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From Lenses to Tiles: Model Synchronization via
Double Categories ?

Zinovy Diskin

Generative Software Development Lab,
University of Waterloo, Canada
zdiskin@gsd.uwaterloo.ca

Abstract. The paper describes a novel mathematical framework for
model synchronization. It is based on diagram operations and can be
considered an essential generalization of lenses—a popular algebraic ap-
proach to the view update problem. A distinctive feature of the frame-
work is that both view and update mappings are first class citizens and
explicitly occur in arity shapes of the operations of update translation.
We show that lenses augmented with mappings give rise to double cate-
gories and discuss the benefits of this formalism.

1 Introduction

The task of synchronizing two heterogeneous artifacts is ubiquitous in software
engineering. It appears in many contexts of data synchronization and conversion
(e.g., HTML publishing, data warehousing, and object-relational mapping), in
forward, reverse and roundtrip engineering, and in other scenarios of bidirec-
tional model transformations [4].

Two synchronized heterogeneous artifacts often have some common abstraction—
a view—in-between them. We may specify this case with the formula B1 � A ≺
B2, where ≺ denotes the “viewOf” relationship. For example, B1 could be an
internal data format, B2 an external layout, and A a common view free from
details of both internal and layout representations. Or B1 could be a complex
behavioral model, A its structural projection, and B2 a richer structural model.
There are also many “half-way” situations B � A. For example, A is a reverse
engineered model of code B, or B is a pretty-printing format of code A, or B is a
database and A is its materialized view. We will use the terms view maintenance
or view synchronization as generic names for the task of synchronization over
a“viewOf” relationship.

Examples above show that studying view synchronization is important either
itself or as a part of a general theory of synchronization. Algebraic approaches
to the problem have a long history, from early work on the view update problem
in databases [1], to Meerten’s work on constraint maintenance for user interfaces

? A shorter conference version of this report was prepared, together with Micha l An-
tkiewicz and Krzysztof Czarnecki, for FASE’2010. It was rejected by the PC



[16], to a recent series of works on the so called lenses. The latter is a crisp name
for a pair of functions realizing view computation and backward update propa-
gation in a coordinated way (the notion and the name were probably conceived
in [17]). The lens framework enjoys well developed algebraic foundations [10,
19, 8], and has guided design of several successful DSLs for programming data
synchronization for tree-based [10], string-based [2], and relational data [3].

Applications of lenses to software model synchronization expose some defi-
ciencies of the framework. We will show in the paper that model synchronization
requires accurate elementwise specifications of relationships between the base
(B) and the view (A) models—a view mapping, and between the original and
the updated models—an update mapping. Neither of these mappings are included
into the lens formalism, however. At the same time, concrete lenses for trees and
tables described in the literature implicitly employ such mappings: the mappings
are set by default via name coincidence (or other available keys). For simple data
structures like trees or tables, this implicit coordination mechanism may work
well, but for semantically rich software models the mappings should be speci-
fied explicitly. Thus, software model synchronization requires the lens framework
to be extended beyond the simple state-based setting and be augmented with
view and update mappings. Further, since view mappings between models are
indexed by the corresponding view definition mappings between metamodels,
the universe of metamodels and metamodel mappings appears as an important
part of the synchronization landscape. This universe is missing from the lens for-
malism and should be introduced to handle synchronization of software models.

Inserting mappings into lenses entirely changes their algebraic foundation.
We leave the world of ordinary algebra (operations act on tuples) and come to
the world of diagram algebra, in which operations act on and produce graphs
(of models and model mappings in our context). It turns out that all necessary
diagram operations act within a square-shaped graph, that is, have a part of the
square as their input and the rest of the square as their output. We call these
squares tiles (another crisp name for a formal construct we borrowed from [11]).

View system with updates 

Forward 
maintainable

Backward 
maintainable

State-basedBi-maintainable

Fig. 1: Hierarchy of view systems

We use tile operations to define a
series of formal constructs model-
ing different aspects of view mainte-
nance as shown in Fig. 1 (with ar-
rows indicating generalization). We
show that forward-, backward- and
bi-maintainable view systems can be
specified as double categories—an im-
mediate two-dimensional generaliza-

tion of ordinary categories, which enjoy two sorts of composition working to-
gether in a coherent way. Since compositionality is of primary importance for
applications, the double category view on synchronization provides a useful al-
gebraic framework. We also show that state-based view systems are equivalent
to systems of sequentially composable very well-behaved lenses. It is an ex-
pected result but note that forward- and bi-maintainable systems live outside
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the state-based ones. Hence, the lens formalism covers only a part of a bigger
synchronization landscape.
Relation to other work. Algebraic approaches to synchronization follow lenses
in using the ordinary algebra framework [20, 19], or use category theory in the
operational setting of TGG [18]. A series of works by Johnson and Rosebrugh
[13] on the view update problem is also based on category theory but their
goal is different from ours: they study conditions under which a reasonable view
update policy can be inferred from the view definition. In contrast, we follow
the lens idea that an update policy is specified by an operation put related to
but not inferred from the view definition. As far as we know, applications of
double categories are novel for the view synchronization problem. We have used
double categories in our study of model versioning [9], where horizontal arrows
were matches between homogeneous models rather than view mappings.

The rest of the paper is structured as follows. The next section presents two
brief overviews: (i) lenses for the view update problem and (ii) basic definitions
of category, double category and double functor, and notational conventions we
use. Section 3 describes an example showing the deficiency of the lens framework
and roughly outline the diagram algebra reformulation of lenses. The technical
development is in Section 4. A brief final discussion of the results is in Section
4.5.

2 Background

Given a mapping (function) f : X → Y , we write the value of f at argument x as
either f(x) or (x)f or x.f or f.x choosing notation that makes formulas easier
to read. A pair (x, x.f) is called an (application) instance of f . For a binary
mapping f : X1×X2 → Y , an application instance is a triple [x1, x2, (x1, x2)f ].

