA′

u?

Fig. 24: Typing as
matching

First we note that typing can be considered as a spe-
cific kind of match. Then model adaptation to meta-
model evolution can be described as backward diag-
onal propagation as shown by Fig. 24 (in which su-
perscript ε stands for “evolution”). Arrow u encodes
an ordinary (update) span in the space of metamod-
els. Arrow a is a span whose head is an instance of u’s
head, and the legs are heterogeneous model mappings
over u’s legs as described in Sect. D.1.
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Fig. 23: Heterogeneous bi-directional update propagation

Now consider a heterogeneous pair of replicas A:AAA
and B:BBB, and suppose that metamodels may change. A typical scenario is shown
in Fig. 25(a). The upper face of the cube specifies a heterogeneous match defined
in Sect. D.2. Suppose that metamodelAAA is updated with u :AAA →AAA′. This update
can be propagated in two directions.

In the first one, update u is propagated over the left face of the cube and
results in update a : A→ A′ adapting model A to the change. In the second
direction, update u is first propagated to metamodel BBB along the match ooo by the
ordinary replica synchronization mechanisms (Sect. 5) but now working with
the metamodels rather than models. This gives us the back face of the cube
and update v : BBB → BBB′ of the right metamodel. The latter is then propagated to
model B by the model adaptation mechanism now applied to the right face of
the cube.

In this way we get two parallel updates a and b at the ends of match h.

Having the metamodel span ooo′ = (AAA′ vvv
′

← OOO′ www
′

→ BBB′) at the back face, we may
project models A′ and B′ to their common overlap space Mod(OOO′) thus arriving
at models A′O = vvv′�A′ and B′O = www′�B′ . Having match m : AO → BO (occurring
into h) and all other information provided by the cube, we may derive a match
m′ : A′O → B′O by applying the corresponding operation to nodes and arrows
of the cube (in its de-abbreviated form with all models and model mappings
explicated). This would be a typically categorical exercise in diagram chasing.
A theoretical obstacle to be watched is that categories involved must be closed
under the required operations. Practically, it means that the required operations
have to be implemented.

Thus, synchronization scenarios with evolving metamodels are deployed within
a three-sorted graph with three sorts of arrows: vertical (updates), horizontally
frontal (matches) and horizontally “deep” (typing). Since updates and types
are composable, we actually have a 2.5-sorted category. If heterogeneous match
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Fig. 25: 3D-synchronization with evolving metamodels

composition is also defined, we have a thin triple category. This pattern could
be probably extended for other types of relationships between models. Hence,
general synchronization scenarios are mutli-dimensional and are deployed within
n-sorted graphs and categories. Multi-dimensional category theory (mdCT) ap-
pears to be an adequate mathematical framework for multi-dimensional synchro-
nization.6

2D-projections. To manage the complexity of 3D-synchronization, it is useful
to apply a classic idea of descriptive geometry and study 2D-projections of the
3D-whole. We can realize the idea by arrow encapsulation, that is, by treat-
ing arrows of some sort as objects (nodes) and faces between those arrows as
morphisms (complex arrows). There are three ways of applying this procedure
corresponding to the three ways of viewing the cube (see the frame of reference
in the left-upper corner).

Viewing the cube along the axis of Replicas means that we consider match
arrows as nodes, the top and bottom faces as “deep” arrows, and the front and
back faces as vertical arrows. In this view, the cube becomes a tile shown in
diagram (b). If we treat typing mappings as specific matches, these tiles become
similar to replica synchronization tiles from Sect. 4

6 Md-category seems to be a new term. The term higher-dimensional categories is
already in use and refers to md-categories with weaker compositional laws: unitality
and associativity of composition hold up to canonic isomorphisms [31]. In fact, hdCT
is a different discipline, and mdCT is a proper, and very simple, sub-theory of hdCT.
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In the view along the Typing axis, typing mappings are nodes, the top and
bottom faces are horizontal arrows, and the left and right faces are vertical
arrows (but of type different from vertical arrows of the Replicas-view). The
result is shown in diagram (c). These tiles are similar to heterogeneous replication
considered above but with evolving metamodels.

Finally, in the Versions view, updates are nodes, the front and back faces
are new horizontal arrows, and the left and right faces are new deep arrows
as shown in diagram (d). Such tiles can be seen as structures for specifying
“dynamic typing”, in which typing arrows are actually couples of original and
updated typing mappings.

Tiles of each of the three sorts can be repeated in the respective directions
and we come to three two-sorted graphs Gx with x = R, T, V for the Replicas,
Typing, Version axes. Each of the graphs is a universe for its own synchronization
scenarios with different contexts. Yet there may be many similarities in the
algebras of operations, and there may be core algebraic structures common to
all three views. We leave this for future work.

7 Relation to other work, brief discussions, future work

The paper is a part of an ongoing research project on model synchronization
with the Generative Software Development Lab at the University of Waterloo
The project started with the GTTSE’07 paper [32] by Antkiewicz and Czarnecki,
which outlined a broad landscape of heterogeneous synchronization, provided
a range of examples, and introduced a notation that can be seen as a precursor
of synchronization tiles. The project has been further developed in [33, 11, 34],
and in several papers currently in progress. The present paper aims to specify a
basic mathematical framework for the project, and to offer a handy yet precise
notation.

Of course, this is only the short prehistory of the paper. Synchronization
spans a wide range of specification problems, and the present paper (in its at-
tempt to set a sufficiently general framework) inevitably intersects with many
ideas and approaches, and builds on them. These “pre-histories” and intersec-
tions are briefly reviewed below without any aspiration to be complete. Direc-
tions for future work are also presented.

7.1 Abstract MMt

Synchronization via algebra. Analysis of synchronization problems in ab-
stract algebraic setting is a long-standing tradition in the literature on databases
and software engineering. It can be traced back to early work on the view update
problem, particularly to seminal papers by Bancilhon and Spyratos [35], Dayal
and Bernstein [30] and Gottlob et al [36]. This algebraic style was continued by
Meertens in [37] in the context of constraint maintenance, and more recently
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was further elaborated in the work of the Harmony group on bi-directional pro-
gramming languages for manipulating simple data structures like trees, strings
or plain relations [2, 38–40]. An adaptation of the approach for bi-directional
model transformations was developed by Stevens [6, 41] and Xiong et al [4, 42];
an analysis of the corresponding algebraic theories can be found in [28]. Pa-
per [32] mentioned above, and an elegant relational model of bi-directional data
transformations [43] by Oliveira are also within this algebraic trend.

Two features characterize the framework:
(a) model mappings are not considered or implicit;
(b) metamodels (and their mappings) are either ignored or only considered ex-
tensionally, i.e., a metamodel defines its class of instances and may be forgotten
afterwards (e.g., see [3]).

Feature (a) makes the framework discrete and subject to the critique in Sec-
tion 2. Feature (b) significantly simplifies technicalities but hides semantics of
model translation and makes it difficult to manage heterogeneity in a con-
trolled way.7 The abstract MMt part of the present paper also does not include
metamodels. However, the latter are central for the concrete MMt part, which
motivates and explains several important constructs in the abstract part.

Tiles and tiling. Tile systems were developed by Ugo Montanari et al (see [44]
and references therein) as a general algebraic framework for modular description
of concurrent systems. The tiles represent modules and can be thought of as
computations (or conditional rewriting rules) with side effects. The two horizon-
tal arrows of a tile are the initial and the final states of the module, and the two
vertical arrows are the trigger and the effect. This interpretation works for our
tiles: modules are connected pairs of models, matches are their states, the input
update is a trigger and the output one is the effect. However, there are important
distinctions between the two tile frameworks. For the brief discussion below, we
will refer to them as to c-tiles and s-tiles, with c standing for concurrency and
s for synchronization.

(a) C-tiles have an interior in the sense that different c-tiles may have the
same four-arrow boundary whereas our s-tiles are merely quadruples of arrows
(in the categorical jargon, they are thin).

(b) Montanari et al only deal with operations on tiles as integral entities
(tiling-in-the-large), and consider their vertical, horizontal and parallel compo-
sition. In contrast, we have been looking inside tiles and considered algebraic
operations that produce tiles from arrows (tiling-in-the-small). We have also
considered vertical composition-in-the-large in our XyzXyz laws, and horizontal
composition in Exercise 6 on p.36.

(c) Three composition operations over c-tiles assume they are homogeneous
units, and so we have homogeneous tiling. In contrast, our complex scenarios in

7 Dayal and Bernstein’s work [30] is a notable exception. It does use update, trace-
ability and typing links (and, in fact, is remarkably categorical in its approach to
the problem). However, these links are not organized into mappings (not to mention
more advanced arrow encapsulation techniques), and technicalities become hardly
manageable. The categorical potential of the paper remained undiscovered.
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Sect. 6 present heterogeneous tiling: a big tile is composed from smaller tiles of
different types.

