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A Study of Variability
Models and Languages

in the Systems Software Domain
Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof Czarnecki

Abstract—Variability models represent the common and variable features of products in a product line. Since the introduction
of FODA in 1990, several variability modeling languages have been proposed in academia and industry, followed by hundreds
of research papers on variability models and modeling. However, little is known about the practical use of such languages. We
study the constructs, semantics, usage, and associated tools of two variability modeling languages, Kconfig and CDL, which are
independently developed outside academia and used in large and significant software projects. We analyze 128 variability models
found in twelve open source projects using these languages.
Our study (1) supports variability modeling research with empirical data on the real-world use of its flagship concepts. However,
we (2) also provide requirements for concepts and mechanisms that are not commonly considered in academic techniques, and
(3) challenge assumptions about size and complexity of variability models made in academic papers. These results are of interest
to researchers working on variability modeling and analysis techniques and to designers of tools, such as feature dependency
checkers and interactive product configurators.

F

1 INTRODUCTION

VARIABILITY models represent the common and
variable characteristics, or features, of products in

a product line. Software engineers use them to design a
product line architecture and to maintain it by adding
and evolving features and their dependencies. Product
line users derive concrete products from variability
models. A range of automated tools supports these
activities: analyzers verify model consistency or detect
dead features [1]; graphical configuration tools (configu-
rators for short) support intelligent choice propagation
and model completion [2], [3], [4]. These tools are
usually optimized for models with certain properties,
such as size and density of constraints, due to the
computational hardness of configuration problems.

Practical significance of variability modeling is
reflected in the rise of industrial tools, such as
pure::variants by Pure Systems GmbH and Gears by
Big Lever Software Inc., or in the recent inception of
the Feature Model1 sub-project of the Eclipse Modeling
Framework Technology umbrella. Recognizing the
interest, the OMG currently develops the Common
Variability Language standard (CVL) [5], [6].

Unfortunately, even though variability modeling
languages have been designed both in academia [7], [8],
[9] and industry (pure::variants, Gears), little scientific

• T. Berger and A. Wąsowski are with the IT University of Copenhagen,
Denmark.

• S. She, R. Lotufo, and K. Czarnecki are members of the Generative
Software Development Lab, University of Waterloo, Canada.

1. http://eclipse.org/proposals/feature-model

Debug Level :int Compress Data

Journalling Flash File System 

Misc. Filesystems

Support ZLIB Default Compression

None SizePriority

Support ZLIB→ ZLIB Inflate
JFFS2→ CRC ∧MTD
0 ≤ Debug Level ≤ 2

Fig. 1. Feature model of the JFFS2 filesystem

data has been published about their practical use and
the properties of their instances. Recent surveys [10],
[11], [12], [1] report hundreds of research contributions
on feature models, but no empirical studies on their
practical application.

Feature models are among the most well-researched
variability modeling languages. They were originally
introduced as part of the Feature-Oriented Domain
Analysis (FODA) methodology [7]. They gained popu-
larity with product-line researchers and practitioners
alike—mostly due to the simple and intuitive notation.
Feature models are tree-like menus of configuration
options, or features, with cross-tree constraints among
the features. Figure 1 presents a sample feature model
in the FODA notation. The model illustrates the core
concepts shared by many feature modeling languages.
It shows the variability of the Journalling Flash File
System—one of the numerous files systems supported
in open source operating systems. The boxes represent
features. The hierarchy represents dependencies; for
instance, the Default Compression feature allows a
further choice of sub-features that refine it: None,
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Priority, or Size. Filled dots mark mandatory features
(like Debug Level), which must be selected if the parent
is. Hollow dots represent optional features, which do
not have this constraint. Further, several features can
be related by a group constraint: the sub-features of
Default Compression are connected by an arc denoting
the XOR group constraint—exactly one of the three
choices has to be selected. Finally, textual cross-tree
constraints are listed to the right.

The popularity of feature models resulted in many
extensions and analysis techniques that build upon
them. But while comparative analyses of many of these
academic languages exist, there is no accessible data on
how the various language constructs are used. Large
models have been reported [13], [14], [15], but are not
available to research. Public model repositories, such
as S.P.L.O.T. (Software Product Line Online Tools [16])
and SPL2Go [17], only contain relatively small and
mostly academic models, expressed in very simple
languages. Whether the models reflect the complexity
of real-world models remains a speculation.

Our study aims at addressing this gap. We study real-
world variability modeling languages and their models.
Therefore, we investigate rich languages that i) use a
hierarchical organization of features, ii) are used in real
projects, iii) are equipped with configurators whose
source code can be inspected, and iv) have publicly
available models. These should be centralized and
easily identifiable models contained within a project,
which excludes manifests of package management
systems that are cross-project specification means.
We found two languages matching these criteria:
Kconfig [18] and the Component Definition Language
(CDL) [19]. Both were conceived as part of open-
source operating systems. Kconfig was created to
describe the variability of the Linux kernel. At least
ten other open source projects have also adopted the
language. Similarly, CDL emerged as part of eCos,
a real-time operating system for embedded devices.
Both Linux and eCos have vast configuration spaces
with thousands of features, which explains their need
for variability management. Complex variability has
driven the inception and evolution of both languages.

Our study addresses two main research questions.

RQ1: What variability modeling concepts are used in real-
world languages, and how?

We analyze the concepts and the semantics of
Kconfig and CDL, and compare them against the
well-established concepts of feature modeling—our main
frame of reference. We also inspect the configurators
of both languages.

Our goal is to provide empirical data on the use of
variability modeling concepts in languages originating
from practice, and to widen the understanding of the
design space of variability modeling. By inspecting the
configurators, we aim to characterize the configuration
processes and the analysis support available for our

Fig. 2. The eCos configurator GUI

subjects, but also to discuss potential improvements.

RQ2: What are the characteristics of real variability models?
We study all Kconfig and CDL models we can find.

We analyze their content, their structure, and their
constraints. We define metrics and develop an analysis
infrastructure to derive core characteristics. Finally, we
compare our subjects to academic models from the
S.P.L.O.T. repository.

Our goal is i) to investigate whether and how
frequently the identified variability modeling concepts
are used in real models, ii) to understand their content,
structure, and their benefit for the projects, and iii) to
assess whether, and if so how, these models differ from
typical models used in academic literature.

With respect to RQ1, our study shows that the core
concepts used in feature modeling are supported by
both Kconfig and CDL: Boolean (optional), integer
and string features, a hierarchy, group constraints, and
cross-tree constraints. Interestingly, both languages
and the models use concepts that are beyond core
FODA concepts and have not been as widely studied,
for instance, visibility conditions, computed defaults,
binding modes, and domain-specific vocabulary. Most
of these concepts aim at scaling variability modeling.
Finally, our study reveals different design choices in
how Kconfig and CDL provide these concepts.

We observe limitations in the configurators for
Kconfig and CDL (see Fig. 2 for the user interface of the
latter). The Kconfig configurator lacks reasoning pro-
cedures to support choice propagation, which instead
is handled by an error-prone imperative statement.
eCos boasts a far more intelligent configurator, based
on a home-grown inference engine. Unfortunately, the
reasoning procedures of the engine are incomplete
and may propose undesirable configuration choices.
Interestingly, both configurators follow a reconfigura-
tion paradigm: any configuration task starts with an
initial, possibly default, configuration and continues
by modifying this initial configuration.

With respect to RQ2, our study shows that the
investigated models represent a new class of models
that differ from most of the models used in literature.
They are significantly larger, have a very different
shape, and are used to configure nearly any variable
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aspect of the projects. They contain surprisingly many
data features, including integers, floats, and strings.
They also have more constraints—including derived
(computed) features—than commonly assumed in lit-
erature. Our analysis shows that the high connectivity
and density of their dependency graph challenges
many existing model reasoners.

Our results can be used in various ways. The
models and their characteristics provide the basis
for benchmarking and optimizing configurators and
reasoners. The occurrence and frequency of modeling
concepts in these models can be used to prioritize
the implementation of concepts in tools. Our results
about the content and structure of models can help
developers organizing their features when creating and
maintaining models. The language analysis provides
a fresh view on syntax and semantics of variability
modeling languages, widens the understanding of their
design space, and identifies problems that can occur
by making certain design decisions. Among others,
we provide requirements for constraint languages
within the systems software domain, confirm the need
for concepts such as derived defaults, and discover
intricate semantic interactions between some language
constructs.