2.1 Model synchronization and lenses

Suppose we have a space of base (source) models B, a space of view (target)
models A, and a function get : B→ A (“getView”). Since views abstract away
some data, there may be many different bases B1, B2, ... ∈ B having the same
view A = get(Bi), i = 1, 2, .... Hence, when a view A is updated to a new

B:B •
g:get`

I A:A

B′:B J −−p:put` •

•

A′:A

(a) Individual models

(GetPut) (B.get` , B).put` = B
(PutGet) (A′, B).put` .get` = A′

(PutPut) (A′′, (A′, B).put`).put`
= (A′′, B).put`

(b) Equational laws

Fig. 2: Lens operations and laws

state A′, propagating this update back to the
base, i.e., finding B′ such that get(B′) = A′,
is not unique (or is not possible at all when
the updated view goes beyond the set of legal
views; not considered in this paper).

Thus, some update policy is required to
choose one base state B′ among the mul-
titude of states whose views equal to A′.
The lens framework assumes that such a pol-
icy amounts to a function put : A×B→ B,
which takes the updated view and the origi-
nal base state and outputs an updated base
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state B′ as shown in Fig. 2a: arrows g and p
denote application instances of get` and put` ,
resp., (index ` indicates the lens `). A pair of functions (get` ,put`) coordinated
in a suitable way is called a lens.

Definition 1 (adapted from [10]) A well-behaved lens ` is set by the follow-
ing data. (i) Two sets, •` and ` •, called the domain and codomain of the lens.

(ii) Functions get` : •` → ` • and put` : ` • × •` → •`, such that the laws (GetPut)
and (PutGet) in Fig. 2b hold for any B ∈ •` and A′ ∈ ` •. (iii) A well-behaved
lens is called very well-behaved, if the (PutPut) law holds as well.1

Compositionality is at the heart of lenses’ applications to practical problems.
Writing correct bidirectional transformation for complex views is laborious and
error-prone. To manage the problem, a complex view is decomposed into a se-
quence of simple blocks B � A1 � A2... (views of views of views . . . ), for each
of which a correct lens can be found in a repository. A lens-based DSL provides
the programmer with a number of operators of lens composition. One major
such operator is sequential composition (for chains of views as above), and a
fundamental result states that sequential composition of correct lenses is also a
correct lens.

Construction 2 (Lens’ composition [10]) Given lenses `1 and `2 with ` •1 =
•`2, the lens ` = `1; `2 is defined as follows. •` = •`1 and ` • = ` •2 . For any
B ∈ •`, B.get` = B.get`1 .get`2 , and for any pair (A′, B) ∈ ` •×•`, (A′, B).put` =
(A′, B.get`1).put`2 .put`1 . It is easy to check that ` is a (very) well-behaved lens
as soon as both lenses `i are such.

2.2 Categories, double categories, functors, and double functors

A graph G consists of a set of nodes G0 and a set of arrows G1 together with two
mappings ∂i : G1 → G0, i = 0, 1. As usual, we write a : N → N ′ if ∂0(a) = N and
∂1(a) = N ′. Sometimes we write a : N → N ′::G to remind that a is an arrow in
graph G. Two arrows a, b are called parallel if ∂i(a) = ∂i(b), i = 0, 1.

A category C is a graph with (i) an associative operation of arrow compo-
sition denoted by ; (semi-colon), and (ii) a unary operation 1 that assigns to
every node N an identity/idle loop 1N : N → N . These loops are units of the
composition: 1∂0(a); a = a = a; 1∂1(a). Nodes in a category are called objects,
and arrows are morphisms. The class of objects C0 can be also considered as a
category, whose only arrows are identities (called discrete category).

A functor f : C → C ′ is a pair of functions f0 : C0 → C ′0, f1 : C1 → C ′1 that
preserves incidence relations between nodes and arrows (a.f1.∂0=a.∂0.f0, etc.),
arrow composition (a; b).f1=(a.f1); (b.f1) and idle loops f1(1N )=1N.f0 .

1 We do not consider function create : ` • → •`
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A f - B

↘↘T

A′

a
?

f ′ - B′

b
?

A double category D is a four-sorted algebraic structure
comprising a class D0 of nodes ( also called 0-cells), classes
Dh

1 of horizontal and Dv
1 of vertical arrows (1-cells), and

a class D2 of squares or tiles (2-cells) subject to incidence
(source and target) conditions shown by the diagram on the
right (that is, the vertical source of tile T is arrow f , the horizontal target is
b etc.). Below we abbreviate horizontal and vertical something to h-something
and v-something.

These data satisfy the following requirements. Nodes and h-arrows form a
category denoted, again, by Dh

1, and similarly, we have a category Dv
1 so that

(Dh
1)0 = (Dv

1)0 = D0. H-arrows considered as nodes and tiles as arrows between
them form a category Dv

2 (in which tiles are composed vertically); v-arrows as
nodes and tiles as arrows between them form category Dh

2 (in which tiles are
composed horizontally). Thus, both categories have the same set of arrows,
(Dh

2)1 = (Dv
2)1 = D2, but compositions are different and denoted by ;h and

;v, respectively. We will often omit the subindex if no confusion arises.
The fact that Dx

2, x=h,v, are categories means that there are h-idle and v-idle
tiles, which are the units of the respective compositions. Horizontal edges of h-
idle tiles must be idle h-arrows; same holds for v-idle tiles. Finally, horizontal and
vertical tile compositions are coordinated between themselves by an interchange
law (see [14])2.