A perfectly adequate mathematical framework for homogeneous tiling is dou-
ble categories [25], or two-sorted categories (Appendix B) for thin tiles; their
s-interpretation is described in [33]. Heterogeneous tiling requires more refined
algebraic means and a real diagram algebra. A general formal definition of a
diagram operation appears in [45] and is specified in detail in [46]; in the present
paper it is formulated slightly different but equivalent way. Parsing terms com-
posed of diagram operations is discussed in [46, Appendix A].

A few historical remarks. Elements of the tile language in the context of model
synchronization can be found in Antkiewicz and Czarnecki [32], and even earlier
in Lämmel [47]; my paper [28] also deals with s-tiles but in the discrete setting.
Operations of update propagation and conflict resolution are considered in [32]
but without any equational laws. The language of s-tiles is explicitly introduced
in Diskin et al [33] with a focus on 2D-composition and double categories. A
general framework for specifying synchronization procedures via tile algebra in
this paper is novel.

The 2-arrow structure. Introducing a partial order on mappings, and then
ordering matches and updates, is important for model synchronization (see p. 26)
and should be a part of the tile language. The issue is omitted in the paper and
left for future work; some preliminary remarks are presented below.

By the principles of arrow thinking, ordering should be modeled by arrows,
and we thus come to arrows between arrows or 2-arrows. If mappings are spans,
2-arrows are ordinary arrows between their heads, but the entire structure be-
comes a 2-category and hence a much richer structure than an ordinary category.
Another approach suggested by an anonymous referee is to work with so called
allegories [48] rather than categories, in which morphisms are to be thought of
as binary relations rather than functions. However, an important feature of any
set of matching links — its structure being similar to the structure of models
— is lost if mappings are simply morphisms in an allegory. Another (arguable)
advantage of the span model of mappings is that it is technically easier to work
with 2-categories of spans than with allegories.

Parallel updates. This synchronization scenario is very important yet skipped
in the paper and left for the future work. It is a challenging problem, whose
algebraic treatment needs a more elaborated framework than simple algebraic
models we used. An initial attempt and some results can be found in [42].

Lenses, view synchronization and categories. The Harmony group’s paper
[49] was seminal. It set up a basic algebraic framework in a very transparent way;
and coined several vigorous names: get and put for the two main operations,
GetPut, PutGet, PutPut for equational laws imposed on these operations, and
lens for the resulting “bi-directional” algebra.

The basic lens framework is enriched with update mappings in [11]. Alge-
bras introduced in [11] operate on both models and update mappings, and are
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called u-lenses with ’u’ standing for updates. Earlier, a similar framework was
developed by Johnson and Rosebrugh [26]. For them, updates are also arrows,
a model space is a category, and a view is a functor. However, they work in the
concrete MMt setting rather than abstractly, and focus on conditions ensuring
uniqueness of update policies. As discussed above in Sect. 4.2 (Remark 4), this
setting may be very restrictive in practice.

View synchronizers of the present paper can be seen as ut-lenses since they
operate on two types of mappings: updates and traceability. Moreover, given a
view definition language with well-behaved operations of update propagation de-
fined for any view mapping, both tile systems, of all get-tiles and of all put-tiles,
give rise to two-sorted categories, say, Get and Put (see Fig. 20 and Exercise 6
on p.36). In addition, the PutGet law entails inclusion Put ⊂ Get. Proving these
results is not difficult and will appear elsewhere.

Multi-dimensional synchronization. The ideas of constructing 3D-tiles (syn-
chronization cube on p. 42), and more generally of the multi-dimensional nature
of synchronization problems, seem to be new. The paper only presents a vision
(Sect. 6.2), and even the initial steps are still waiting for an accurate description.

With dynamic interpretation of horizontal arrows as transformations (rather
than structural mappings), 2D-projections of the synchronization cube can be
seen as coupled transformations considered in [47], and have probably been stud-
ied by different communities in different contexts, e.g., [50]. If vertical arrows
(updates) are interpreted dynamically, then the front and back faces become
close to triple graph transformations [51] (with the third graph hidden in the
match). Stating precise relationships is a future work.

7.2 Concrete model management.

Inside models: constraints as diagrams predicates. For a rich software
model, specifying its abstract syntax ”tree” as a mathematical object is not
as easy as it may seem. One of the challenges is how to specify and manage
constraints, which populate model graphs with non-instantiable elements. In
the paper we have only considered very simple constraints declared for a single
arrow (multiplicities). However, there are other practically important constraints
involving several arrows, e.g., invertibility of two mappings going in the opposite
directions, uniqueness of identification provided by a family of mappings with
a common source (a key), and many other conditions that constraint languages
(like OCL) allow us to specify.

A general approach to the problem is to specify such constraints as diagram
predicates [45] and treat models as graphs with diagram predicates, dp-graphs. A
principle distinction of this approach from the attributed typed graphs (ATGs)
[52] is that a constraint is an independent object referring to respective nodes and
edges rather than an attribute of a node or an edge. Theoretical advantages of the
approach are its universality and proximity to an established framework of the so
called sketches developed in categorical logic (see [16] for details). The approach
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was shown to be useful in schema integration [53], conceptual modeling [54], and
fixing known problems with UML associations [55]. An accurate algebraic model
of metamodeling with diagrammatic constraints is an important direction for
future work.

Homogeneous model mappings and deltas. Specifying (symmetric) deltas
is a known issue, e.g., [9, 10, 56, 57]. A major challenge is how to formally spec-
ify model changes: modifications, if we interpret deltas as updates, or conflicts,
if deltas are matches. A well-known idea is to treat a modification of an ele-
ment as its deletion followed by insertion; but it is a simplistic treatment. The
approach developed in the paper (for our OSV-models) is more adequate and
still simple but is not straightforward. First, value-preserving model mappings
are defined; then changes are specified by spans built from two value-preserving
mappings but having empty slots. This treatment of changes seems correlating
with ATG transformations but a precise comparison needs some technical work
to be done. Generalization of the idea for more practically interesting (and hence
more complex) models than simple OSV-models is important future work.

Heterogeneous model mappings and deltas. Precise specification of oper-
ations on heterogeneous models and model mappings is a rarity in the literature
because of semantic and technical difficulties. It is managed in the paper by
specifying heterogeneous models as chains of graphs and graph mappings; model
mappings then appear as multi-layer commutative diagrams. The idea seems to
be more or less evident but I am not aware of its realization in the literature.

Despite their frightening appearance, universes of multi-layer complex objects
and mappings are well-known in CT under the name of arrow categories. They
are well-studied and behave very well. Unfortunately, constraints may be an
obstacle: while any model is a chain of graph mappings, not any such chain is
a model because it may violate the constraints. It implies that the universe of
models may be not closed wrt. some operations, e.g., merging (colimit) [34]. We
again come to the issue of managing constraints declared in metamodels in a
mathematically sound way.

Model translation (MT) and fibrations. The algebraic model of MT pro-
posed in the paper is generic and formulated for any metamodel language, in-
cluding an associated query language. In this model, MT is treated as a view
computation, and is entirely determined by the corresponding metamodel map-
ping considered as a view definition. The idea was first described in [58]; the
description in the present paper is more accurate and detailed. It culminates
in the statement that the view mechanism (for monotonic queries) makes the
functor projecting heterogeneous models and mappings to their metamodel
components a split fibration — a construct well known and studied in CT.

Fibrational formulation can be seen as dual to the familiar functorial seman-
tics: a model is a functor from the metamodel (theory) to some semantic cate-
gory, e.g., of sets and functions or relations. Functorial semantics is quite popular
in the Algebraic Specification community [59], and is basic for the categorical
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framework of Johnson and Rosebrugh mentioned above, but it may seem foreign
for a model transformation engineer accustomed to work with metamodeling
patterns. The latter assumes that semantics of a model is given by a mappings
(from its instances) to the model rather than from it. Fibrations fit perfectly in
this framework, but offer much more. Practical modeling situations often com-
prise instances at several levels, say, objects, classes, and the metamodel for the
latter (e.g., a simple sequence diagram is a three-level structure of this kind
[60]). Specification of multilevel modeling is quite manageable with fibrations:
composition of fibrations is again a fibration (this is a well-known result). In
contrast, functorial semantics becomes hard to manage when we consider more
than one pair (theory, model).

8 Conclusion

Building theoretical foundations for model synchronization is a challenging prob-
lem. Among the factors contributing to its complexity are heterogeneity of mod-
els to be synchronized, the multitude and heterogeneity of their relationships,
and interactions between different dimensions of synchronization. The paper
aims to show that algebraic models based on diagram operations can be an
effective means to manage the complexity of the problem.

Two lines of approaches and results are presented. The first one is abstract :
models and model mappings are treated as indivisible (black-box) nodes and
arrows, on which synchronization procedures operate. The machinery used is
algebra of tile operations and tiling as term substitution. The abstract line cul-
minates in Sect. 6, which shows how complex synchronizers can be assembled by
tiling together simple components. The second line is concrete: it provides alge-
braic models for (white-box) complex structures underlying models and model
mappings. The machinery is essentially categorical: arrow categories (for hetero-
geneous models and their mappings) and fibrations (for the view mechanism).
Tile algebra is applicable here as well.