We believe that our empirical data is of interest to a
growing audience of variability modeling practitioners
and researchers, especially in standardization efforts,
such as the ongoing development of OMG’s CVL
standard. In fact, two authors of this work actively
contribute to it.

We see our work as one, but self-contained step
within the long-term effort of improving the empirical
understanding of variability modeling. Our results
have to be complemented using other methods, such
as interviews or user studies, and by studies of other
domains, which confirm or refute our conclusions. This
process is known as theory-building from cases [20],
[21] and will eventually lead to a refined theory behind
variability modeling.

An earlier version of this work has appeared in [22].
In this version, we broaden the scope of our study
and analyze all models in the respective languages
we can identify (only two were studied before), which
amounts to a total of 128 models. Thus, our focus is
shifted towards the analysis of models, rather then
the exploratory investigation of concepts in variability
modeling languages. Nevertheless, we expand the
discussion about these concepts, among others adding
the new concept of capabilities. We also add a qualita-
tive discussion of structure and content of 13 models.
We improve presentation of the entire work, discuss
additional concepts, and correct some minor problems
of the original version.

The remainder of this paper is organized as follows.
Section 3 introduces our subject systems and their
models. Section 2 outlines our research methodology.
Section 4 reports the results of the language analysis

(RQ1); Section 5 reports the results of the model
analysis (RQ2); and Section 6 reports the results of
the configurator analysis (RQ1). Section 7 discusses
the lessons we learned from our study (combining RQ1
and RQ2). Finally, Section 8 discusses threats to valid-
ity; Section 9 reports the related work; and Section 10
concludes and summarizes our main findings.

2 METHODOLOGY

To address research question RQ1, we qualitatively
analyzed the Kconfig and CDL languages. We set off to
reverse engineer and formalize the semantics of both.
We extracted the information in user documentation
and tested the tools on the models found in the open
source projects and on manually created examples.
Finally we inspected implementation code of these
tools. The result is available in two technical notes
on formal semantics [23], [24]. In order to enable
SAT-based analyses, we also developed propositional
abstractions of these semantics. The entire process
allowed us to understand the languages in depth and
discover many subtle differences and connections.

Subsequently, we have mapped the concepts of the
FODA feature models to the corresponding concepts
in Kconfig and CDL according to the semantics of both
sets of concepts. As a side effect, we have obtained a
list of concepts not supported in FODA.

To understand the tool support, we inspected the
configurators of the two languages and their source
code with respect to configuration process, user as-
sistance, and reasoning support—in particular, the
facilities to propagate choices and to resolve conflicts
(unsatisfied constraints).

To understand the characteristics of real variability
models—research question RQ2, we searched online
for other open source projects using CDL or Kconfig,
beyond the host projects eCos and the Linux kernel. We
identified 128 models, which we analyzed qualitatively
and quantitatively. The qualitative part focuses on
characterizing the model contents and organizational
structures reflected in the feature hierarchy. To under-
stand the content, we manually inspected the models
and iteratively developed a classification schema for
features. This schema was discussed among the au-
thors, and after reaching consensus, it was used to
characterize the content of each model. To identify
patterns of feature organization, we inspected the first
three levels of the hierarchy shown in the configurator
for each model.

For the quantitative analysis, we developed our own
analysis tools LVAT2 and CDLTools3. We first extended
the original configurators of Linux and eCos to exploit
their parsers and to export the relevant data (feature
tree and feature properties) into our own format. We
then loaded these files into our developed analysis

2. http://code.google.com/p/linux-variability-analysis-tools
3. https://bitbucket.org/tberger/cdltools
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TABLE 1
Projects and their models

Language Model Version Features

Kconfig Linux X86 2.6.32 6320
axTLS 1.2.7 108
BuildRoot 2010.11 1938
BusyBox 1.18.0 881
CoreBoot 4.0 2269
EmbToolkit 0.1.0-rc12 1357
Fiasco 2011081207 171
Freetz 1.1.3 3471
ToyBox 0.1.0 71
uClibc 0.9.31 369
uClinux-base 20100825 383
uClinux-dist 20100825 1620

CDL eCos i386PC 3.0 1256
all 116 models 3.0 11161≤ 12472≤ 13963

1 min 2 mean 3 max

infrastructure to calculate statistics, and to further
transform the models into propositional formulas for
SAT-based analyses (see Sections 5.2.2 and 8). Both
infras tructures are freely available.

To characterize feature hierarchy, feature kinds, fea-
ture representation, and most importantly, constraints
as the primary source of complexity, we re-used and
defined appropriate metrics. For each model, their
values are given in tables or visualized using diagrams
throughout Section 5.

Finally, we compared our set of models to those
available in the S.P.L.O.T. repository by aggregating
core characteristics. Since the S.P.L.O.T. feature mod-
eling language is less expressive than Kconfig and
CDL, we relied on a subset of metrics to compare both
datasets.

3 THE SYSTEMS

Table 1 lists the subject systems and the sizes of their
variability models. Twelve of these are Kconfig models
stemming from different projects, and 116 are CDL
models stemming from eCos. Since Linux’ code base
contains models for multiple hardware architectures
(23), we focus on its Intel x86 models. We are confident
that our extensive search has identified all open-source
models expressed in Kconfig and CDL available as of
March 2013.

The models range from very small (ToyBox, 72
features) to very large (Linux, 6320 features). The
average number of features is 1708 (median 1357)
for the Kconfig, and 1247 (median 1250) for the
CDL models. This means that most of our subjects
are among the largest variability models known so
far, especially when compared to the feature models
available in academia (cf. Section 5.4).

3.1 Kconfig Systems
The Kconfig language and its tools were designed for
the Linux kernel and are developed and distributed

together with the kernel codebase. Although it never
became a standalone project, Kconfig has been adopted
by at least ten other open source projects in the systems
domain—perhaps naturally, as the strict resource
requirements of systems software often require static
configuration. In the following, we briefly introduce
the systems using Kconfig, starting with Linux and
following with the other projects in alphabetic order.

3.1.1 Linux Kernel
Kconfig is used to specify build-time configurations of
the Linux kernel since 2002. The graphical configurator
(xconfig) reads the Kconfig model and allows users to
select features in a user interface closely resembling
the CDL configurator of Fig. 2. It outputs a set of
feature-symbol-to-value mappings that are referenced
in Makefiles and in the source code as preprocessor
directives.

The studied version 2.6.32 of the Linux kernel sup-
ports 23 hardware architectures. The code base spans
1880 directories and 701 Kconfig files. Kconfig models
are distributed over multiple files, organized according
to the source code hierarchy. Each Kconfig specification
is placed alongside the related code. An architecture-
specific Kconfig file is used as a starting point for the
specification; a simple inclusion mechanism is used
to include other files. The x86 architecture model is
distributed over 504 Kconfig files.

3.1.2 axTLS
AxTLS is a small, memory-optimized client/server li-
brary implementing the TLSv1 SSL protocol. It contains
a tiny http and https server, test tools, and various
interfaces for major programming languages, such as
Java and C#. AxTLS’s model is rather small with 108
features distributed over five Kconfig files.

3.1.3 BuildRoot
BuildRoot is a tool for developers of embedded
systems that generates a complete embedded Linux
system, with a root file system and all necessary
packages, as opposed to just a kernel. The project
is a large collection of scripts to stepwise generate the
system. All steps are configurable and comprise: down-
loading and building a cross-development toolchain
for the target architecture; building development and
debugging tools; building core system programs and
shell commands (preferably BusyBox- and uClibc-
based, see below); as well as installing a kernel and
boot loader. BuildRoot also has several hundreds
of packages containing user space applications and
libraries, such as GUI-, networking- or system-related
programs.

3.1.4 BusyBox
BusyBox is a command-line tool for Linux-based
embedded systems that combines many standard shell
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commands, such as ls, cp or rm, in a single executable.
The BusyBox configurator allows customizing the exe-
cutable by selecting only commands and capabilities
needed on the target system. In particular, it allows
linking BusyBox to uClibc (described shortly) to save
even more space.