A double functor ff : D → E is a quadruple of functions ff0, ff
v
1, ff

h
1, ff2,

sending i-cells in D to respective i-cells in E (i = 0, 1v, 1h, 2), with preser-
vation of all incidence relationships and such that pairs (ff0, ff

x
1) : Dx

1 → Ex
1 and

(ff x1, ff2) : Dx
2 → Ex

2 (x=v,h) are ordinary functors.

3 Mappings in model synchronization

Arrows in diagram Fig. 2a are tuples of models. However, components of these
tuples (models A′, B,B′) are themselves complex structures consisting of their
own elements, and there may be mappings between these structures relating
their elements. In this section we consider a simple example showing that such
mappings are important for synchronization.

3.1 Example: Do mappings really matter?

Fig. 3 presents a simple example of view synchronization. Models are sim-
ple structures consisting of objects with attributes. Attributes are name-and-
value pairs. Model element identifiers (eids) use letters P,Q for the objects and
a,b,..x,y,z for the attributes. The view is defined as follows: take all Person ob-
jects from the base model and remove their age attribute. The base and the view
models have disjoint sets of eids because they are stored on different computers.
For a while, ignore all the arrows in the diagram.

2 Appendix reproduces this material for the reviewers’ convenience but is excluded
from the paper due to space limitations.
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P1: Person
a1:(name,Jo)
a2:(pho,111)
a3:(age,30)

Model B

P2: Person
b1:(name,Sue)
b2:(pho,222)
b3:(age,30)

C1: Car
e1:(make,Ford)
e2:(year,2005)

o1:owns

o2:owns

Q1: Person
y1:(name,Jo)
y2:(pho,111)

Model A
Q2: Person

x1:(name,Sue)
x2:(pho,222)

Q3: Person
z1:(name,Jon)
z2:(pho,333)

Model A′
Q2: Person

x1:(name,Sue)
x2:(pho,222)

P1: Person
a1:(name,Jon)
a2:(pho,333)
a3:(age,30)

P2: Person
b1:(name,Sue)
b2:(pho,222)
b3:(age,30)

o2:owns

o1:owns

= ≠

C1: Car
e1:(make,Ford)
e2:(year,2005)

P3: Person
c1:(name,Jon)
c2:(pho,333)
c3:(age,?)

Model B′

P2: Person
b1:(name,Sue)
b2:(pho,222)
b3:(age,30)

C1: Car
e1:(make,Ford)
e2:(year,2005)

o2:owns

f ΔA

ΔB f′

Model B′!

Fig. 3: State-based (B’) and mapping-based (B’ !) synchronization results

Suppose that model A was updated to a new state A′, and we need to prop-
agate the update back to B. In the state-based synchronization setting based on
eids, the update from A to A′ consists of deletion of object Q1 with its attributes
and addition of new object Q3 with new attributes. Since the view is merely a
projection, the backward propagation is easy: object P1 (corresponding to Q1) is
deleted from B, and a new object P3 (corresponding to Q3) is added. The result
is model B′ placed under model A′. The age-attribute of object P3 is unknown,
hence the null value denoted by ? (question mark).

Now suppose that the actual update from A to A′ was more complicated.
The user first deleted object Q1 but later recognized that was a mistake. The
user then created a new object Q3 with the same values of attributes (but,
of course, new eids), and later updated the attribute values. For an accurate
specification of such an update, we must augment the correspondence based on
eids with additional correspondence links Q1→Q3, etc., as shown in the figure
by thin curly arrows labeled by =. In addition, two dashed links labeled by
6= show modification of attribute values. Together, all these links constitute a
specification called an update mapping : it is denoted by arrow ∆A : A⇒ A′,
whose double-body indicates that the arrow has an extension. To be accurate,
we must also explicate the correspondence between the base and the view model
as shown by dashed links from model A to B. These links constitute a view
mapping f : A⇒ B (double-body again indicates the existence of extension).

In this and other diagrams below, dashed lines (blue with color display)
indicate mappings that are computed (derived). The view mapping is derived
because it is computed from a given view definition and base model B—below
we will consider this construction in detail. In contrast, the update specification
cannot be computed and must be given explicitly (though modification links
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are, in fact, computed by direct comparison of the values). Having these data,
the backward update is as follows. We read the view mapping f : A⇒ B in the
backward direction from B to A and compose it with the update mapping: this

NNN ⇐====
vvv

MMM
(a) Space of
metamodels

B:NNN ⇐
f :vvv
= = A:MMM

g:getvvv
V

B′:NNN

∆B�
‖
‖
‖

⇐=
f ′:vvv

= A′:MMM

‖ ∆A�
‖

(b) An instance of getvvv

B:NNN ⇐===
f :vvv

A:MMM

p:putvvv
W

B′:NNN

∆B ‖�
‖

⇐=
f ′:vvv

= A′:MMM

∆A�
‖
‖
‖

(c) An instance of putvvv

Fig. 4: Tile operations

will show what remains unchanged and what
must be modified in the base model. The result is
the state B′! of the base model, which is different
from B′. The base update ∆B and the updated view
mapping f ′ can be also computed (bold bent arrows
in the diagram), and present an important part of
the backward update propagation. The latter thus
appears as a diagram operation putvvv , whose appli-
cation instance is shown in Fig. 4c.

Such an instance has a pair of arrows (∆A, f)
as its input, and another pair (∆B, f ′) (shown by
dashed lines), completing the square, as its output.
Similarly, we define get-operation shown in Fig. 4b:
the input is a base update ∆B and the output is a
triple of arrows completing the square.

Finally, the last ingredient of instance specifica-
tions is typing of view mappings f and f ′ by a meta-
model mapping vvv shown in Fig. 4a. This mapping
does not occur in the notion of a lens, and we dis-
cuss it in the next section.