The tile framework offers a handy notation with formal semantics, and a
toolbox of constructs amenable to algebraic manipulations and hence to auto-
mated computer processing. This benefit package may be very appealing for a
software engineer.

Synchronization scenarios considered in the paper are deployed on 2D-planes
of a 3D-space populated by models and model mappings (and a 3D-scenario with
evolving metamodels is sketched in Sect. 6.2). The three dimensions correspond
to the three kinds of intermodel relationships (and mappings) that were consid-
ered: replication (matches), versioning (updates), metamodeling (typing). Other
kinds of relationships can give rise to new dimensions of the space and synchro-
nization procedures spanning it. Handy yet precise tile notation and the corre-
sponding algebraic framework can be an invaluable tool for multi-dimensional
synchronization.
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Answers to *-Exercises

Exercise 2 (p. 28) Diagram Fig. 14(c1) says that from a match between replicas
a new match can be computed without changing the replicas. This situation
is typical and is a built-in procedure in many differencing tools. However, it
cannot be modeled by an algebraic operation of the arity shown in the figure:
to recompute a match a new information is required. That is, we may have
a reasonable “binary” operation (m,X) • - m′ with the second argument
standing for contextual information about replicas, but the “unary” operation
m • - m′ is not too sensible. In contrast, the operation specified by diagram
(c2) is quite reasonable and may be called rematching : having one of the replicas
updated, we recompute the match based on data in the original match and the
update.

Exercise 4(p. 32)

•
m:K- •

:Res

◦

1
? m- ◦

1
?

(a1) KRes

• - •
:Res

:fPpg&:bPpg

◦
?

- ◦
?

(a3) ResPpgf

• - •

:Res↓↓

◦
?

m′
- ◦
?

:Res↓↓

◦

1
?

m′
- ◦

1
?

(a2) ResRes

Fig. 26: Laws of conflict resolution

Three reasonable laws the operation
should satisfy are specified in Fig. 26. Di-
agram (a1) states that nothing is done
with consistent replicas. Diagram (a2)
says that conflict resolution is an idem-
potent operation. Match m′ produced by
the operation is not supposed to be neces-
sarily consistent: some of the conflicts em-
bodied in match m may need additional
information and user’s input, and hence
cannot be resolved automatically. Yet ev-
erything that could be done automatically
is done with the first run of the opera-
tion. Diagram (a3) says that resolution is
complete in the sense that nothing can be
propagated in the tile produced by Res.

Exercise 9 (p. 40) Synchronization of materialized views can be considered
as a particular cases of triple synchronization, in which one view (say, the right
one) is identity. Formal definitions are as follows.

A semi-triple lane is a pair st = (v, r) with v a view and r a replica lane

coordinated as follows: A
v- B

r
•→ B. A semi-triple synchronizer σ over a

semi-triple lane st is a pair σ = (λ, δ) of a view synchronizer λ over the view
lane and a diagonal replica synchronizer δ over the replica lane. A semi-triple
synchronizer is called (very) well-behaved if its two components are such.

The following result is analogous to Theorem 2.

Theorem 3. Any semi-triple synchronizer σ = (λ, δ) gives rise to a diagonal
replica synchronizer ∆σ. Moreover, the latter is (very) well-behaved as soon as
its two components are such.
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Appendices. Concrete model management and category the-
ory

Several words about category theory (CT) are in order. CT provides a number
of patterns for structure specification and operation. Since models and model
mappings are rich structures, and MMt needs to operate them, CT should be
of direct relevance for MMt. Of course, this theoretical prerequisite requires
practical justification and examples.

Two fundamental categorical ideas are employed in the paper.
Encapsulation 1: “To objectify means to mappify”. The internal structure of

models and model mappings is encapsulated. Models are considered as indivis-
ible objects (points), and mappings as indivisible morphisms (arrows) between
them. Mappings of the same type can be sequentially composed and form a
category (a graph with associatively composable arrows). Although objects are
encapsulated, the categorical language provides sufficient means to recover the
internal structure of objects via mappings adjoint to them. For example, a spe-
cial family of mappings with a common source object makes this object similar
to a relation (and its “elements” can be thought of as tuples). Dually, a special
family of mappings with a common target object makes it similar to a disjoint
union (and its “elements” can be thought of as “either..or” variants). The next
section shows how it works.

Encapsulation 2: Arrow categories. Repeatable constructions consisting of
several models and mappings are considered as new complex objects or arrows,
which can again be encapsulated and so on. In this way we come to categories
whose objects (nodes) themselves consist of arrows, while morphisms (arrows)
are complex diagrams. For example, a model is, in fact, a typing mapping, and a
traceability mapping is a commutative square diagram like the top face of cube
Fig. 3(b). Deltas-as-spans denoted by arrows, and correspondingly composable,
is another simple example. We will build progressively more complex arrow cate-
gories in the subsequent sections C and D. Formalization of the sketch presented
in Sect. 6.2 requires even more complex arrow encapsulating constructions.

A Match and merge as diagram operations: Warming up
for category theory

This section aims to give a notion of how basic categorical patterns can work in
MMt. We will begin with a very simple model of models by considering them as
sets of unstructured elements (points), and discuss matching and merging sets.
Then we will reformulate the example in abstract terms and come to categories.

A.1 Matching and merging via elements

Suppose that our models are sets of strings denoting names, and we have two
sets, F of First and L of Last names, of some group of people as shown in
Fig. 27. We also assume that for each of the sets, different elements refer to
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Fig. 27: Matching and merging sets via elements

different persons. It does not exclude the situation when an F -name and an
L-name refer to the same person, but without additional information, sets F
and L are entirely unrelated and disjoint. To match the sets, we map them into
some common universe U , say, by assigning to each string the social security
number (SSN) of the corresponding person as shown in the left part of the figure.
Following UML, we call such assignments (directed) links and denote them by
arrows (Ann→11, Bob→13 and so on); speaking formally, links are just ordered
pairs. Similar (i.e., having the same source and target) links are collected into
mappings, u : F ⇒ U and v : L⇒ U , which are denoted by double-body arrows
to distinguish them from link-arrows. We call triple (U, u, v) a matching cospan
between sets F and L, set U is its head and mappings u, v are the legs.

Now we may form set R = {(x, y) : u(x) = v(y)} consisting of those pairs
of names, which are mapped to the same SSN. This set is equipped with two
projection mappings p : R⇒ F , q : R⇒ L giving the components of the pairs.
The way we built R implies that sequential compositions of mappings p;u and
q; v are equal: (x, y).p.u = (x, y).q.v for any element (x, y) ∈ R. The triple
(R, p, q) is called a correspondence span or matching span between sets F and L;
set R is its head and mappings p, q are the legs. To show that the components of
the span are derived from mappings u, v, they are denoted by dashed lines (blue
with a color display).

Each pair (x, y) in the head R of the span says that actually elements x.p ∈ F
and y.q ∈ L refer to the same object of the real world (at least, to the same
SSN). Hence, we may be interested in merging sets F and L without duplication
of information, that is, by gluing together the first and last names of the same
person. Set N of names in the middle of Fig. 27 presents the result. It is formed
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by first taking disjoint union of sets F and L, and then gluing together those
elements, which are declared to be the same by the span. For example, we join
Ann and Smith since there is a pair (Ann, Smith) in set R. Since there are two
elements in R, set N has four (rather than six) elements. Note also mappings
m : F ⇒ N and n : L⇒ N embedding the original sets into the merge.

How joined names are formed is a matter of taste: Ann Smith, or Ann*Smith
or AnnSmith will all work to show that Ann and Smith are two different rep-
resentations of the same object. In fact, all work is done by inclusion mappings
m and n that map Ann and Smith to the same element in N . Similarly, the
concrete nature of elements in set R does not matter: it is mappings p, q that
do the job and specify that elements of R are pairs. Hence, strictly speaking,
sets R and N may be defined up to isomorphism: the internal structure of their
elements is not important.

Since the internal structure of elements in sets R and N is not important,
it is tempting to try to rewrite the entire construction in terms of sets and
mappings only, without elements at all. Such a pointfree rewriting, apart of
satisfying purely intellectual curiosity, would be practically useful too. If we were
able to specify object matching and merging only based on mappings between
objects without use of their internal structure, we would have generic patterns
of match and merge working similarly for such diverse objects as sets, graphs,
typed attributed graphs and so on. The benefits are essential and justify some
technical work to be done.

A.2 Matching and merging via arrows

Matching. Figure 28(a) presents a more abstract view of our matching con-
struction. Nodes denote sets, and arrows are mappings (functions) between them.
Double-frames of nodes and double-bodies of arrows remind us that they have
extension, i.e., consist of elements (points and links respectively).