3.1.5 CoreBoot
The CoreBoot project delivers a free open source BIOS
as an alternative to proprietary BIOS implementations
in PCs and Workstations. CoreBoot provides the basic
code that is necessary to initialize the mainboard with
all its devices, such as RAM, PCI bus, and serial
interface. After initialization, CoreBoot executes third-
party payload, which can be a bootloader for an
operating system, device-specific firmware (such as the
sub-project OpenBios), or an operating system kernel
directly.

3.1.6 EmbToolkit
EmbToolkit (Embedded Systems Toolkit) is a build
system designed for embedded system developers
similar to BuildRoot. EmbToolkit creates a cross-
development toolchain with a custom C compiler, C
library, and other development and debugging tools.
The preferred C library is EGLIBC (another lightweight
implementation of the standard C library), but uClibc
can also be used alternatively. EmbToolkit generates a
root filesystem containing core system tools including
BusyBox and GUI-, networking- or system-related
programs. These are installed as packages selectable
in the configurator.

3.1.7 Fiasco
Fiasco is a derivative of the L4 microkernel family, used
in conjunction with the real-time operating system
DROPS4. Fiasco runs on a variety of systems, ranging
from small embedded to large multi-processor architec-
tures with Intel x86, ARM, or PowerPC processors. It
supports preemptive multi-tasking with hard priorities
for processes, hardware-assisted virtualization, in-
kernel debugging, and provides an object-oriented
kernel API. In contrast to the Linux kernel, Fiasco has
much fewer configuration options; they concern the
target hardware, debugging, and build configuration
options, but not whole subsystems or drivers, which
are outside the kernel.

3.1.8 Freetz
The Freetz (for Free Fritz) project provides an al-
ternative firmware for consumer internet routers of
the popular AVM FritzBox series. Freetz extends the
proprietary firmware with extra functionality, such as
an improved firewall, various servers (such as HTTP,
VPN, SMB), and many other tools as packages. It also
allows users to remove unnecessary features of the
original firmware by selecting individual patches.

4. http://os.inf.tu-dresden.de/drops/overview.html

3.1.9 ToyBox
ToyBox is our smallest subject. It has the same goal as
BusyBox: combining a subset of the GNU shell com-
mands into one executable. It was started by a former
BusyBox maintainer, who found that BusyBox was too
difficult to extend. ToyBox currently implements 35
of BusyBox’ 309 commands and three additional ones.
The project appears to have been a playground for the
author. It is now largely abandoned, the last release
dates back to the end of 2009.

3.1.10 uClinux
uClinux is a Linux distribution for embedded systems.
At its core is a tailored version of the Linux kernel for
micro-controllers, which today supports 14 hardware
architectures, such as ARM, ADI Blackfin, or MIPS.
Originally created as a fork of the Linux 2.2 kernel,
it is widely recognized today and its core parts had
been merged into the official Linux kernel.

The configuration of uClinux forgoes in a multi-
level fashion (similar to staged configuration [25]) in
three steps, each governed by a dedicated Kconfig
model. First, basic features are configured: hardware
architecture and libraries (the uClinux-base model in
Table 1). Then the kernel is configured using templates
for supported architectures. Finally, a wide variety of
software packages can be selected from the uClinux
distribution (the uClinux-dist model in Table 1). We
study the model of the first and the third step. The
second step model is essentially a Linux kernel model
for the target hardware—similar to the mainline x86
kernel model already included in our study.

3.1.11 uClibc
Initially a sub-product of uClinux, the uClibc project is
now an independent implementation of the standard
C library for embedded microprocessors. It provides
only a tailored subset of the functions present in the
regular C library (glibc) used with Linux distributions,
excluding functionality not needed on embedded
systems. To further address the space requirements, it
can be configured to support a minimal set of needed
functions, reflecting the needs of a given project.

3.2 eCos CDL
The Component Definition Language (CDL) was de-
signed to directly meet the needs of the configurable
embedded operating system eCos, which aims at a
a high degree of portability, low memory usage, and
small code image sizes. With a market share of 5-6%,
eCos powers, for example, multimedia, networking,
automotive, and even satellite and space-based de-
vices.5

Unlike Kconfig, which is a standalone domain-
specific language (DSL), CDL is an internal DSL [26]

5. http://ecoscentric.com/ecos/examples.shtml
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k-1 menuconfig MISC_FILESYSTEMS
k-2 bool "Miscellaneous filesystems"
k-3
k-4 if MISC_FILESYSTEMS
k-5
k-6 config JFFS2_FS
k-7 tristate "Journalling Flash File System" if MTD
k-8 select CRC32 if MTD
k-9

k-10
k-11
k-12
k-13 config JFFS2_FS_DEBUG
k-14 int "JFFS2 Debug level (0=quiet, 2=noisy)"
k-15 depends on JFFS2_FS
k-16 default 0
k-17 range 0 2
k-18 --- help ---
k-19 Debug verbosity of ...
k-20
k-21
k-22 config JFFS2_FS_WRITEBUFFER
k-23 bool
k-24 depends on JFFS2_FS
k-25 default HAS_IOMEM
k-26
k-27
k-28 config JFFS2_COMPRESS
k-29 bool "Advanced compression options for JFFS2"
k-30 depends on JFFS2_FS
k-31
k-32 config JFFS2_ZLIB
k-33 bool "Compress w/zlib..." if JFFS2_COMPRESS
k-34 depends on JFFS2_FS
k-35 select ZLIB_INFLATE
k-36 default y
k-37
k-38 choice
k-39 prompt "Default compression" if JFFS2_COMPRESS
k-40 default JFFS2_CMODE_PRIORITY
k-41 depends on JFFS2_FS
k-42 config JFFS2_CMODE_NONE
k-43 bool "no compression"
k-44 config JFFS2_CMODE_PRIORITY
k-45 bool "priority"
k-46 config JFFS2_CMODE_SIZE
k-47 bool "size (EXPERIMENTAL)"
k-48 endchoice
k-49 endif

c-1 cdl_component MISC_FILESYSTEMS {
c-2 display "Miscellaneous filesystems"
c-3 flavor none
c-4 }
c-5
c-6 cdl_package CYGPKG_FS_JFFS2 {
c-7 display "Journalling Flash File System"
c-8 requires CYGPKG_CRC
c-9 implements CYGINT_IO_FILEIO

c-10 parent MISC_FILESYSTEMS
c-11 active_if MTD
c-12
c-13 cdl_option CYGOPT_FS_JFFS2_DEBUG {
c-14 display "Debug level"
c-15 flavor data
c-16 default_value 0
c-17 legal_values 0 to 2
c-18 define CONFIG_JFFS2_FS_DEBUG
c-19 description "Debug verbosity of...."
c-20 }
c-21
c-22 cdl_option CYGOPT_FS_JFFS2_NAND {
c-23 flavor bool
c-24 define CONFIG_JFFS2_FS_WRITEBUFFER
c-25 calculated HAS_IOMEM
c-26 }
c-27
c-28 cdl_component CYGOPT_FS_JFFS2_COMPRESS {
c-29 display "Compress data"
c-30 default_value 1
c-31
c-32 cdl_option CYGOPT_FS_JFFS2_COMPRESS_ZLIB {
c-33 display "Compress data using zlib"
c-34 requires CYGPKG_COMPRESS_ZLIB
c-35 default_value 1
c-36 }
c-37
c-38 cdl_option CYGOPT_FS_JFFS2_COMPRESS_CMODE {
c-39 display "Set the default compression mode"
c-40 flavor data
c-41 default_value { "PRIORITY" }
c-42 legal_values { "NONE" "PRIORITY" "SIZE" }
c-43 }
c-44 }
c-45 }
c-46
c-47
c-48
c-49

Fig. 3. A model excerpt expressed in Kconfig (left) and CDL (right). Corresponding definitions are aligned.

embedded in Tcl—an extensible dynamic scripting
language. CDL inherits characteristics from Tcl, such
as syntactic nesting of blocks and the ability to embed
Tcl control structures (conditional statements, for-loops)
in models. CDL’s configurator has an inference engine
to support interactive conflict resolution. Recall that
Fig. 2 presents a glimpse of the configurator’s user
interface.