3.2 Do metamodels matter?

For lenses, view computation (function get) is merely
a data transformation. Models are also data, but

these data have precise semantic meaning encoded by the metamodel, and hence,
not every models-as-data transformation is semantically meaningful. If [[MMM ]] and
[[NNN ]] are spaces of models determined by metamodels MMM and NNN , resp., then a
transformation get : [[NNN ]]→ [[MMM ]] is semantically valid if it is compatible with
some semantically meaningful relationship between MMM and NNN . For view com-
putation, such a relationship should be a certain view specification vvv, which
somehow defines metamodelMMM as a view to metamodel NNN , and we may write
MMM ≺vvv NNN . Specification vvv and transformation get are different artifacts so that
it makes sense to ask whether get is compatible with vvv. In other words, we argue
that view definitions must be separated from view computations: the former live
in the world of metamodels while the latter leave in the world of models.

Consider the following example. Let both metamodels define graphs butMMM-
graphs are the following views to NNN -graphs: given an NNN -graph B, itsMMM-view A
has the same nodes but A-arrows are pairs of sequentially composable B-arrows.
Two simple examples of computing such NNN -views are presented in the diagrams
below (where symbol 	 denotes loop arrows):
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(n1 - n2

n3
?6

)
7→

(n1 n2
	
n3
	

-

) (n1 - n2

n3
?

�
)
7→

(n1 � n2

n3

6-

)
(1) g1:get (2) g2:get

In each of the cells (i), i=1,2, we have a pair of graphs (Bi, Ai) considered as
instances of function get. Our goal is to define this function syntactically, and
Computation of such views can be defined by a metamodel mapping as shown
in Fig. 5. To save space, we employ concrete syntax normally used for graphs
also for metamodels: an arrow replaces an element together with two (source
and target) references to nodes. Composable pairs of arrows (paths of length 2)
are formally defined by the following query Q:

2Path
def
= {(x, y)∈Arr×Arr | ∂1(x) = ∂0(y)} , ∂0(x, y)

def
= ∂0(x), ∂1(x, y)

def
= ∂1(y).

The query determines a derived arrow 2Path that can be added to metamodel
NNN as shown in the left upper quadrant of the figure; we denote the augmented
metamodel by Q(NNN ) ⊃ NNN . However, the query definition does not complete
the view definition. We need to specify how elements of the metamodelMMM are
interpreted in NNN . This is done by specifying a mapping vvv : MMM⇒NNN that maps
metamodelMMM to metamodel Q(NNN ), that is, maps elements ofMMM to either basic
or derived elements of NNN as shown in the figure.

b3 :Arr

Nd NArr
2Path Ar

Metamodel MMetamodel N ⊆

 

Q(N )

n1:Nd n2:Nd

n3:Nd

b1 :Arr

b2 :Arr

(b2 ;b3 ); :2Path

(b3 ;b2 ); :2Path

(b1 ;b2 ); :2Path

m1:N m2:N

m3:N

a1; :Ar
a2; :Ar

a3; :Ar

view 
definition, v

Model B ⊆

 

Q(B) Model A

view 
execution, 

f:v

Fig. 5: Example of view definition and execution

The view definition vvv
can be executed for any
model B over NNN . We
first execute the query
Q for model B and add
the computed elements to
B: the result is an aug-
mented model Q(B) ⊃ B
typed by the augmented
metamodel Q(NNN ) (see the
left lower quadrant of the
figure). Then we relabel,
by reading the mapping
backward, the elements of
Q(B) whose types (labels)
occur in the image of map-
ping vvv. For example, since

arrow (b2;b3) in Q(B) is typed by arrow 2Path in Q(NNN ), and metaarrow Ar from
MMM is mapped to 2Path, the arrow (b2;b3) is relabeled by Ar. The relabeled ele-
ments do not replace the originals, they are copied to a new location where the
materialized view is to be stored. The result of all these acts of copying with
relabeling will be someMMM-model A, as shown in the lower right quadrant of the
figure. Since each of the A-elements can be traced back to a Q(B)-element, we
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have a mapping f : A⇒ Q(B). We can consider this mapping as an “instance” of
view definition vvv. Thus, what was a pair of models (B,A) in the lens framework,
has become a mapping f : A⇒ Q(B), which is a set of pairs of models’ elements,
in our framework. More details about the construction of view execution and its
formalization can be found in [7]. If typing models by metamodels is considered
a morphism of the corresponding structures, then relabeling procedure can be
formally specified by application of the categorical pullback operation. Details
and examples can be found in [6, 7].

Suppose we have a composable pair of view definitions vvv :MMM⇒NNN ,www :NNN ⇒OOO,
i.e., vvv defines a view of the view defined by www. These two view mappings can
be composed by substituting vvv-query into www-query, and we thus obtain a view
definition vvv;www :MMM⇒OOO. A normal execution of this definition for a model C:OOO
will execute the view www followed by execution of vvv:
(ExeExe) (vvv;www)C = (wwwC); (vvvB) with B = C�www

4 Maintainable view systems

In this section we will define all notions from Fig. 1 and describe our main results.

4.1 Setting the stage: View systems with updates

Let Modview0 denote a class of objects called models. We denote update map-
pings by ordinary arrows a : A→ A′ (and thus stop using our previous convention
to use double-body for arrows with extension) and we always draw them verti-
cally with the updated model below the original. We denote view mappings by
double arrows f : A⇒ B and we always draw them horizontally.

We do not make any specific assumptions about the nature of the updates.
Whatever they are, they have a source and a target, and consecutive updates can
be composed, hence the arrow notation. It is also reasonable to assume that for
every model A there is a special idle update 1A that does nothing. We summarize
these requirements by saying that we have a category Modupd of models and
their updates. Similarly, we introduce a category Modview of models and view
mappings, as discussed in Section 3.2 (in which an identity arrow is a model
considered as the identical view of itself).