Labels in square brackets denote diagram predicates, that is, properties of
arrow diagrams on which these labels are “hung”. Label [=] is assigned to the
entire square diagram and declares its commutativity, that is, the property p;u =
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q; v (i.e., in terms of elements, r.p.u = r.q.v for any r ∈ R). Label [key] is assigned
to the arrow span (p, q) and declares the following property: for any r1, r2 ∈ R,
r1 = r2 iff r1.p = r2.p and r1.q = r2.q. That is, the pair of mappings (p, q) can
identify the elements in set R, hence the name for the predicate. (In category
theory, such families of mappings are called jointly monic). Note that any subset
of set R defined in Fig. 27 will satisfy predicates [=] and [key]. Hence, to ensure
that set R in Fig. 28 is indeed R defined in Fig. 27, we add one more predicate
[max] stating R’s maximality. Formally, it may be formulated as follows: for any
other key span (p′, q′) as shown in Fig. 28(b), which makes the entire square
commutative, there is a mapping ! : R′ → R such that !; p = p′ and !; q = q′.

Thus, we have reformulated the task of matching sets in terms of mappings,
their composition and predicate [ke v y]. However, the latter also can be expressed
via mappings and composition!

Suppose that span (p, q) is not required to be a key, but has the following
property: for any other span (p′, q′) (also not assumed to be a key), which makes
the entire square commutative, there is a unique mapping ! : R′ → R such that
!; p = p′ and !; q = q′. This maximality property is distinct from that previously
formulated by the uniqueness requirement, and this is what does the job. That
is, we can prove that uniqueness of ! implies the [key] property of span (p, q).
Given an element r′ ∈ R′, let f ′ = r′.p′ and l′ = r′.q′ be its “names”. To ensure
commutativity conditions: !; p = p′ and !; q = q′, function ! must map r′ into
any element r of R with the same names: r.p = f ′ and r.q = l′. If span (p, q)
is not a key, there may be several such elements r and hence several functions !
providing commutativity. Hence, ! is unique iff span (p, q) is a key.

Thus, we may replace predicates [key] and [max] of span (p, q) in Fig. 28(a) by
the uniqueness property: for any other span (p′, q′) that makes the entire square
commutative (Fig. 28b), there is a unique mapping ! : R′ → R such that !; p = p′

and !; q = q′. In category theory such properties are called universal. The entire
matching construction can now be formulated in abstract terms as follows. Given
a cospan (u, v), a span with the same feet is derived and together with the orig-
inal cospan makes a commutative square with the universal property described
above. An operation producing a universal span from a matching cospan is called
pullback (because it pulls two arrows back). The result is shown in Fig. 28(c)
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which depicts abstract nodes and arrows (single lines) whose internal structure
is invisible.

Is pullback indeed an operation, i.e., does it indeed result in a uniquely deter-
mined span? The answer is almost positive: the result of a pullback is defined up
to isomorphism. The proof can be found in any CT-textbook, e.g., [64][Theorem
5.2.2], and essentially uses associativity of arrow composition. Other construc-
tions based on universal properties are also defined up to isomorphism.

Merging. Our construction of merging sets can be processed in a similar way.
Figure 29 presents the ideas in parallel to Fig. 28. Diagram predicate [cov] de-
clared for cospan (m,n) says that the two mappings jointly cover the target,
that is, any element e ∈ N is either in the image of mapping m or n or both. We
replace this predicate by the following universal property: for any other cospan
(m′, n′) making the entire square commutative, there exists a unique mapping
! : N → N ′ such that m; ! = m′ and n; ! = n′. Indeed, if set N would contain an
element e beyond the union of images of m,n, mapping ! could map this e to
any element of N ′ without destroying the commutativity conditions.

Thus, we can define set merge in terms of mappings, their composition and
the universal property of minimality. The operation that takes a span and pro-
duces a cospan making a commutative square with the minimal universal prop-
erty is called pushout (as it pushes arrows out). The construction is dual to the
construction of pullback in the sense that all arrows in the diagrams are reversed,
and universal maximality is replaced by universal minimality.8 Particularly, the
result of pushout is also defined up to isomorphism.

Summary. We have defined matching and merging sets via mappings (func-
tions) between sets and their sequential composition. Of course, to define the
latter, we still need the notion of element: composition of mappings f : A→ B

and g : B → C is defined by setting x.(f ; g)
def
= (x.f).g for all elements x ∈ A.

However, if we consider some universe of abstract objects (nodes) and abstract
associatively composable mappings (arrows) between them, then we can define
pullback and pushout operation as described above. Such graphs are called cate-
gories and, thus, the notions of match and merge can be defined for any category
irrespective of the internal structure of its objects. The next sections provides
precise definitions.

B Graphs, categories and diagrams: A primer

In this section we fix notation and terminology about graphs and categories. We
also accurately define diagrams and diagram operations.

Graphs and graph mappings. A (directed multi-)graph G consists of a set
of nodes G0 and a set of arrows G1 together with two functions ∂x : G1 → G0,

8 It can be made perfectly dual if we formulate the predicate [cov] in a different way
exactly dual to predicate [key].

58



x = s, t. For an arrow a we write a : N → N ′ if ∂sa = N and ∂ta = N ′. The set
of all arrows a : N → N ′ is denoted by G(N,N ′) or, sometimes, by (N → N ′) if
graph G is given by the context.

A graph mapping (morphism) f : G→ G′ is a pair of functions fi : Gi → G′i,
i = 0, 1, compatible with incidence of nodes and arrows: ∂sf1(a)=f0(∂sa) and
∂tf1(a)=f0(∂ta) for any arrow a ∈ G1.

A graph is reflexive if every node N has a special identity loop 1N : N → N .
In other words, there is an operation 1 : G0 → G1 (with argument placed at
the under-bar subscript) s.t. ∂s1N = N = ∂t1N for any node N . If arrows
are understood behaviorally (rather than structurally) as actions or transitions,
identity loops may be also called idle (actions that do nothing and do not change
the state). A reflexive graph mapping (morphism) is a graph mapping f : G→ G′

respecting identities: f1(1N ) = 1f0(N) for any node N ∈ G0.

Categories and functors. A category C is a reflexive graph |C| with an opera-
tion of arrow composition denoted by ; (semi-colon): for any pair of sequentially
composable arrows a : M → N and b : N → O, a unique arrow a; b : M → O is
defined. Composition is required to be associative: (a; b); c = a; (b; c) for any
triple a, b, c of composable arrows; and unital : 1∂0(a); a = a = a; 1∂1(a) for any
arrow a.

Nodes in a category are usually called objects, and arrows are often called
morphisms. Both a category C and its underlying graph |C| are normally denoted
by the same letter C. Thus, C0 and C1 denote the classes of all objects and all
morphisms resp. The class of objects C0 can also be considered as a discrete
category, whose only arrows are identities.

A category is called thin if for any pair of nodes (N,N ′) there is at most
one arrow a : N → N ′. It is easy to see that a thin category is nothing but a
preordered set with N ≤ N ′ iff there is an arrow A : N → N ′. Transitivity and
reflexivity are provided by arrow composition and idle loops resp.

A functor f : C→ C′ between categories is a morphism of the underlying
reflexive graphs that preserves arrow composition f1(a; b) = (f1a); (f1b).

Two-sorted graphs and 1.5-sorted categories. A two-sorted graph is a
graph G whose arrows are classified into horizontal and vertical. That is, we
have two disjoint graphs Gh

1 and Gv
1 sharing the same class of nodes G0. A two-

sorted graph is reflexive if each node has both the vertical and the horizontal
identity. A two-sorted graph morphism (mapping) is a graph mapping respecting
arrow sorts.

A two-sorted category is a two-sorted reflexive graph G whose horizontal and
vertical graphs are categories. Since horizontal composition (of matches) may be
problematic, in the paper we deal with 1.5-sorted categories: two-sorted reflexive
graphs in which only vertical arrows are composable and form a category.

Flat vs. deep graphs and categories. There are two ways of interpreting
elements of graphs and categories that we will call flat and deep. According to a
flat interpretation, elements of a graph do not have an internal structure, they
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are symbols/tokens that can be drawn on paper. A visual representation/picture
of such a graph drawn on paper is practically equivalent to the graph itself (up
to inessential visual nuances like sizes of nodes and thickness of arrows).

According to a deep interpretation, nodes of a graph are thought of as sets
endowed with some structure, for example, plain sets with empty structure, or
sets with a partial order (posets), or vector spaces, or flat graphs, or models over
a given metamodel M . Correspondingly, arrows are thought of as structure-
preserving mappings, e.g., functions between sets, monotone functions between
posets, linear mappings between vector spaces, graph morphisms, symmetric
deltas. As a rule, deep arrows are associatively composable and deep graphs
are indeed categories, e.g., Sets (of sets and functions), Rels (of sets and re-
lations), Posets (of posets and monotone functions), Graphs (of graphs and
graph mappings), Moddelsym(M) (of M -models and symmetric deltas between
them).

The description above is rough and overly simplistic. Making it more precise
and intelligent needs a careful setting for logical and set-theoretical foundations,
and goes far beyond our goals in the paper. Note, however, that we were talking
about possible interpretations of elements constituting a category but the very
definition of a category says nothing about “depth” of its objects and arrows.9

Hence, any result proven for a general category (possessing some property P )
is applicable to any flat or deep category (possessing P ). For example, when we
deal with category Modupd of models and updates, our results are applicable
to any formalization of model and update as soon as we have a category.