We studied version 3.0 of eCos, which supports 116
hardware architectures, called targets, and comprises
almost a million lines of code. The code base is divided
into 500 packages, each containing the source code and
a set of CDL files declaring the variability of the pack-
age. Each target defines a set of packages specific to the
hardware architecture. So-called templates aggregate
packages with hardware-independent functionality. In
the configurator, a user first selects a target and then
one of the templates; finally, the user may decide to load
additional packages into the configuration tree. We
have chosen to study the model of the i386PC target
and the so-called all template—the most inclusive
template containing almost all hardware-independent
packages.

4 THE LANGUAGES

We address our first research question (RQ1) by
summarizing the key concepts found in the languages.
We use the feature model in Fig. 1 as the running
example. Fig. 3 shows the same model in Kconfig (left)
and CDL (right). Both snippets are extracted from
the original Linux and eCos models. They define the
features of the Journalling Flash File System, version
2 (JFFS2), supported by both systems. In fact, eCos’s
JFFS2 implementation was ported from Linux. JFFS2
is one of the very few of such ports, but it makes
an ideal example to illustrate the similarities and
differences between Kconfig and CDL. To give a
realistic impression of both languages, we keep the
examples close to the originals and retain the original
identifiers, which differ somewhat from the names in
Fig. 1. The few lines introduced purely for the purpose
of the example are underlined, and we leave out some
unnecessary parts of the corresponding sources to
avoid clutter. We drew the Debug Level feature in Fig. 1
using the mandatory feature with integer attribute
notation introduced by FODA [7], because it closely
resembles how features are represented in Kconfig
and CDL. There is, so far, no consensus on a unified
notation for attributes in feature models [1].



TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013 7

TABLE 2
Mapping of concepts between Kconfig, CDL, and feature modeling

concept Kconfig CDL feature modeling

fe
at

ur
e

ki
nd

s Grouping menu, menuconfig, choice package, component feature (non-leaf)
Individual config option, interface feature (leaf)

fe
at

ur
e

re
pr

es
en

ta
tio

n

Composition single value bool. value with opt. data value bool. value with opt. attribute1

Feature type
Switch bool, tristate bool, booldata (optional)
Data hex, int, string booldata, data integer1, string1

None (menu) none (mandatory)

fe
at

ur
e

hi
er

ar
ch

y

Specification syntactic and computed in configurator syntactic and re-parenting syntactic
Child-to-parent impl. visibility configuration & visibility configuration
Root synthetic synthetic explicit

gr
ou

p
co

ns
tra

in
ts Mutex [0..1] optional Boolean choice interface constraint, INT ≤ 1 MUTEX group1[27]

Or [1..∗] mandatory tristate choice interface constraint, INT ≥ 1 OR group [27]
Xor [1..1] mandatory Boolean choice interface constraint, INT = 1 XOR group
Interval [m..n] N/A interface constraint, m ≤ INT ≤ n [m..n] group1[28]
Cross-hierarchy group N/A interface constraint, m ≤ INT ≤ n N/A

fe
at

ur
e

co
ns

tra
in

ts

Configuration select requires, active_if cross-tree constraint
Value restrictions range legal_values cross-tree constraint1, enum attribute1[9]
Derived features non-prompt default calculated, interface rare1[8]

Defaults prompt default default_value rare1[27]
Visibility conditions prompt condition active_if rare1[8], [29]
Expression operators &&, ||, !, =, != also inequality, arithm. and str. ops. not standardized2

Binding modes three-value logic N/A rare1[27], [29]

ot
he

r Textual content prompt, help display, description description
Modularization textual inclusion dynamic loading/unloading rare1[9], [30], [31], [32]
Build symbols one-to-one one-to-many unspecified1

Code mappings no, uses KBuild (m:n) yes (1:n), and build specifications N/A1

1 Not supported in the S.P.L.O.T. model repository 2 S.P.L.O.T. expression operators: &&, ||, !

The features shown in Fig. 3 configure different
aspects of the JFFS2 filesystem driver. The first child
of the main JFFS2 feature sets the debugging level,
which is an integer ranging from 0 to 2; the second
one enables a write buffer; and the third one configures
the compression capability of the filesystem. The third
one is further subdivided into features configuring the
use of the ZLIB library for compression, and setting the
compression mode to one of none, priority or size. As
the example shows, the developers of Linux and eCos
not only used different language constructs, but also
a slightly different structure to model the filesystem’s
configurability. The screenshot in Fig. 2 shows the
configuration of JFFS2 in the CDL configurator.

Our discussion in Sections 4.1 to 4.6 follows the
outline given in Table 2, from top to bottom. The
table maps concepts from Kconfig and CDL to feature
modeling. Thus, the last column does not show all
existing feature modeling concepts, but only those we
could map to Kconfig and CDL concepts. However,
we provide citations for concepts that go beyond the
original FODA notation. Since we will later compare
the Kconfig and CDL models with models available in
the S.P.L.O.T. repository, the last column also indicates
which concepts are supported by the S.P.L.O.T. feature
modeling language.

4.1 Feature Kinds
Both in CDL and Kconfig, features are labels orga-
nized in a hierarchy, as known from most variability

modeling languages (Table 2, row 3). We introduce two
orthogonal classifications for different kinds of features.
First, we distinguish between grouping and individual
features, according to their purpose in the feature
hierarchy; see Table 2, row 1. Second, we distinguish
between various roles that features can take (not listed
in Table 2).
Grouping and individual features. Grouping features
are used to structure models by gathering a set of
features as their children. Nevertheless, a grouping
feature can also provide a configuration option. An
example is the “Journalling Flash File System” in Fig. 1.
Some grouping features further impose cardinality
constraints on their children (see Section 4.4), such as
the exclusive choice “Default Compression” in Fig. 1,
which has exactly one selectable child at a time. In
contrast, individual features have no children; they are
leaves in the hierarchy. Individual features are used
purely for providing configuration options.
Roles of features. Features that represent configura-
tion options can take one or more of the following
roles:

1) User feature: a configuration option that can be
set by the user in a configurator, like all active
(not grayed-out) features shown in Fig. 2;

2) Implementation feature: a configuration option ac-
cessed by the build system or a generator, like
those referenced with #IF and #IFDEF preproces-
sor directives in the Linux code excerpts in Fig. 4;

3) Derived feature: a configuration option automat-



TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013 8

ically computed via constraints, like “JFFS2 FS
tests” with a grayed out value in Fig. 2.

4) Capability: an abstraction of functionality that can
be provided by several features interchangeably.
For example, Linux’ HAVE_IDE feature repre-
sents hardware IDE support. Other features can
depend on this capability instead of on a concrete
IDE controller. This way coupling is reduced.

Since Kconfig and CDL are domain-specific lan-
guages, they provide specialized keywords for these
different kinds of features.

In Kconfig, feature kinds reflect their appearance in
the configurator UI. Menus are pure grouping features.
Menuconfigs are grouping features that also represent
configuration options; they look like menus that can
be enabled and disabled by clicking. Choices are like
menus or menuconfigs except that they also impose
cardinality constraints on their children. Configs are
individual features; however, some are rendered as
grouping features with children in the configurator, as
we will see later in Section 4.3.

Kconfig has no syntax to indicate the role of features.
Every config or menuconfig can be an implementation
feature, that is, their names can always be referenced
in build scripts or code. User and derived features are
distinguished by their prompt clause—a label shown to
the user and declared right after the type of the feature,
such as in Lines k-7 or k-14 in Fig. 3 (for details, see
visibility of features in Section 4.5). Derived features
have no prompt, their value is always restricted by
constraints and cannot be changed directly by the
user. Finally, capabilities are modeled by constraints
that other features declare on them; more precisely, if
a feature provides a capability, it declares a constraint
that automatically selects the corresponding capability
feature.

In Fig. 3, the menuconfig MISC_FILESYSTEMS
(Line k-1) corresponds to the root node in Fig. 1. It
contains a choice (k-38) corresponding to the parent
feature of the XOR-group, Default Compression, and
eight configs corresponding to the remaining features
of Fig. 1—all enclosed by a pair of matching if (k-
4) and endif (k-49) keywords. Among all individual
features, JFFS2_FS_WRITEBUFFER (k-22) is a derived
feature that is not visible in the configurator, because it
has no prompt clause (k-23). Its value is calculated as
equal to the value of the HAS_IOMEM capability (refer-
enced in Line k-25, but defined elsewhere). All other

#if CONFIG_JFFS2_FS_DEBUG > 0
/* Enable "paranoia" checks and dumps */
#define JFFS2_DBG_PARANOIA_CHECKS
#define JFFS2_DBG_DUMPS

...