Each model is typed over its metamodel, and we write A:MMM or AMMM to explic-
itly point to the metamodelMMM. Each view mapping f : AMMM ⇒ BNNN is determined
by the corresponding view definition mapping vvv : MMM⇒NNN in the space of meta-
models, and we write f :vvv. We thus have a typing functor τview : Modview→MMod
into the category of metamodels and view definition mappings. As for updates,
we assume that for any update a : A→ A′, its source and target models have
the same metamodel, say,MMM, and then we write a:1MMM to indicate that updates
do not change the metamodel. Correspondingly, we have another typing functor
τupd : Modupd→MMod0 into the discrete category of metamodels.

Our first main observation is that constructs described above can be com-
pactly specified in the language of double categories. We make category MMod
a double category MMod whose horizontal category is MMod, the vertical cate-
gory is discrete MMod0, and squares are diagrams of the shape shown in Fig. 6b.
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B ⇐=======
f :vvv

A

↙↙D

B′

b:1•
?
⇐======
f ′:vvv

A′

a:1◦
?

(a)

• ⇐====
vvv

◦
↙↙T

•

1•
?
⇐====
vvv

◦

1◦
?

(b)

Fig. 6: View systems via double categories

We also make the collection of
models and mappings (both up-
dates and views) a double category
Mod, whose horizontal category is
Modview, the vertical category is
Modupd and squares are diagrams
of the shape shown in Fig. 6a.
Such squares can be trivially com-
posed horizontally and vertically

(because τview and τupd are functors), and the required idle squares are dia-
grams with idle arrows for the either horizontal or vertical sides. All laws of
double categories trivially hold. Then typing amounts to a double functor from
Mod to MMod, whose horizontal and vertical components are τview and τupd.

Definition 3 A view system with updates is a double functor ττ : Mod→MMod
with the vertical category MModv

1 being discrete. We denote categories Modh
1,

Modv
1 and MModh

1 by, resp., Modview, Modupd and MMod, and functors
ττ1

h, ττ1
v by τview, τupd as above. Given a metamodel MMM, the class of models

A ∈ Mod0 such that ττ (A) = MMM is denoted by [[MMM ]]. If we add to this class
all vertical arrows (updates) a s.t. ττ v1(a) = 1MMM, we make [[MMM ]] a category (of
MMM-models and their updates).

There is not too much content in this reformulation because compositionality
of squares in Mod is trivial and says nothing more than about separate com-
positionality of h- and v-arrows. Yet it compactly specifies numerous incidence
relations, and provides convenient foundation for our further work in the paper.

The definition above says that horizontal arrows in Mod are typed by view
definitions (arrows in MMod) but it says nothing about how to, given a view
definition vvv : MMM⇒NNN and a model B:NNN , execute the view definition for B such
that it results in a view model B�vvv together with a view mapping vvvB : B�vvv ⇒ B.
In category theory, such type of operations is well studied in the theory of fibra-
tions[12] and is usually called (Cartesian) lifting, hence the over-bar notation.
Model B�vvv can be understood as the reduction (restriction) of model B to meta-
model NNN along the view mapping vvv, hence, symbol �.

Importantly, lifting is compatible with arrow composition. Suppose we have a
composable pair of view definitions vvv :MMM⇒NNN , www :NNN ⇒OOO, i.e., vvv defines a view
of the view defined by www. These two view mappings can be composed by substi-
tuting vvv-query into www-query, and we thus obtain a view definition vvv;www :MMM⇒OOO.
A normal execution of this definition for a model C:OOO executes view www followed
by execution of vvv: (vvv;www)C = (wwwC); (vvvB) with B=C�www. Of course, (1MMM)B = 1B .

An accurate categorical formulation of lifting (can be found in [12]) goes
beyond the elementary categorical apparatus we use in the paper. However, we
will use lifting a view definition to an actual view execution for only one (but
important) result of the paper—Theorem 9. For the rest of the paper, the reader
can use simple Definition 3. Theorem 9 requires a more precise definition of view
systems with updates:
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B A

getvvv↓
V

B′

b
?

A′

a
?

(a0) update translation

B ⇐
1B :1NNN

= = B

get1M
V

B′

b
?
⇐ =
1B′ :1NNN

= B′

b
?

(e) (GetId)-tile

B ⇐
f :vvv
= = A

getvvv
V

B′

b
?
⇐=
f ′:vvv

= A′

a
?

B ⇐
f :vvv
= = A

getvvv
V

B

1B
?
⇐=
f ′:vvv

= A

1A
?

(a) general get-tile (b) (GetId)↓-tile

C ⇐
g:www
= = B ⇐

f :vvv
= = A

getwww
V

getvvv
V

C′

c
?
⇐=
g′:www

= B′

b
?
⇐=
f ′:vvv

= A′

a
?

(d) (GetGet)-tile

B ⇐
f :vvv
= = A

getvvv
V

B′

b
?
⇐f ′:vvv = A′

a
?

getvvv
V

B′′

b′

?
⇐ =
f ′′:vvv

= A′′

a′

?

(c) (GetGet)↓-tile

Fig. 7: Diagram operation of incremental view maintenance (a) and its laws
(b,c,d,e)

Definition 4 (Definition 3 completed) A view system with updates is a
double functor ττ : Mod→MMod with category MModv

1 being discrete and func-
tor ττh1 : Modh

1 →MModh
1 being a split fibration.

4.2 Forward maintainable view systems

Let f : A⇒ B::Modview be a mapping defined by view vvv : MMM⇒NNN ::MMod,
and the base model B is updated. The updated model B′ provides an updated
view f ′ : A′ ⇒ B′ computed by executing the same view definition vvv for model
B′. However, it may be expensive to recompute the view A′ from scratch, and
a better way is to compute an update a to A out of the update b to B. Various
algorithms of update translation have been intensively studied by the database
community in the area of incremental view maintenance [15]. These algorithms
essentially depend on the queries involved in the view definition, and interaction
of updates and views may be quite complicated. Our goal in this section is to
formulate the most basic laws regulating update translation and their interaction
with views in a precise algebraic way. We will begin with ordinary algebra,
in which terms are strings, and then reformulate the framework in terms of
diagrammatic operations.