As a rule, deep categories are infinite and cannot be drawn on paper (think
of all sets or all M -models). However, we can draw a graph representing a small
fragment of an infinite category, and further use and manipulate this represen-
tation in our reasoning about its deep referent. For example, nodes and arrows
of a graph drawn on paper could refer to models and deltas, and operations over
them correspond to synchronization procedures. Precise specification of these
syntax-semantics relationships may be non-trivial. In the paper we deal with
the following particular case of the issue: arity shapes of diagram operations are
flat graphs whereas their carriers are deep. The next section provides an accurate
formalization of this situation.

Diagrams. When different nodes or different arrows of a graph drawn on pa-
per bear the same name, e.g., in Fig. 30(a1,a2), these names are labels “hung”
on elements of the underlying graph rather than their unique names (the latter
are unique identifiers of graph elements and cannot be repeated). Hence, in the
graphical image Fig. 30(a1), we have two unnamed different nodes (understood
“flatly” as tokens) with the same label N . This label may be just another “flat”
token, or the name (identifier) of a semantic object, e.g., a model; the formal-
ization below does not take this into account (but in situations we deal with in
the paper, labels are interpreted “deeply” as semantic objects).

9 It can be formalized in terms of so called constructs and concrete categories explained
in book [65] (with care and elegance).
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Fig. 30: Diagrams visually (a) and formally (b,d,c)

It is convenient to collect all labels into a graph, and treat labeling as a
graph mapping D1 : (b1)→ (c1) with (b1) and (c1) being graphs specified in
Fig. 30(b1,c1) and mapping D1 defined by table (d1), i.e., D1(1) = D1(2) = N ,
D1(12) = a. Thus, image (a1) that we call a diagram consists of three compo-
nents: graph (b1) called the shape of the diagram, graph (c1) called the carrier,
and a graph mapping (d1) — the labeling. Since the shape and the carrier are
actually referred to by the mapping, the latter alone can be called a diagram
(it is a standard categorical terminology). Indeed, the graphical image — visual
diagram shown in (a1) — is nothing but a compact presentation of mapping D1

defined up to isomorphism of the shape.

For another example, visual diagram in Fig. 30(a2) encodes the formal dia-
gram of shape (b2) in the carrier graph (c2) with labeling D2 : (b2)→ (c2) given
by table (d2) (it is a graph morphism indeed).

What was earlier called a span in graph G, is actually a diagram D : (b3)→ G
with graph (b3) in Fig. 30 being the arity shape (the head of span D is node
D(Head)∈ G etc.) Any span can be inverted: the inverse of D is another span
D† : (b3)→ G defined as follows: D†(leg1) = D(leg2) and D†(leg2) = D(leg1).
Below we will call spans arity shapes (i.e. graphs isomorphic to (b3)) also spans.

Diagram operation over sorted graphs. Syntactically, a diagram opera-
tion is defined by its symbol (name), say, op, and a span of two-sorted graphs:

Aop = (Inop
p← IOop

q→ Outop) whose legs are injections. The left foot specifies
the input arity of the operation, the right one is the output, and the head is
their intersection. For example, the operation of forward propagation considered
above is specified by Fig. 31(a). The input arity is a span, the output arity is a
cospan, and the head consists of two nodes.

We may merge both arities together (via pushout) and represent the arity
span as a two-sorted graph InOut with a designated subgraph In of basic el-
ements. For the forward propagation example, this construction is specified in
Fig. 31(b): the basic subgraph is shown with black nodes and solid arrows, ele-
ments beyond the basic subgraph are white and dashed. We can restore graph
Out and the original arity span by subtracting graph In from InOut so that both
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Fig. 31: Mechanism of diagram operations

formulations are equivalent. Previously we used the latter formulation because
it is intuitive and compact.

Semantic interpretation of an operation is given by a pair σ = (Gσ, opσ) with
Gσ a two-sorted graph being the carrier of the operation, and

opσ : (Inop → Gσ)→ (Outop → Gσ),

the operation as such, being a total function between the functional spaces in
round brackets. That is, any instantiation i : Inop → Gδ of op’s input in the car-

rier generates a unique instantiation o : Outop → Gδ of op’s output, and we set
opσ(i) = o. Moreover, both instantiations are required to be equal on their com-
mon part IOop, that is, p; i = q; o. In this way, the notion of diagram operation
(its syntax and semantics) can be defined for any category (of “graphs”).

The same idea is applicable to two-sorted graphs: both the shape and the car-
rier are two-sorted graphs and labeling must respect sorting. If we treat diagram
Fig. 31(a2) as a two-sorted diagram, it would be incorrect because horizontal
arrow 12 from the shape is mapped to vertical arrow a in the carrier.
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Fig. 32: Span composition

Span composition. Cate-
gories are graphs, and hence
the notion of a diagram, par-
ticularly, a span, applies to
them as well. However, spans
in categories are much more
interesting than in graphs
because we can sequentially
compose them. Fig. 32 presents
two consecutive spans be-

tween sets A,B,C. We may think of elements in the heads as bidirectional links
and write a← r → b for r ∈ R1 if p1(r) = a and q1(r) = b; and similarly for
elements in R2. If two such links a← r1 → b ∈ R1 and (b← r2 → c) ∈ R2 have
a common end b ∈ B, we may compose them and form a new link a← r → c
denoted by r1; r2. By collecting together all such composed links, we form a

new set R, which is equipped with two projections (A
p← R

q→ C). In addition,
by the condition of compositionality, set R is equipped with another pair of

projections (R1
p′2← R

q′1→ R2) as shown in the figure, and it is easy to see that
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the upper square diagram is a pullback. Note also that projections p and q are
compositions p = p′2; p1 and q = q′1; q2. Now we may define the notion of span
composition for any category having PBs, and achieve a remarkable generality.

There are however some hidden obstacles in this seemingly simple definition.
Since pullbacks are defined up to iso(morphism), composition of spans is also
defined up to iso. We may choose some canonical representatives in each of the
iso classes, but then associativity of composition cannot be guaranteed. In fact,
associativity would hold up to a canonic isomorphism too. It makes the universe
of objects with arrows being spans a so called bicategory rather than a category,
and essentially complicates the technical side.

To avoid this, it is reasonable to consider spans up to isomorphism of their
heads: it does not matter what are the OIDs of the head’s elements. It is straight-
forward to check that composition of spans defined up to isomorphism of their
heads is associative (details can be found in [66]).

Spans we deal with in the paper are special: their legs are injective mappings.
It is known that if an input arrow in a PB-square is injective, the parallel out-
put arrow is injective too (“monics are stable under PBs”). Hence, legs p′2, q′1
are injections, which implies that legs p, q are also injective as compositions of
injections.

C Model translation via tiles

This section shows that model translation (MT) can be treated as a view compu-
tation, whose view definition is given by a corresponding metamodel mapping.
Moreover, this construction can be modeled by tile operations, and gives rise to
a well-known categorical construct called a fibration.

C.1 MT-semantics and metamodel mappings

The MT-task is formulated as follows. Given two metamodels, SSS (the source)
and TTT (the target), we need to design a procedure translating SSS-models into TTT -
models. It can be formally specified as a function f : S→ T between the spaces
of models (instances of the corresponding metamodels). The only role of meta-
models in this specification is to define the source and the target spaces, and
metamodels are indeed often identified with their model spaces [67, 3, 32]. How-
ever, a reasonable model translation f : S→ T should be compatible with model
semantics. The latter is encoded in metamodels, and hence a meaningful trans-
lation should be somehow related to a corresponding relationship between the
metamodels. A simple case of such a relationship is when we have a mapping
f : TTT → SSS between the metamodels. Indeed, if we want to translate SSS-model into
TTT -models, the concepts specified in TTT should be somewhere in SSS. The following
example explains how it works.

Suppose that our source models consist of Person objects with attributes
qName and phone: the former is complex and composed of a qualifier (Mr or
Ms) and a string. The metamodel, SSS, is specified in the lower left quadrant of
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Fig. 33. Oval nodes refer to value types. The domain of the attribute ’qName’ is
a Cartesian product (note the label ⊗) with two projections ’name’ and ’qual’.
The target of the latter is a two-element enumeration modeled as the disjoint
union of two singletons. Ignore dashed (blue with a color display) arrow and
nodes for a while.

A simple instance of metamodel SSS is specified in the upper left quadrant. It
shows two Person-objects with names Mr.Lee and Ms.Lee (ignore blue elements
again). Types (taken from the metamodel) are specified after colons and give
rise to a mapping tA : A→SSS.

Another metamodel is specified in the lower right quadrant. Note labels [disj]
and [cov] “hung” on the inheritance tree: they are diagram predicates (con-
straints) that require any semantic interpretation of node Actor (i.e., a set
[[ Actor ]] of Actor-objects) to be exactly the disjoint union of sets [[ Male ]] and
[[ Female ]].