#ifdef CONFIG_JFFS2_ZLIB
jffs2_zlib_init();

#endif

Fig. 4. Feature symbols referenced in code

individual features are both user and implementation
features.

In CDL, feature kinds reflect types of implemen-
tation entities they map to. Packages are top-level
containers for features, mapping to eCos packages.
Components are nested features grouping other features.
Options are individual configuration options, nested
under packages or components. Several—possibly
exclusive—features can provide equivalent function-
ality required elsewhere. Interfaces represent such
capabilities. In our example (Fig. 3), Line c-9 states
that CYGPKG_FS_JFFS2 implements the interface
CYGINT_IO_FILEIO (not shown). The value of an inter-
face is the number of selected features implementing it.
Declaring constraints over this value allows imposing
cardinality constraints on the implementing features.

Packages and components represent both grouping
and individual features; options and interfaces are
always individual and cannot group features. By
default, all features can be implementation features unless
they explicitly suppress defining a symbol with the
keyword no_define. Being a user or derived feature
is determined by the declared constraints, except for
interfaces, which are are always derived and not shown
to the user. Interfaces explicitly represent capabilities.

4.2 Feature Representation

The semantics of a feature model is a set of configura-
tions. A configuration specifies the presence or absence
of each feature, and a value for the related integer
or string if the feature is present (when applicable).
The configurations are represented differently in the
Kconfig and CDL language (see Table 2, row 2). Partial
configurations, where features can be in an undecided
state, are not supported by Kconfig and CDL, as de-
scribed later in Section 6. However, both configurators
have some support to load incomplete configurations
and expand them into full configurations, as explained
shortly.

In Kconfig, a configuration assigns a single value
to each feature. If F is the set of all features in the
model, and Val is a set of all possible values, then a
particular configuration σ maps features to values:

σ : F 7→ Val
and if σ(f) = v, then v ∈ type-of(f) (1)

Table 2 lists the possible feature types in three cate-
gories: switch, data, and none.

Switch features appear as a checkbox in the config-
urator. Data features allow the user to input a value
in a text box. Kconfig’s menus have no type, which
corresponds to features of type none in CDL (see
below). In (1), we assume that the type none contains
a single uninterpreted element representing no value.

The Kconfig type bool has two values, y and n,
internally represented by 2 and 0. The latter, 0, denotes
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feature absence, while 2 means that the feature’s imple-
mentation should be compiled statically into the kernel.
Tristate resembles bool, except for the additional
value m, internally represented by 1. It indicates that the
implementation should be compiled as a dynamically
loadable module—Linux’s mechanism to load drivers
at runtime. For example, for the tristate feature
JFFS2_FS (k-6), the user can choose to deselect it,
to create a dynamically linked module, or to link it
statically. Its descendant JFFS2_ZLIB (k-32) of type
bool can only be de-activated; but when selected, its
implementation is always linked statically into the
JFFS2 compilation unit, without creating a separate
module.

Kconfig supports two integer types: int (decimal)
and hex (hexadecimal). Both types also allow an empty
value, which is used to encode the absence of an integer
feature. The type string is ambiguous in this respect:
a string feature with the empty value can be seen as
a present feature with that value or an absent feature;
the two cases are indistinguishable.

In CDL, every feature is composed of two values:
an enabled value and a data value. The enabled value is
a Boolean and encodes the presence or absence of the
feature; the data value is dynamically typed and used
to store numbers and strings. Thus, a configuration
maps features to value pairs:

σ : F 7→ {0, 1}×Val
and if σ(f)=(e, d), then d∈ type-of(f)

(2)

CDL terminology for a feature type is flavor. Flavors
map to FODA features as follows:

none 7→ Mandatory with no attribute
bool 7→ Optional with no attribute
data 7→ Mandatory with attribute

booldata 7→ Optional with attribute

The example model in Fig. 3 includes features of
various flavours. CYGOPT_FS_JFFS2_DEBUG
(c-13) of flavour data takes numeric values.
CYGOPT_JFFS2_NAND (c-22) takes Boolean
values (flavour bool), and the data feature
CYGOPT_FS_JFFS2_COMPRESS_CMODE (c-
38) assumes string values.

An important aspect of variability modeling tech-
niques are partial configurations, which are not sup-
ported in both languages. However, the Kconfig con-
figurator allows to update the configuration of an
old model (previous version of the corresponding
project) to a new one, by removing features that
do not exist anymore and adding default values for
new features. However, the mechanism is very simple
and can cause invalid configurations, as mentioned
in the documentation. In CDL, an alternative non-
graphical configurator, which precedes the current
configurator, can expand an incomplete configuration
to a full configuration using the inference engine. In

fact, this was the standard way of configuring eCos
before introduction of the graphical configurator.

4.3 Feature Hierarchy

All major variability modeling languages that stem
from academic research admit a single feature hierar-
chy in the model, which is then reused in the respective
configuration tools. In the FODA example in Fig. 1,
the diagrammatic tree represents both the intended
configuration hierarchy and the syntactic nesting.

In contrast, the hierarchies displayed in the Kconfig
and CDL configurators deviate from the syntactic
structure of the models. Thus, we distinguish between
the syntactic model hierarchy and the configurator
hierarchy. The former is given by the syntactic nesting
of features in the model, such as the nesting of configs
under menus or choices in Kconfig, or options and
components under other components and packages in
CDL. The latter is shown to the user in the configurator,
as in Fig. 2.

In Kconfig, syntactic nesting within menuconfigs
and choices is reflected in the configurator hierarchy.
However, configs can also appear as children of other
configs in the configurator, even though they cannot
be nested syntactically in the model. The configurator
has an algorithm to additionally nest syntactic sibling
configs based on their declared dependencies. For
example, a group of consecutive configs declaring
dependency on the same parent (lines k-13–25) is
placed under this parent (JFFS2_FS).

In CDL, the configurator hierarchy follows the
syntactic nesting of features, unless declared otherwise.
Re-parenting is a mechanism to explicitly specify a
different parent for a feature than its syntactic scope
in the model (see Line c-10). It allows adjusting the
developer-oriented structure of the model, which is
primarily driven by eCos’ packaging mechanism, to
a more user-oriented view, before it is shown in the
configurator.

An important property of the feature hierarchy in
FODA-like languages is that the presence of a child
feature implies the presence of its parent: for each edge
from child c to parent p, we have that σ(c) → σ(p).
The configurator hierarchy in CDL has this property
too. In contrast, the configurator hierarchy in Kconfig
only enforces visibility between a child and its parent—
a feature is visible if its parent is visible. However,
if the parent is not selected, a feature can still be
selected (even exclude the parent) in some cases. Such
a configuration is still valid in Kconfig, unlike in any
other feature modeling language known to the authors.

Deselecting branches in the configurators has dif-
ferent impact on the configuration. In Kconfig, the
previous values of all descendants are only kept
in memory and lost on reload—except for invisible
derived features. In CDL, the user-selected values will
always be saved in the configuration file; they are
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annotated with the source of the selection (by user, by
inference engine, or by a default; cf. Section 6), thus,
re-enabling a branch always restores previous values.

Finally, both Kconfig and CDL configurators show
a synthetic root—a fresh root node that is not explicitly
specified in the model. This enables working with
diagrams that are forests and not trees like in FODA.

4.4 Group Constraints

In feature modeling, group constraints restrict the
number of selectable sibling features if their parent
is selected (Table 2, row 4): exactly one child for
XOR, at least one for OR, and at most one for MUTEX.
Alternatively, the constraint can be given as an interval.

In Kconfig, the choice keyword groups a set of
features and imposes a group constraint on them—
either XOR or MUTEX. Technically, such a choice is
either bool or tristate with a mandatory or op-
tional modifier flag. If not specified otherwise, a choice
is mandatory and bool, which semantically represents
an XOR group, such as the choice in line k-386. If the
choice is optional and bool, it realizes a MUTEX group.
Tristate choices behave differently and cannot be
interpreted as feature modeling groups. Mandatory
tristate choices either admit exactly one feature set
to y (all others to n), or any number of features set to
m. This behavior is useful if various drivers exist for
one hardware device where only one can be compiled
into the kernel, but all can be built as modules. This
realizes an XOR group at runtime, as only one driver
can be loaded per device. Finally, optional tristate
choices—surprisingly—do not impose any cardinality
constraint. Note that previously [22], we misinterpreted
the semantics of tristate choices as OR groups.