Update translation via string-based algebra. Given a view definition
vvv :MMM⇒NNN , we can specify declaratively an algorithm translating updates of base
models to updates of their view models by a mapping “getUpdate”, getvvv↓, send-
ing base updates b : B → B′ to view updates a = getvvv↓(b) : A→ A′, as shown in
diagram Fig. 7(a0).

These two laws regulate interaction between update translation and update
composition:
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(GetId)↓ getvvv↓(1B) = 1A
(GetGet)↓ getvvv↓(b; b′) = b.getvvv↓(b); getvvv↓(b′)

Diagrams Fig. 7(b,c) help to explain the meaning of the laws (consider, for a
while, that labels getvvv and getvvv↓ denote the same operation and ignore horizontal
arrows). The first law is evident: “do nothing with the base” implies “do nothing
with the view”. The second law says that translation of a sequentially composed
update can be composed from translations of the components. This is a non-
trivial requirement that may not hold for some views; e.g., in general it does not
hold for views defined with the so called non-distributive relational queries [15]
(but may still hold for some classes of updates). We leave these cases for future
work and below consider “good” views and updates for which both laws hold.

These two laws regulate interaction between update translation and view
composition (see diagrams Fig. 7d,e):

(GetId) b.get(1M)↓ = b

(GetGet) b.get(vvv;www)↓ = b.getvvv↓.getwww↓
The first one is trivial. The second is very important: when it holds, transla-

tion algorithms for complex queries/views can be composed from simpler pieces.

Update translation via diagram algebra. As we discussed in Section 3.2,
views come together with backward traceability mappings f : A⇒ B. It is con-
venient to include these mappings in the output of operation getvvv↓. It makes
the latter a full-fledged diagram operation getvvv : given a view definition mapping
vvv : MMM⇒NNN , operation getvvv takes any arrow b:1NNN and produces three arrows
forming a square shown in Fig. 7(a) (derived arrows are dashed). We call such
a square a get-tile. Formally, we introduce a diagram predicate getvvv

∗ of square
arity, and say that a corresponding quadruple of arrows T = (b, a, f, f ′) satisfies
getvvv

∗ if arrows a, f, f ′ are produced by operation getvvv applied to b.3 To ease
notation, we denote both the diagram operation and the predicate by the same
symbol.

All our equational laws can be concisely formulated in the tile language.
Diagrams (b) and (e) are nothing but the laws (GetId)↓ and (GetId). Diagrams
(c) and (d) express exactly the laws (GetGet)↓ and (GetGet)—if we read them as
follows: the outer rectangle is a getvvv-tile as soon as the inner squares are such.

Definition 5 Let ττ : Mod→MMod be a view system with updates. A view
vvv : MMM⇒NNN ::MMod is called (incrementally) forward-maintainable if it is as-
signed with a diagram operation getvvv of arity shown in Fig. 7(a) such that the
laws shown in diagrams (b) and (c) hold. The view system is called forward-
maintainable if each view is such and, in addition, the laws specified in diagrams
(d,e) hold.

We will to reformulate this definition in terms of double categories. Hence, we
need a correctly defined horizontal composition of get-tiles. We would prefer to
consider the vertical source of a getvvv-tile to be an original base update, and the

3 Analogously, a binary operation + generates a ternary predicate +∗ with +∗(x, y, z)
iff z = x + y.
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B ⇐===
vvvB

A

↓putvvv
W

B′

b
?
⇐===
vvvB′

A′

a
?

(a0) view update
translation

B ⇐=====
1B :1NNN

B

put1M
W

B′

b
?
⇐ =
1B′ :1NNN

= B′

b
?

(e) (PutId)-tile

B ⇐===
f :vvv

A

putvvv
W

B′

b
?
⇐=
f ′:vvv

= A′

a
?

B ⇐====
f :vvv

A

putvvv
W

B

1B
?
⇐=
f ′:vvv

= A

1A
?

(a) general put-tile (b) (PutId)↓-tile

C ⇐===
g:www

B ⇐===
f :vvv

A

putwww
W

putvvv
W

C′

c
?
⇐=
g′:www

= B′

b
?
⇐=
f ′:vvv

= A′

a
?

(d) (PutPut)-tile

B ⇐======
f :vvv

A

putvvv
W

B′

b
?
⇐f ′:vvv = A′

a
?

putvvv
W

B′′

b′

?
⇐ =
f ′′:vvv

= A′′

a′

?

(c) (PutPut)↓-tile

Fig. 8: Diagram operation of incremental view update propagation (a) and its
laws (b,c,d,e)

computed view update to be the vertical target. Then according to definition
of double category, the horizontal sides of the tile should go in the direction
opposite to that shown in diagram Fig. 7(a). Such reversed view mappings are
nothing but arrows in the category Modviewop, that is, the horizontal category
of get-tiles is Modviewop rather than Modview. All laws of double categories
[14] (see Appendix) immediately follow from get-operation laws in Fig. 7; thus:

Proposition 6 A forward maintainable view system gives rise to a double cate-
gory Get whose horizontal category is Modviewop, vertical category is Modupd,
and squares are get-tiles. Moreover, typing amounts to a double functor ττget : Get→MModop,
where MModop is the double category whose horizontal category is MModop.

4.3 Backward maintainable view systems

Having the machinery of diagram operations in place, we immediately proceed
with formal definitions.