We want to translate Person-models (SSS-instances) into Actor-models (TTT -
instances). This intention makes sense if TTT -concepts are somehow “hidden”
amongst SSS-concepts. For example, we may assume that Actor and Person refer
to the same class in the real world.

The situation with Actor-concepts Male and Female is not so simple: they
are not present in the Person-metamodel. However, although these concepts are
not immediately specified in SSS, they can be derived from other SSS-concepts. We
first derive new attributes /name and /qual by sequential arrow composition
(see Fig. 33 with derived elements shown with dashed thin lines and with names
prefixed by slash — a UML notation). Then, by the evident select-queries, we
form two derived subclasses of class Person: mrPerson and msPerson.

Note that these two subclasses together with class Person satisfy the con-
straints [disj, cov] discussed above for metamodel TTT . It can be formally proved
by first noting that enumeration {Mr,Mrs} is disjointly composed of singletons
{Mr}, {Mrs}, and then using the property of Select queries (in fact, pullbacks) to
preserve disjoint covering. That is, given (i) query specifications defining classes
mrPesron, mrsPerson, and (ii) predicate declarations [disj, cov] for the triple
({Mr,Mrs},{Mr},{Mrs}), the same declarations for the triple (Person, mrPer-
son, mrsPerson) can be logically derived.

The process described above gives us an augmentation Q[SSS] ⊃ SSS of the
Person-metamodel SSS with derived elements, where Q refers to the set of queries
involved. Now we can relate Actor concepts Male and Female to derived Person-
concepts mrPerson and mrsPerson. Formally, we set a total mapping vvv : TTT → Q[SSS]
that maps every TTT -element to a corresponding Q[SSS]-element. In Fig. 33, links
constituting the mapping are shown by thin curly arrows. The mapping satisfies
two important requirements: (a) the structure of the metamodels (incidence of
nodes and arrows, and the isA-hierarchy) is preserved; and (b) the constraints in
metamodel TTT are respected ([disj, cov]-configuration in TTT is mapped to [disj,cov]-
configuration in SSS).

Now we will show that data specified above are sufficient to automatically
translate any SSS-model into a TTT -model via two tile operations.
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A ⊂
iQA - Q[A] �

vvvQ[A]
B

:qEx↗↗e :p↗↗b

SSS

tA
?
⊂

iQ- Q[SSS]

tQ[A]?
� vvv

TTT

tB
?

⇒

A ⇐
vvvA
= = A�vvv

:vEx↗↗e

SSS

tA
?

⇐====
vvv

TTT

tA
?

⇒ A:SSS 〈≡≡≡≡
vvvA:vvv

A�vvv :TTT

:vEx↗↗e

SSS

:µ
?

•

⇐=====
vvv

TTT

:µ
?

•

(a) (b) (c)

Fig. 34: Model translation via tile operations (the upper arrow in diagram (c) is
derived and must be dashed but the Diagram software does not draw triple arrows).

C.2 MT via tile algebra

1) Query execution. Query specifications used in augmenting SSS with derived
elements can be executed for SSS-models. For example, each pair of some model’s
arrows typed with :qName and :name produces a composed arrow typed with
:/name, and similarly any pair of some model’s arrows :qName and :qual pro-
duces an arrow :/qual (these are not shown in the figure to avoid clutter). Then
each object typed by :Person and having the value Mr along the arrow :/qual,
is cloned and typed :/mrPerson.10 The result is that the initial typing mapping
tA : A→SSS is extended to typing mapping tQ[A] : Q[A]→ Q[SSS], in which Q[A]
and Q[SSS] denote augmentations of the model and the metamodel with derived
elements.

This extended typing mapping is again structure preserving. Moreover, it is
a conservative extension of mapping tA in the sense that types of elements in
A are not changed by tQ[A]. Formally, the inverse image of submodel SSS ⊂ Q[SSS]
wrt. the mapping tQ[A] equals to A, and restriction of tQ[A] to A is again tA.

The configuration we obtained is specified by the left square diagram in
Fig. 34(a). Framed nodes and solid arrows denote the input for the operation of
query execution, dashed arrows and non-framed nodes denote the result. Label
[qExe] means that the entire square is produced by the operation; the names of
arrows and nodes explicitly refer to query Q (whereas q is part of the label, not
a separate name).

2) Retyping. The pair of mappings, typing tQ[A] : Q[A]→ Q[SSS], and view

Q[SSS]
vvv←− TTT , provide enough information for translating model Q[A] into TTT -

metamodel. All that we need to do is to assign to elements of Q[A] new types ac-
cording to the view mapping: if an element e ∈ Q[A] has typeX = tQ[A](e)inQ[SSS]
and X = vvv(Y ) for some type Y ∈ TTT , we set the new type of e to be Y . For ex-
ample, since Q[A]-element P11 in Fig. 33 has type mrPerson, which (according
to the view mapping vvv) corresponds to type Male in TTT , this elements must be
translated into an instance of type Male; we denote it by (P11 •Male). If no

10 With a common semantics for inheritance, we should assign the new type label /mr-
Person to the same object P1. To avoid multi-valued typing, inheritance is straight-
forwardly formalized by cloning the objects.
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such TTT -type Y exists, the element e is not translated and lost by the translation
procedure (e.g., phones of Person-objects). Indeed, non-existence of Y means
that the X-concept of metamodel SSS is beyond the view defined by mapping vvv
and hence all X-instances are to be excluded from vvv-views.

Thus, translation is just retyping of some of Q[A]-elements by TTT -types, and
hence elements of the translated model B are, in fact, pairs (e, Y ) ∈ Q[A]×TTT
such that tQ[A](e) = vvv(Y ). In Fig. 33, such pairs are denoted by a bullet between
the components, e.g., P1•Actor is a pair (P1,Actor) etc. If we now replace bullets
by colons, we come to the usual notation for typing mappings. The result is that
elements of the original model are retyped by the target metamodel according
to the view mapping, and if B denotes the result of translation, we may write

(1) B ∼=
{

(e, Y ) ∈ Q[A]×TTT : tQ[A](e) = vvv(Y )
}

We use isomorphism rather than equality because elements of B should be ob-
jects and links rather than pairs of elements. Indeed, the translator should create
a new OId for each pair appearing in the right part of (1).

First components of pairs specified in (1) give us a traceability mapping
vvvA : B → A as shown in Fig. 33. Second components provide typing mapping
tB : B → TTT . The entire retyping procedure thus appears as a diagram operation
specified by the right square in Fig. 34(a): the input of the operation is a pair
of mappings (tQ[A], vvv), and the output is another pair (vvvQ[A], tB). The square is
labeled [pb] because equation (1) specifies nothing but an instance of pullback
operation discussed in Sect. A.1.

Remark 7. If view vvv maps two different TTT -types Y1 6= Y2 to the same SSS-type X,
each element e ∈ Q[A] of type X will gives us two pairs (e, Y1) and (e, Y2) satisfy-
ing the condition above and hence translation to TTT would duplicate e. However,
this duplication is reasonable rather than pathological: equality vvv(Y1) = vvv(Y2) =
X means that in the language of TTT the type X simultaneously plays two roles
(those described by types Y1 and Y2) and hence each X-instance in Q[A] must be
duplicated in the translation. Further examples of how specification (1) works
can be found in [68]. They show that the pullback operation is surprisingly
“smart” and provides an adequate and predictive model of retyping.11

Constraints do matter. To ensure that view model B is a legal instance of the
target metamodel TTT , view definition mapping vvv must be compatible with con-
straints declared in the metamodels. In our example in Fig. 33, the inheritance
tree in the domain of vvv has two constraints [disj,cov] attached. Mapping vvv respects
these constraints because it maps this tree into a tree (in metamodel SSS) that has
the same constraints attached. Augmentation of model A with derived elements

11 Since the construct of inverse image is also nothing but a special case of pullback,
the postcondition for operation [qExe] stating that tQ[A] is a conservative extension
can be formulated by saying that the square [qExe] is a pullback too. To be precise,
if we apply pullback to the pair (iQA, tQ[A]), we get the initial mapping tA.
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A ⇐
1A
= = A

:vEx↗↗e

SSS
?
⇐=======

1SSS
SSS
?

A ⇐
vvv1A
= = B ⇐

vvv2B
= = C

:vEx↗↗e :vEx↗↗e

SSS
?
⇐=======

vvv1
TTT
?
⇐=======

vvv2
UUU
?

X

A ⇐
vvvA
= =⇐=========
f :vvv

B

[:uni]⇒ !:1TTT
?

:vEx↗↗e

SSS
?
⇐=======

vvv
TTT
?

(b1) IdlExe (b2) ExeExe (b3) ExeUni

Fig. 35: Laws of the view execution mechanism

satisfies the constraints, A |= [disj] ∧ [cov], because query execution (semantics)
and constraint derivation machinery (pure logic, syntax) work in concert (the
completeness theorem for the first order logic). Relabeling does nothing essential
and model B satisfies the original constraint in TTT as well (details can be found
in [16]).