CDL interfaces are a more expressive construct for
restricting cardinality of a set of features beyond OR,
XOR, and MUTEX. The value of an interface counts
the number of its selected implementations (concrete
features). Restricting this value introduces a cardinality
constraint (= 1 for XOR, ≥ 1 for OR, and ≤ 1 for
MUTEX). In contrast to FODA-like languages, CDL does
not require that all implementing features are siblings—
the feature activating the group constraint does not
need to be a parent of the constrained features, which
allows creating groups that cross-cut the hierarchy.

4.5 Feature Constraints

CDL and Kconfig support three types of constraints
(Table 2, row 5): (1) configuration constraints restrict
the legal combinations and values of features; (2)
defaults provide default values for features, possibly
depending on other features (computed defaults); they
can be overridden by the user; (3) visibility conditions

6. Note that eCos developers decided to model this group
differently (c-38): with a data-flavoured option holding one of
three string values encoding the three compression modes.

control the visibility of features in the configurator
UI. Features whose visibility condition is false are not
shown or otherwise disabled for user input. Computed
defaults and visibility conditions have not been widely
considered in feature modeling. Unlike configuration
constraints, defaults and visibility conditions have no
direct impact on the configuration semantics. However,
they interact with each other in complex ways that
may impact configuration semantics. We will explain
this soon.

A configuration constraint is expressed
using select in Kconfig and requires or
active_if in CDL. For instance, the dependency
Support ZLIB→ZLIB Inflate of Fig. 1 is expressed as a
select in line k-35 and as a requires in c-34. Both
select and requires take a condition, say p, and
denote the configuration constraint f → p, where f
is the feature in which they are defined. While p can
only be a feature identifier for select (Kconfig), it
can be an arbitrary Boolean expression for requires
(CDL), possibly accessing multiple features via logical,
arithmetic, and string operators.

CDL’s active_if has the same syntactic form and
configuration semantics as requires, except that it
also enforces a visibility condition. While the visibility
of a child in both Kconfig and CDL is inherited
from its parent in the configuration hierarchy, an
explicit visibility condition allows non-parent features
to control the visibility too. For example, the visibility
of CYGPKG_FS_JFFS2 is controlled by the parent
(c-10) and another feature, MTD (c-11).

In Kconfig, the visibility of a feature is controlled by
a prompt condition. A prompt is a string that follows a
type declaration (k-7). It is shown to the user when the
feature is visible (the condition is satisfied). The condi-
tion is specified after the prompt: here MTD in line k-7.
Note that the select statement in line k-8 is also
conditioned on the same condition as the prompt. This
pattern of guarding other constraints by the prompt
condition is frequent in Kconfig; thus, the language
provides a syntactic sugar for it. The depends on
keyword adds a condition to the prompt and all other
constraints of a feature. For example, the prompt,
default, and range specifications of JFFS2_FS_DEBUG
are only active if JFFS2_FS is selected, as specified
in line k-15. Constraint expressions in Kconfig can
use logical operators and equality tests over bool,
tristate, integers and strings.

Range restrictions on integer values are specified
using range in Kconfig and legal_values in CDL
(k-17, c-17). The latter can also be used to specify
enumerations of values (numbers, strings, or both),
such as in c-42. Enumerations are easier to handle for
reasoners (such as SAT or CSP solvers) than ranges,
which tend to have larger domain sizes.

Default values are introduced using the keywords
default in Kconfig (k-16) and default_value in
CDL (c-16). If no default value is specified, Kconfig
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assumes n (0) for bool and tristate, and the empty
string for string, int, and hex. In CDL, the assumed
defaults for boolean and data values is 0, which is
dynamically cast to an empty string if needed.

In Kconfig, visibility conditions, defaults, and con-
figuration constraints interact in intricate ways. If the
visibility condition of a feature is false, its default
value specification becomes a configuration constraint
because the feature cannot be accessed by the user
to modify the default value. Such invisible features
with calculated values are derived features, as defined
previously in Section 4.1. JFFS_FS_WRITEBUFFER
in line k-22 is derived since it has no prompt declared,
thus, its visibility condition is false and its default
determines the value. Notice that this feature was not
shown in Fig. 1, as FODA notation does not include
syntax for invisible, derived features.

An example of a conditionally derived feature is
JFFS2_ZLIB, with a stronger visibility condition
(prompt and depends on) than its default condition
(just depends on). Thus, when the feature is not
visible, its value is derived using its default. This
happens even if its parent JFFS2_COMPRESS is not
selected. Consequently, JFFS2_ZLIB does not establish
a child-parent implication, as in feature modeling
notations.

CDL clearly separates defaults, which can be overrid-
den by the user and have no configuration semantics,
from derived features, which cannot be changed
directly by the user. Default values are specified
using default_value and only take effect when the
feature is visible. Invisible features cannot be part of
a configuration. Derived features comprise interfaces
as well as other feature kinds with the calculated
keyword, which carry an expression that computes
their values (for example Line c-25). A feature can
either use default_value or calculated, but not
both. Thus, complex conditionally derived features do
not appear in CDL.

A unique feature of Kconfig is its first-class support
for a three-valued logic. Its main operators are defined
as follows:

eval(! e) = 2− eval(e)

eval(e1 && e2) = min(eval(e1), eval(e2))

eval(e1 || e2) = max(eval(e1), eval(e2))

The semantics of expressions follows the logic of
Kleene, where m corresponds to the unknown state.
The equality and inequality test is only defined be-
tween features and constants, which can be of type
tristate, int, hex and string (but not between
two features). It evaluates to y (2) if the values match,
and to n (0) otherwise.

4.6 Further Concepts
Textual content. Both Kconfig and CDL allow pro-
viding natural language descriptions for features (Ta-

ble 2, row 6): a short text, called prompt (k-7) and
display (c-7), that is displayed to the user to elicit a
configuration decision; and a longer description, called
help (k-19) and description (c-19), that explains
the feature in detail.
Modularization. Modularization allows division of
specifications into parts. Kconfig and CDL have mod-
ularization capabilities that range from static source
inclusion in Kconfig to more complex mechanisms for
dynamic loading of packages during configuration in
CDL.
Mapping to code. All configs and menuconfigs in
Kconfig correspond directly to symbols controlling the
build system, and to the preprocessor directives of the
same name (see Fig. 4). These symbols and their values
are referenced in imperative build logic inside the
KBuild system and control the inclusion of particular
source files from the Linux codebase.

In Kconfig, it is possible that separately declared
features have the same name and, thus, define the
same preprocessor symbol. Since all these features
share the same state (same value) in the configu-
rator, doing so can lead to intricate interactions of
dependencies. In CDL, feature names do not always
correspond directly to symbols; instead, a more fine-
grained control over symbols is supported, such as
suppressing symbols (keyword no_define), defining
additional ones, or changing their formatting. Line c-
18 in Fig. 3 shows an example of a feature defining a
build symbol (CONFIG_JFFS2_FS_DEBUG), which
actually appears within a preprocessor directive in the
code ported from Linux to eCos.

5 THE MODELS

We now turn to the actual models to address our sec-
ond research question (RQ2). Our qualitative analysis
aims at identifying design criteria that modelers used
when creating the models. Our quantitative analysis de-
termines which language concepts of Kconfig and CDL
are actually used in the models and how frequently. We
report detailed data on all Kconfig models and eCos’s
i386PC model. Since all eCos models are relatively
similar, we only provide aggregated quantitative data
for them.

In this section, we first characterize the contents
of our models, then discuss their organizational
structures, then analyze their constraints, and finally
compare them with models in the S.P.L.O.T. repository.