Definition 7 Let ττ : Mod→MMod be a view system with updates. A view
vvv : MMM⇒NNN ::MMod is called updatable or backward maintainable if it is as-
signed with a diagram operation putvvv of arity shown in Fig. 8(a) such that the
laws shown in diagrams (b) and (c) hold (dashed arrows are derived). A view
system with updates is called updatable or backward maintainable if each view
is updatable and, in addition, the laws specified in diagrams (d,e) hold.

Note that any updatable view does behave well w.r.t. the PutGet-law of
lenses by the very arity shape of operation put (diagram (a)). The GetPut-law
is enforced by diagram (b). The diagram (c) (to be read as “if the two inner
squares are put-tiles, then the outer one is a put-tile as well) is an analog of the

13



PutPut-law. To set a more precise relationship between updatable views and
lenses, we need a more refined notion of view system with updates.

Definition 8 An updatable view vvv is called state-based if putvvv-operation trans-
lates any two parallel view updates a1, a2 : A⇒ A′ into two parallel base updates
b1, b2 : B ⇒ B′.

Theorem 9 (i) Any state-based updatable view vvv : MMM⇒NNN generates a well-
behaved lens ` = `(vvv) by setting •` = [[MMM ]], ` • = [[NNN ]], get`(B) = B�vvv
and put`(A

′, B) = ∂1[↓putvvv(a,vvvB)] for an arbitrary a : B�vvv → A′ (operations
�vvvand vvv were defined in Section 4.1). (ii) Moreover, horizontal composition of

state-based updatable views provides sequential composition of lenses: `(www) =
`(vvv1); `(vvv2) for any composed view www = vvv1;vvv2.

Proof. (i) Since the view is state-based, definition of put` does not depend on the
choice of a. The lens laws Definition 1 easily follow from get- and put-tiles laws
Fig. 7 and Fig. 8. To wit: lens’s (GetPut) follows from (GetId)↓ and (PutId)↓ laws
for tiles (diagrams (b) in Fig.7,8) . Lens’s (PutGet) is guaranteed by the very
arity shape of put-tiles. Lens’s (PutPut) holds owing to tile’s (PutPut)↓ Fig. 8(c).

(ii) Use (PutPut) in Fig. 8(d) ut
We now reformulate the notion of updatable view system in terms of double

categories.

Proposition 10 An updatable view system gives rise to a double-category Put
whose horizontal category is Modview, the vertical category is Modupd, and
squares are put-tiles. Moreover, typing amounts to a double-category morphism
ττput : Put→MMod.

The proof is simple: the double category laws follow from put-operation laws in
Fig. 7.

4.4 Bi-maintainable view systems

Definition 11 Let ττ : Mod→MMod be a view system with updates. A view
vvv : MMM⇒NNN ::MMod is called bi-maintainable if it is both forward- and back-
ward maintainable (Definitions 5, 7) and, in addition, the following (PutGet)-
law holds: applying operation getvvv to any put-tile T (i.e., a tile produced by
operation putvvv) does not produce new elements. Formally,

(PutGet) putvvv(T ) implies getvvv(T )

where put(T ) means that the tile T is a put-tile and the same for get(T ). A view
system with updates is called very well bi-maintainable if every view is such.

We remind that the lens PutGet-law is captured in the notion of updat-
able view (Put-tiles). The tile PutGet-law specified above is strictly stronger:
it requires that backward translation of views updates be compatible not only
with views but with forward update translation as well. Propositions 6 and 10
together with the (PutGet) law entail
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Theorem 12 A very well bi-maintainable view system gives rise to the commu-

tative diagram of double categories and double func-
tors shown on the right (the upper arrow denotes
inclusion of double categories with reversing of h-
arrows, and the bottom arrow is the identity functor
reversing h-arrows):

Put ⊂
op
→ Getop

MMod

ττput
? op- MModop

ττget
?

4.5 Discussion

Note the conceptual transparency of the last diagram. Powerful two-dimensional
composition machinery is packed into the fact that nodes are double categories
and arrows are double functors. The upper inclusion is nothing but the (PutGet)
law w.r.t. update translation, and reversal of arrows (note the index ’op’) indi-
cates that operations get and put work in the opposite directions. Finally, typing
functors and commutativity show that all operations are compatible with typing.
Briefly, diagram operations of get and put exhibit good composition properties,
and are mutually semi-inverse: we have the (PutGet) law but (GetPut) does not
hold. This compact presentation shows that double categories can be convenient
for building a sound algebraic theory of model synchronization.

The framework can be also useful in practice. Indeed, two-dimensional com-
positionality is of primary importance for applications. It allows us to decompose
complex updates over complex views into elementary pieces and then build the
entire view synchronization task from simple blocks. Correctness of “playing
synchronization lego” in the double category framework is guaranteed by an im-
portant result called Pasting Lemma. Roughly, it says that the result of tiling
together squares in a double category does not depend on the order in which
composition is evaluated [5].

5 Conclusion

We presented a framework for view synchronization based on diagram opera-
tions and tiles. The framework extends lenses with metamodels and view and
update mappings, supporting both forward and backward update incrementality.
The framework is based on double categories, which a) concisely and naturally
encode conditions to be satisfied by mappings and diagram operations, b) guar-
antee certain desirable properties of synchronization systems, and c) allow for
formal reasoning about complex synchronization scenarios. In future work, we
will integrate the presented view-update tiles with homogeneous synchronizer
tiles [9] into a comprehensive framework for heterogeneous synchronization.
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1993.

6. Z. Diskin. Mathematics of generic specifications for model management. In Rivero,
Doorn, and Ferraggine, editors, Encyclopedia of Database Technologies and Appli-
cations, pages 351–366. Idea Group, 2005.

7. Z. Diskin and J. Diengel. A metamodel independent framework for model trans-
formation: Towards generic model management patterns in reverse engineering. In
ATEM, 2006.