Arrow encapsulation. Query execution followed by retyping gives us the op-
eration of view execution shown in Fig. 34(b). In the tile language, the outer tile
[vExe] is the horizontal composition of tiles [qExe] and [pb]. Note that queries are
“hidden” (encapsulated) within double arrows: their formal targets are ordinary
models but in the detailed elementwise view their targets are models augmented
with derived elements.

Diagram (c) present the operation in an even more encapsulated way. The
top triple arrow denotes the entire diagram (b): the source and target nodes are
models together with their typing mappings, and the arrow itself is the pair of
mappings (vvv,vvvA). Although the source and the target of the triple arrow are
typing mappings, we will follow a common practice and denote them by pairs
(model:metamodel), e.g., A:SSS, leaving typing mappings implicit. Two vertical
arrows are links, i.e., pairs (A,SSS), (B,TTT ); a similar link from the top arrow to
the bottom one is skipped. Diagram Fig. 34(c) actually presents a diagram oper-

ation: having a metamodel mapping SSS vvv⇐= TTT and a model A:SSS, view execution
produces a model A�vvv :TTT along with a traceability mapping (triple arrow) vvvA:vvv
encoding the entire diagram Fig. 34(b). We will return to this construction later
in Sect. D.3.

C.3 Properties of the view execution operation

The view execution operation has three remarkable properties.

1) Unitality. If a view definition is given by the identity mapping, view execu-
tion is identity as well, as shown by diagram Fig. 35(b1).

2) Compositionality. Suppose we have a pair of composable metamodel map-
pings vvv1: TTT ⇒ SSS and vvv2: UUU → TTT , which defines UUU as a view of a view of SSS.
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A A⎡v

S Tv

f
X

!
vAQ[A]

Q [S]
:qExe :pb

A A⎡v

S Tv

vAQ[A]

Q [S]
:qExe :pb

A1 A1⎡vQ[A1]

:qExe
p Q[p]

vA1

p ⎡v:uni :uni

(a) (b)

Fig. 36: Universal property of the view mechanism

Clearly, execution of a composed view is composed from the execution of com-
ponents so that for any SSS-model A we should have

vvv1;vvv2A = vvv2B ; vvv1A with B standing for A�vvv1

as shown in Fig. 35(b2). Formal proof of this fact needs an accurate definition of
query specifications (see [46] for details), and then it will be a standard exercise in
categorical algebra (with so called Kleisli triples). Details will appear elsewhere.

3) Universality. Suppose we have a model X and a mapping Q[A]
f←− X that

maps some ofX’s elements to derived rather than basic elements of A as shown in
Fig. 36(a). The mapping must be compatible with typing so that the outer right
square is required to be commutative. Then owing to the universal properties of

pullbacks, there is a uniquely defined mapping A�vvv
!←− X such that the triangles

commute (note that mapping ! is a homogeneous model mapping over identity
1TTT : TTT → TTT ).

By encapsulating queries, i.e., hiding them inside double-arrows (see transi-
tion from diagram (a) to (b) in Fig. 34), we can formulate the property as shown
in Fig. 35(b3), where arrows f :vvv and !:1TTT actually denote square diagrams whose
vertical arrows are typing mappings and bottom arrows are pointed after semi-
colon.

View mechanism and updates. Universality of view execution has a remark-
able consequence if queries are monotonic, i.e., preserve inclusion of datasets.
Such queries have been studied in the database literature (e.g., [29]), and it is
known that queries without negation are monotonic.

In our terms, a queryQ is monotonic if any injective model mappingA
p←− A1

between two SSS-models gives rise to an injective mapping Q[A]
Q[p]←− Q[A1] be-

tween models augmented with derived elements. This is illustrated by the left-
upper square in Fig. 36(b). Applying retyping to models A�vvv and A1�vvv provides
the rest of the diagram apart from arrow p�vvv . To obtain the latter, we apply the
universal property of A�vvv (specified in diagram (a)) to mapping vvvA1

;Q[p] (in the
role of mapping f in diagram (a)), and get mapping p�vvv . If the view definition
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mapping is injective, then view traceability mappings are injective as well (PBs
preserve monics), and hence p�vvv is also injective. Thus, execution of views based
on monotonic queries translates models together with their mappings. Moreover,
if model updates are treated as spans with injective legs, then execution of such
views translates updates as well: just add the other leg q : A1 → A′ and apply
the same construction.

D Heterogeneous model mapping and matching

Suppose that models A and B to be synchronized are instances of different
metamodels, AAA and BBB respectively; we write A:AAA and B:BBB. The metamodels
may be essentially different, e.g., a class diagram and an activity diagram, which
makes matching their instances structurally difficult. It even makes sense to
reformulate the question ontologically: what is a match of non-similar models?

In Sect. 3.3 we modeled homogeneous matches by spans of homogeneous
model mappings. We will apply the same idea to the heterogeneous case; hence,
we first need to define heterogeneous model mappings.

D.1 Simple heterogeneous mappings

Model mappings are sets of links between model elements, and by simple map-
pings we mean those not involving derived elements. The first requirement for
links to constitute a correct mapping is their compatibility with model structure:
a class may be linked to a class, an attribute to an attribute etc. However, not
all structurally correct mappings make sense.

Consider a mapping between two simple models in Fig. 37.

o:Object
(a:attr) Ford

u:Object
(x:attr) Ford

Model  A Model  Bf

Fig. 37: Sample model mapping

The mapping is structurally correct but it
is not enough in the world of modeling, in
which model elements have meaning encoded
in metamodels. For example, Fig. 38(a) intro-
duces possible metamodels for the models in
question, and we at once see that sending an
Employee to a Car is not meaningful. It could
make sense if the concepts (classes) Employee
and Car were “the same”, in which case it must be explicitly specified by a cor-
responding mapping between the metamodels. However, if the metamodels are
not related and the mapping is empty, it is incorrect to map an Employee to a
Car, hence, diagram Fig. 38(a) presents an incorrect model mapping.

An example of a correct model mapping is shown in diagram (b). We first
build a metamodel mapping and map concept Employee to Person. It makes
mapping instances of Employee to instances of Person legitimate. Thus, a correct
model mapping is a pair of mappings (f, f) commuting with typing mappings:
f ; tA = tB ; f (and the square diagram is commutative).

Arrow encapsulation. An abstract schema of the example is shown in Fig. 38(c).
We will consider it in the general terms of Sect. 3.1. Each of the models A,B
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(c)(a)

o:Car
(a:make)Ford

u:Employee
(x:name)Ford

Model  A Model  B

Employee
name: str

Car
make: str

Metamodel, A

type mappings

o:Person
(a:name)Ford

u:Employee
(x:name)Ford

Model  A Model  B

Employee
name: str

Person
name: str

Metamodel, B∅

f f

f

tA tB
tBtA [=]

(b)

Metamodel, BMetamodel, A

A B

GA GB
f1

f2

tA tB

f

GA GB

tA tB

GM

A B
f

GM  

1

Fig. 38: Model mappings: incorrect (a), correct (b) and abstractly (c)

consists of two consecutive graph mappings (typing). Mapping f between them
is a triple (f1, f2, 1GMMM) commuting with typing mappings. Thus, f can be con-
sidered as a two-layer commutative diagram (framed by the bigger oval in the
figure). The lower layer (framed by the smaller oval) is the metamodel mappings

BBB f←−AAA. If metamodels AAA and BBB were instances of different meta-metamodels,
MMM andNNN , we could still build a reasonable mapping f by making its third com-

ponent a mapping MMM f3←−NNN that commutes with typing mappings of MMM and
NNN to their common meta-metametamodel.

Irrespectively of the number of layers, a mapping between models A
f←− B

contains a corresponding mappingBBB f←−AAA between metamodels (which contains
a mapping between metametamodels). Hence, models and model mappings can
be projected to metamodels and their mappings by erasing the upper layer. This
projection is evidently a graph morphism µ : Modmap→MModmap from the
graph of models and their simple mappings to the graph of metamodels and
their simple mappings.

GA

GA

[=]

f1

tA tB

A Bf

f

[=]

g1

tC

Cg

g
A B C

GB GC

GB GC

f2 g2

Fig. 39: Model mapping
composition

Composition. Model mappings can be composed
componentwise as shown in Fig. 39. The outer rect-
angle diagram is commutative as soon as the two
inner squares are such. Hence, composition of two
legal model mappings is again a legal model map-
ping. Associativity is evident, and the identity map-
ping consists of two identities 1GA

: GA ⇒ GA and
1AAA : GAAA ⇒ GAAA . Hence, graphs of (meta)models and
their mappings introduced above are categories.
Moreover, projection µ : Modmap→MModmap
is evidently compatible with composition and iden-
tities and so is a functor.
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D.2 Matching heterogeneous models.