5.1 Content

Our subject models span fairly different domains and
are used to configure diverse aspects of the projects.
To illustrate their content, we report observations
from our qualitative analysis in the first part, and
the quantitative analysis in the second part of this
subsection.
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TABLE 3
Themes of features in the models
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domain-specific • • • • • • • • • • • • •
diagnostics • • • • • • • • • • • •
build • • • • • • • • • • •
hardware env. • • • • • • • • • •
lifecycle • • • • • • • • • •
deployment • • • • • • •
i18n • • • • • •
imported • • • • •
ext. library • • • • • •
software env. • • • • •
test case • • •

5.1.1 Feature Themes

Although most features configure domain-specific
functional aspects of the systems, we found technical
features that are less concerned with functionality,
but instead configure the build process, debugging
levels, the target hardware environment, and so on. To
characterize the model contents, we defined themes of
features by manual inspection. We distinguish between
domain-specific and multiple technical feature themes:

• Domain-specific features are those representing
the main content of a model. They describe
functional and non-functional concepts within the
domain of the host project and belong to none of
the following technical themes.
Most features in the models are domain-specific,
for example networking options in Linux, SSL
encryption options in axTLS, or the JFFS2 filesystem
in eCos.

• Build features configure the build process of a
system and have no impact on functionality. A
sub-theme is test cases, which we define separately
below.
Examples of build features are compilation (CC
flags) and linker (LD flags) options, but also download
sites in projects that download software packages
(such as EmbToolkit).

• Deployment features configure the installation
process.
Examples are installation options, such as the
target folder for axTLS, but also decisions so as
to move files from the firmware image to a USB drive
in Freetz, or to create symbolic filesystem links to the
BusyBox executable.

• Diagnostics features aim to provide runtime anal-
ysis facilities, such as debugging or profiling.
Examples are the BigInt Performance Test feature
in axTLS, a feature enabling debugging symbols in
BusyBox, or a feature adding tracing tools to the
Freetz firmware image.

• Hardware environment features customize the

system to run on a specific hardware, such as
CPU, memory, or I/O devices.
Typical examples are features that determine
whether the processor supports APIC in Linux, set
the router’s flash memory size in Freetz, or configure
serial ports in eCos.

• Lifecycle features configure explicitly deprecated
or experimental functionality.
Deprecated features are obsolete or not officially
supported any more, but often remain in the
model for compatibility or dependency reasons.
Examples are the Open Sound System in Linux,
the msh command in BusyBox, the PS/2 keyboard
init in CoreBoot, or hardware architectures whose
support is broken in uClibc.
Experimental features enable functionality in al-
pha or beta mode, such as profiling support in
Linux, a central configure cache file in BuildRoot, or
the CYG_HAL_STARTUP feature’s value ROM in
eCos.

• I18N features comprise internationalization op-
tions.
Examples are features that select the firmware
language (EN, DE, A-CH) in Freetz, enable Unicode
support in BusyBox, or configure timezone support
in uClibc.

• Imported features were copied from other models.
They often occur in projects that include other
projects with their own variability models.
For example, EmbToolkit includes both BusyBox
and uClibc, therefore, most of their features were
copied into EmbToolkit’s model.

• External library features configure included li-
braries in the project. Note that if the library
has its own model, we classify copied features
as imported.
Examples are features that include certain shared
libraries in Freetz, configure the EGLIBC library in
EmbToolkit, or select a specific thread library in
BuildRoot.

• Software environment features configure the
presence of certain software (libraries or appli-
cations) in the target runtime environment.
Examples are features to select the target execution
platform (Linux, Cygwin or Win32) in axTLS, to con-
figure whether the platform has shadow passwords
in uClibc, or to set the location of existing kernel
modules in BusyBox.

• Test case features trigger and configure unit tests
during the build process.
Test cases exist for almost every major component
in eCos. Sample features comprise HTTP server
tests, POSIX CRC tests, or CPU load measurement
tests.

Table 3 shows all themes and their occurrence in each
model. The models (columns) are ordered according
to the number of feature themes they comprise; and
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themes (rows) according to the number of models
containing them.

While some models contain features of almost every
theme, such as EmbToolkit and Freetz, others are
very sparse, such as the minimalistic ToyBox model.
Nevertheless, all models contain technical features
in addition to “ordinary” domain-specific features;
mainly to configure diagnostics (debugging) and the
build process.

We also observe that many models contain depre-
cated and experimental features (theme lifecycle), both
to the same extent. However, no explicit concept for
lifecycle features exists in the languages, although
we know from experience that many companies need
to support such features in their models. Instead, a
distinguished feature often switches the visibility of
lifecycle features, such as BR2_DEPRECATED (“Show
packages that are deprecated or obsolete”) in BuildRoot
or EXPERIMENTAL (“Prompt for development and/or
incomplete code/drivers”) in Linux.

5.1.2 Feature Kinds
In Section 4.1, we introduced two classifications for
different kinds of features: grouping and individual
features, and the role of features. With respect to both
classifications, most models are similar, but significant
outliers exist.
Grouping and individual features. Recall that the
configurator hierarchy shown to the user can deviate
from the syntactic hierarchy in the models—in Kconfig
due to the nesting of configs based on dependencies,7

and in CDL due to re-parenting. Thus, we consider two
statistics—the syntactic and the configurator grouping
of features; the former by counting the grouping
features (see feature kinds in Table 2); the latter by
counting non-leaf features in the hierarchy shown in
the configurators.

The proportion of syntactic grouping features
(menus, menuconfigs, and choices) is similar among
all Kconfig models, but very low with 3.5%; in contrast,
the the proportion for the CDL models is 25% in aver-
age. Interestingly, the proportion of configurator group-
ing features differs significantly from the syntactic
grouping in all Kconfig models; indicating that many
configs are additionally nested in the configurator.
This proportion ranges between 11% and 28% (average
19%), except for the two outliers CoreBoot and Freetz
with only 4%. In the CDL models, the proportions
of syntactic and configurator grouping features only
differ by 2%, since some syntactic grouping features
are leaves without children. Table 4 shows detailed
numbers.

Inspecting the outliers CoreBoot and Freetz reveals
different reasons for their low proportion of configura-

7. The hierarchy induced by menus and menuconfigs is shown in
the left window of the configurator and requires explicit drill-down
by the user. Config hierarchies are shown by indentation in the right
window and are, thus, more lightweight to navigate.

tor grouping features. In CoreBoot, large groups exist
that contain up to 293 of the leaf features; interestingly,
most of these leaves are invisible derived features
(mainboard-specific constants). When considering only
the visible features in the hierarchy, this proportion is
within the normal range (21%) again. In Freetz, the tree
is significantly degenerated with one feature having
68% (2377) of all features as children—almost all are
leaves. These children represent specific “terminfos”
(holding characteristics of Unix consoles) for the
ncurses library, which is used to build textual user
interfaces. However, these 2377 features are not shown
by default due to a visibility condition controlled by
the feature “Show all items”.
Roles of features. We observe that every model
contains user features, implementation features, and
derived features. Capability features are difficult to
identify, but are certainly contained in one third of the
models, see below.

Specifically, the percentage of user features (shown
and modifiable by users) is similarly high among
almost all models, ranging from 68% to 97%, with
the outlier CoreBoot (18%) due to its high degree
of derived features (as explained above). For imple-
mentation features, we only give upper bounds by
counting those features that define a symbol that can
be referenced in code (regardless of whether actually
used). This upper bound is in average 96.5% for all
Kconfig and 81% for all CDL models. The proportion
of derived features is rather low, ranging from 1%
to 23% (average 13%) among almost all models, but
again with the outlier CoreBoot (78%). Capabilities are
difficult to identify in Kconfig, since there is no explicit
language support. A pattern we found is to prefix such
features with HAVE_. Searching for this pattern reveals
lower bounds: Linux: 0.8%, CoreBoot: 0.6%, uClibc:
0.8%, and none in any other Kconfig model. CDL has
an explicit capability concept (interfaces); in average,
11% of the features in the CDL models are capabilities.

5.1.3 Feature Representation
While switch features are the most frequent type,
every model except the minimalistic ToyBox also
contains features with data values—numbers or strings.
Their proportions are rather low (0-11%) compared to
switch features; yet, this observation calls for adequate
language and tool support, especially with regard to
constraints. Fig. 5 and Table 5 show the breakdown of
features by type.8

Surprisingly, in a quarter of the Kconfig and all CDL
models, we find relatively high proportions of data
features, in particular 27% in axTLS and more than 50%
in CoreBoot and the CDL models. This observation
is interesting, since the majority of examples found
in the literature has few or no such features [33].