8. Zinovy Diskin. Algebraic models for bidirectional model synchronization. In MoD-
ELS, pages 21–36, 2008.

9. Zinovy Diskin, Krzysztof Czarnecki, and Michal Antkiewicz. Model-versioning-in-
the-large: Algebraic foundations and the tile notation. In CVSM, 2009.

10. J. N. Foster, M. Greenwald, J. Moore, B. Pierce, and A. Schmitt. Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Trans. Program. Lang. Syst., 29(3), 2007.

11. Fabio Gadducci and Ugo Montanari. The tile model. In Proof, Language, and
Interaction, pages 133–166, 2000.

12. B. Jacobs. Categorical logic and type theory. Elsevier Science Publishers, 1999.
13. Michael Johnson and Robert D. Rosebrugh. Fibrations and universal view updata-

bility. Theor. Comput. Sci., 388(1-3):109–129, 2007.
14. G.M. Kelly and R. Street. Review of the elements of 2-categories. In Category

Seminar, Sydney 1972/73, Lecture Notes in Math., 420, pages 75–103, 1974.
15. H. Liefke and S. Davidson. View maintenance for hierarchical semistructured data.

In DaWaK, pages 114–125, 2000.
16. L. Meertens. Designing constraint maintainers for user interaction. Available from

http://www.kestrel.edu/home/people/meertens/, 1998.
17. B. Pierce and A. Schmitt. Lenses and view update translation. Technical report,

University of Pennsylvania, 2003.
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A Appendix. Graphs, categories and double categories

A graph G consists of a set of nodes G0 and a set of arrows G1 together with two
mappings ∂i : G1 → G0, i = 0, 1. As usual, we write a : N → N ′ if ∂0(a) = N and
∂1(a) = N ′. Sometimes we write a : N → N ′::G to remind that a is an arrow in
graph G. Two arrows a, b are called parallel if ∂i(a) = ∂i(b), i = 1, 2.

A category C is a graph with (i) an associative operation of arrows compo-
sition denoted by ;, and (ii) a unary operation that assigns to every node N a
special an identity/idle loop 1N : N → N . These loops are units of the composi-
tion: 1∂0(a); a = a = a; 1∂1(a). Nodes in a category are called objects, and arrows
are morphisms. The class of objects C0 can be also considered as a category,
whose only arrows are identities. This trivial category is denoted by C0 too.

A double category Ds
i a four-sorted algebraic structure consisting of nodes,

horizontal arrows, vertical arrows and squares or tiles subject to incidence
(source and target) conditions shown by the diagram below (the vertical source
of tile T is arrow f , the horizontal target is b etc.). We abbreviate horizontal
and vertical something to h-something and v-something.

A f - B

↘↘T

A′

a
?

f ′ - B′

b
?

Nodes and h-arrows form a category Ah, and nodes and v-arrows form a
category Av (so that Ah0=Av0). H-arrows considered as nodes, and tiles as ar-
rows between them, form a category T v (in which tiles are composed vertically);
v-arrows as nodes and tiles as arrows between them form a category T h (in
which tiles are composed horizontally). Thus, both categories have the same set
of arrows, T h1=T v1, but compositions are different and denoted by, resp., ;h

and ;v. We will often omit the subindex if no confusion arises.

The fact that T v and T h are categories means that there are h-idle and v-
idle tiles, which are the units of the respective compositions. Boundaries (sources
and targets) of these tiles must be compatible with idle arrows (both horizontal
and vertical). Finally, horizontal and vertical tile compositions are coordinated
between themselves by an interchange law. These conditions can be found in,
say, [14]and reproduced in Fig. 9.

In more detail, Idle tiles are formed as shown in Fig. 9(a1,b1), and their
formation is compatible with identity arrows Fig. 9(a1+b1) and with tile com-
position Fig. 9(a2,b2).

Interchange law. For any four tiles incident to each other as shown in
Fig. 9(ab)3, equality specified at the bottom of the cell holds.

One of the basic results about double categories is

Pasting Lemma [5]. In any double category having so called factorization,
composition of compatible tiles in any order gives the same result.

An illustrating example is shown in Fig. 9(d): Pasting lemma states that
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A
f - B

g - C

m11f1 m11f2

A

1A

?

f
- B

1B

?

g
- C

1C

?

A
f- B

m11f

A

1A

?

f
- B

1B

?

A
f- B

↘↘T

A′

a
?

f ′
- B′

b
?

(a2) (11f ) ;h (11 g) = 11f ;g (a1) 11f : f ⇒ f (ab)0 generic D -tile

↘↘T1 ↘↘T13

↘↘T21 ↘↘T22 ↘↘T23

↘↘T31 ↘↘T3

A
1A- A

m⇐⇒

A

1A

?

1A
- A

1A

?

A
1A- A

11a⇐⇒

A′

a
?

1A′
- A′

a
?

(d) (a1+b1) 111A=111A (b1) 11a : a⇒ a

A - B - C

↘↘T11 ↘↘T12

A′
?

- B′
?

- C′
?

↘↘T21 ↘↘T22

A′′
?

- B′′
?

- C′′
?

A �
f

B

↘↘T

A′

a
?
�
f ′

B′

b
?

A
1A - A

11a⇐⇒

A′

a
?

1A′ - A′

a
?

11a′⇐⇒

A′′

a′
?

1A′′
- A′′

a
?
′

(ab)3 (T11 ;h T12) ;v (T21 ;h T22) = (c) generic D op-tile (b2)

= (T11 ;v T21) ;h (T12 ;h T22) (11a) ;v (11a′) = 11a;a′

Fig. 9: Double category definition and laws

(T1T13) ;v (T21T22T23) ;v (T31T3) = [(T1 ;v T21T22)(T13 ;v T23)] ;v (T31T3), where
for to ease reading we omit the symbol of horizontal composition (other ways of
composition are possible as well but the result remains the same).
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