Consider a simple example shown in Fig. 40, where matching links between two
models are set in a naive way, and compare it with naive match in Fig. 9(a) on
p.20. The first peculiarity of match in Fig. 40 is that objects of different types
are matched (an Employee and a Personnel). Moreover, attributes are matched
approximately meaning that their values somehow correspond but cannot be
neither equal nor inequal because their relationship is more complex. Though
intuitive, such matches do not conform to a type discipline, and their formal
meaning is unclear.

:Employee
name=Jo Lee
age = 30
pho = 11

Ann’s model, A
:Personnel
name=Jo
bDate=01.01.75
hDate=01.01.05

Bob’s model, Bm0

m1

m2

 ≈

 ≈ /

Fig. 40: Heterogeneous matching

Heterogeneous model mapping were
defined above by including into them
metamodel mappings. We may try to
apply the same idea for heterogeneous
matching: first match the metamodels,
and then proceed with models. That is, we
begin with making metamodels explicit
and building a correspondence span be-

tween them as shown in Fig. 41(a).
The head of the span, metamodel OOO, specifies the concepts common for both

metamodels (we will say a metamodel overlap), and the legs are projection map-
pings. A basic concept in one metamodel, e.g., attribute ’age’ in metamodel AAA,
may be a derived concept in the other metamodel: there is no attribute ’age’ in
metamodel BBB but it can be derived from attribute ’bDate’ with a corresponding
query. Similarly, we may specify a query to the metamodel AAA, which defines a
new attribute ’fstNm’ (firstName). (Ellipsis in figurative brackets near derived
attributes in Fig. 41(a) refer to the corresponding query specifications.) Thus,
the legs of a correspondence span may map elements in the head to derived
elements in the feet.

Now we can reify the match in Fig. 40 by the span in Fig. 41(b). The feet
are models A,B augmented with derived elements; the latter are computed by
executing queries specified in the metamodels (recall that a derived element in a
metamodel is a query definition). The legs are heterogeneous model mappings
whose metamodel components are specified in diagram (a) (typing mappings
are not shown). These mappings are similar to simple heterogeneous mappings
considered in Sect. D.1 but may map to derived elements; we call them complex.

Metamodel mappings are view definitions that can be executed for models
(Sect. C). By executing view vvv for model A, and view www for model B, we project
the models to the space of OOO-instances as shown in Fig. 41(c): the view models

are denoted by AOOO
def
= A�vvv and BOOO

def
= B�www (and their frames are dashed to

remind us that these models are derived rather than set independently). We
also call the views projections to the overlap space. Note that along with view
models, view execution computes also traceability mappings vvvA and wwwB .

There are evident mappings from the head M to projections AOOO, BOOO (not
shown in the figure to avoid clutter). The existence of these mappings can be
formally proved by the universal property of pullbacks as described in Sect. C.3.
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Employee
name: Str2 [1]
/fstNm{…}: Str [1]
pho: Int [0..*]
age: Int [0..1]

Metamodel, A
Personnel
name: Str [1]
bDate: Date [1]
hDate: Date [1]
/age{…}: Int [1]

Metamodel, B
Person
fstName: Str
age: Int

Metamodel, Ov w

:Employee
name=JoLee
/fstNm=Jo
age = 30
pho = 11

Ann’s model, A
:Personnel
name=Jo
bDate=01.01.75
hDate=01.01.05
/age=35

Bob’s model, B

(a) Metamodel matching

:Person
fstName=Jo
age = /?

Mary’s model, M

projection
A  ⇐ M: f

f0

f1

projection
g: M ⇒ B

g0

g1

g2
f2

(b) Direct model matching

:Employee
name=JoLee
/fstNm=Jo
age = 30
pho = 11

Ann’s model, A
:Personnel
name=Jo
bDate=01.01.75
hDate=01.01.05
/age=35

Bob’s model, B
:Person
fstName=Jo
age = 30

Ann’s proj., AO
:Person
fstName=Jo
age = 35

Bob’s proj., BO
vA wB

(c) Model matching via projections

Fig. 41: Matching a heterogeneous pair of models

An abstract schema of the construction is shown in Fig. 42(a): the top row
shows the metamodel overlap, the bottom row is the result of its execution, and
the middle row is the correspondence span. Double-bodies of arrows remind us
that mappings are complex, i.e., may map to derived elements in their targets.

AAA ⇐==========
vvv
OOO ==========

www
⇒ BBB

A

tA
6

⇐=========
f

M

tB
6

==========
g

⇒ B

tM
6

A

‖
‖
⇐
vvvA
= = A�vvv

�
p:
1 OOO

B�www =
wwwB
=⇒

q:1
OOO-

B

‖
‖

(a) Extensional match

A ⇐
vvvA
== A�vvv

m- B�www =
wwwB
=⇒ B

(b) General match

Fig. 42: Reducing heterogeneous match
to homogeneous

Two slanted arrows are derived by
the universal property of view trace-
ability mappings (produced by pull-
backs). Note that triple (M,p, q) is
a homogeneous correspondence span
in the space of OOO-models. It gives us
an extensional match between models
A�vvv and B�www. We may add to this
span non-extensional information (as
discussed in Sect. 4.1) and come to
diagram Fig. 42(b), in which arrow
m denotes a general match between
homogeneous models. Note that map-
pings vvvA and wwwB are derived whereas
match m is an independent input da-
tum.
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D.3 Complex heterogeneous model mappings

Simple heterogeneous model mappings defined above give rise to a functor
µ : Modmap→MModmap. The goal of this section is to outline, semi-formally,
how this description can be extended for complex mappings involving derived
elements.

Let QL be a query language, that is, a signature of diagram operations over
graphs. It defines a graph MModmapQL of metamodels and their complex
mappings described in Sect. C. Similarly, we have graph ModmapQL of models
and their complex mappings like, e.g., pairs mappings (f,vvv) and (g,www) shown
in Fig. 41(b). (Recall that we actually deal with commutative square diagrams:
f ; tA = tm;vvv and g; tB = tM ;www.)

AAA ⇐======
vvv

OOO ======
www
⇒ BBB

A:AAA

:µQL

•
6

〈≡≡≡≡
f :vvv

M :OOO

:µQL

•
6

≡≡≡≡
g:www
〉 B:BBB

:µQL

•
6

Fig. 43: Encapsulation of complex
heterogeneous mappings

By encapsulating typing mappings in-
side nodes, and metamodel mappings inside
arrows, we may rewrite the upper half of
diagram Fig. 42(a) as shown in Fig. 43.

A warning about arrow notation is in
order. Graph mappings in Fig. 38(c) are
denoted by double arrows to distinguish
them from links (single-line arrows), and di-
agrams of graph mappings are triple arrows.
Complex mappings add one more dimension
of encapsulation — derived elements, and hence mappings vvv, www should be de-
noted by triple arrows while mappings-diagrams f :vvv, g:www by quadruple arrows.
To avoid this monstrous notation, we sacrifice consistency. It is partially restored
by using bullet-end arrows for links: the latter may be thought of as arrows with
“zero-line” bodies.

Thus, similarly to simple heterogeneous model mappings, complex ones con-
tain complex metamodel mappings and hence there is a graph morphism

µQL : ModmapQL →MModmapQL

(vertical links in Fig. 43 are its instances). We want to turn the two graphs above
into categories (and µQL into a functor), i.e., we need to define composition of
complex mappings.

Composition of complex metamodel mappings is easy and amounts to term
substitution. As mentioned above in Sect. C.2, with an accurate definition of a
query langauge’s syntax, compositionality of metamodel mappings is a routine
exercise in categorical algebra (with the so called Kleisli triples [69]). It turns
graph MModmapQL into a category (the Kleisli category of the monad defined
by the query language).

Defining composition of complex model mappings is much harder because
we need to compose query executions, i.e., application instances of operations
rather than terms (definitions of operations). It can be done relatively easily
for monotonic queries defined above on p.69 (details will appear elsewhere).
Thus, if all queries are monotonic, graph ModmapQL can also be turned into a
category, whose arrows are square diagrams similar to those shown in Fig. 39.
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We thus have a functor µQL : ModmapQL →MModmapQL that maps models
and model mappings to their embedded metamodel parts.

The view mechanism is a “play-back” operation specified in Fig. 34(c) such
that three laws in Fig. 35 are satisfied. Together these requirements mean that
functor µQL is a (split) fibration — a construct well-known in CT [70, Exer-
cise 1.1.6]. The fibrational formulation of metamodeling (including the the view
mechanism) allows us to use many results of the rich theory of fibrations [70].
In a sense, it is a culmination of the concrete MMt branch of the paper: a mul-
titude of complex data is encapsulated and cast in a very compact algebraic
formulation.

Note that we did not formally prove the fibrational statement above. It is an
observation suggested by our examples and semi-formal constructions in Sect. C
and D rather than a theorem. To turn it into a theorem, we need a formal
definition of queries and query execution, and then a formal specification of our
considerations above; it is a work in progress. Part of this work is presented in [46]
for the case of functorial semantics — a model is a functor from the metamodel
to some semantic category of sets and mappings between them, which is dual to
the usual metamodeling via a typing mapping (see beginning of Sect. 3.2).

75