8. Note that the eCos-i386 percentages do not add up, since
features can be both switch and data (type booldata) in CDL.
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configurator4 16% 28% 13% 22% 4% 20% 11% 4% 21% 15% 20% 15% configurator4 24% 23%

difference 12% 16% 8% 19% 4% 18% 7% 2% 17% 12% 19% 13% difference 2% 2%
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XOR 1% 5% 4% 1% 3% 8% 6% 0.4% 0% 6% 19% 1% XOR 1% 1%
MUTEX 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% MUTEX 0.1% 0.1%

runtime XOR5 0.03% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% OR 0% 0%

sum 1% 5% 4% 1% 3% 8% 6% 0.4% 0% 6% 19% 1% sum 1% 1%

model size6 6,320 108 1,938 881 2,269 1,357 171 3,471 71 369 383 1,620 model size6 1,256 1,247

1 mean 2 menuconfig, menu, optional tristate choice 3 component, package 4 features with children 5 mandatory tristate choice 6 number of features

Further, Linux frequently uses the three-state logics
for controlling binding mode; more than half of the
features are of the tristate type. However, since support
for loadable kernel modules is unique to Linux, no
other model has tristate features.

Supporting number (int, hex, float) and string data
features appears to be equally important in most
models; their proportions are similar, but slightly
tending to string features. Only Linux and CoreBoot
have significantly more number than string features.

Usage of Data Features. Inspecting the models with
high proportions of data features—axTLS, CoreBoot,
and eCos-i386—shows that data features are used for
diverse purposes.

In axTLS, data features configure the built-in web-
server (e.g. port, ssl expiry time, folders), paths to
external libraries (e.g. Java, Perl), or SSL certificate
details (e.g. common name, organization name). How-
ever, the high percentage of data features might be
biased by the rather small model.

In CoreBoot, almost every data feature (98%) is de-
rived, invisible, and represents a constant (e.g. number
of IRQ slots, mainboard-specific source folders). These
constants exist for each of the 166 mainbords supported
(as explained previously).

In eCos-i386, some feature kinds contain data values
by default: interfaces always carry a number (count of
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Fig. 5. Feature representation8

implementing features that are enabled), and packages
always have the flavor booldata, with the data part
representing the package version as a string. 15% of
eCos-i386’s features belong into this category. Further,
2% of features represent enumerations. There are also
6% of features representing compiler flags, 0.3% linker
flags, and 3% holding names of files with test code. The
remaining data features (28% of all features) represent
diverse configuration constants, such as priorities,
buffer sizes, and supported I/O ports. Apparently,
many of these constants are specific to an embedded
operating system and would either be set dynamically
or not be configurable in a system like the Linux kernel.

5.2 Organization and Hierarchy

This section describes the organizational structure and
summarizes characteristics of the feature hierarchies
found in the models. The first part reports qualitative
observations and aims at understanding how the
systems are decomposed into features. The second
describes quantitative measures of the configurator
hierarchies, aiming at providing useful assumptions
for tools in order to effectively visualize models.

5.2.1 Organizational Structures
A qualitative analysis of how features are organized
in the models shows that projects use different strate-
gies to group features. Such strategies vary not only
from project to project, but also within a project. For
example, as we will show, some features are grouped
together by their functionality, such as networking
and filesystem features; others are grouped by the
mechanism by which variability is realized, such as
features that are applied as patches or compiler flags.

We describe model composition strategies by show-
ing how each project organizes features. We start
with Freetz as it uses many different strategies, we
then proceed with the remaining Kconfig projects, and
finally describe the organization of the Linux kernel
and the eCos operating system. Summaries of the
Freetz, Linux, and eCos-i386 feature hierarchies are
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sum 4% 28% 6% 4% 60% 10% 14% 1% 0% 11% 1% 2% sum 50% 53%
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menu 1% 12% 4% 3% 1% 2% 3% 1% 4% 2% 1% 2% none 9% 9%
choice 1% 5% 4% 1% 3% 8% 6% 0.4% 0% 6% 19% 1%

sum 2% 17% 7% 4% 4% 11% 9% 2% 4% 8% 20% 3%

model size6 6,320 108 1,938 881 2,269 1,357 171 3,471 71 369 383 1,620 model size6 1,256 1,247

1 mean 2 switch and data features overlap (type booldata) 3 type int, hex 4 type string 5 dynamic type, identified with heuristics 6 number of features

shown in Fig. 6a, Fig. 6b, and the left-hand side of Fig. 7.
Each box represents a grouping feature labeled by the
feature name, the number of its descendants (excluding
descendants of the sub-groups that are already shown
in the figure), and a label9 indicating the theme of
the group according to Section 5.1.1 and Table 3, if
applicable. The height of each box indicates the number
of features within the group.

Freetz. The Freetz model—summarized in Fig. 6a—
is a prime example of a project that uses different
strategies to group features. The “hardware type”
group allows detailed configuration of the hardware,
such as WLAN version. These features are grouped
according to the hardware env. theme from Table 3. The
“patches” group contains features that are applied as
patches to the code to change the system by removing
branding, help, altering storage names, and so on.
The strategy used for this group is the variability
mechanism by which such features are realized. The
“package selection” group contains options to include
certain utility packages, such as curl (a command
line tool for transferring data) and inetd (a server
daemon for internet services). In general, this group
contains diverse features that all configure function-
ality (theme domain-specific). It contains the groups
“standard packages”, “web interface”, “debug helpers”,
“testing”, and “unstable”. The features in “debug
helpers” are grouped by the diagnostics theme, and
the “testing” and “unstable” packages by the lifecycle
theme. Lastly, the “advanced options” group contains a
large number of configuration options that can be used
to: configure package download sites; add external
processing features (e.g. IP anonymizer and bittorrent
server); configure BusyBox; add modules from the
Linux kernel; add cryptography, compression, and
other shared libraries; and to set compiler options.

In summary, Freetz uses a variety of strategies to

9. BLD=Build, DIA=Diagnostics, HDW=Hardware environment,
LFC=Lifecycle, LIB=External library

organize features. A common strategy that Freetz uses
is to group features by one of the themes from Sec-
tion 5.1.1 and Table 3. Some strategies, however, follow
an even more specific theme, such as the package
download sites feature, which can be considered a
sub-theme of the build theme. Finally, some strategies,
such as compiler options and patches, are cross-cutting
across themes. For example, the features “Remove
dtrace” and “Remove ftpd” are features located in
the “patches” group; these features apply patches to
the original firmware to remove existing functionality,
mainly to save space. However, as dtrace and ftpd
are external libraries, these features also belong to the
external library theme.
BuildRoot, EmbToolkit, uClinux. These projects
group features by hardware architecture (theme hard-
ware environment) and by the root file system (theme
domain-specific). The choice of architecture affects values
of architecture-dependent features using defaults and
visibility conditions. Unlike the other two projects,
uCLinux separates the configuration of architecture
and root file system through staged configuration. A
configurator is initially launched for the architecture
selection. Depending on the choices made in the first
configurator, a different default configuration for the
root file system is used.
axTLS, CoreBoot, uClibc. These projects use the same
strategy as above where an architecture choice (theme
hardware environment) affects the choices of architecture-
specific features (theme domain-specific). In axTLS, the
architecture is a platform choice (e.g. Linux, Cygwin or
Win32); CoreBoot’s architectures are motherboards (e.g.
AMD or Intel); and uClibc has processor architectures
(e.g. Alpha, ARM or i386). Interestingly, CoreBoot
extensively uses multiple declarations of a single
feature to define mainboard-specific constants (as
pointed out previously in Section 5.1.2). For example,
the BOARD_SPECIFIC_OPTIONS (invisible, without
descriptive name) feature is declared 142 times. The
model is modularized such that each motherboard is
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Freetz (60)

Advanced options (44)

Freetz package download sites (6, BLD)

External (86)
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Kernel modules (80, LIB)

Shared libraries (2603, LIB)
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Patches (50)

Hardware type (27, HDW)

Debug helpers (9, DIA)

Testing (104, LFC)

Unstable (217, LFC)

Standard packages (88)

(a) Freetz

Device drivers (4379)

Enable the block layer (15)

Processor type
and features (244, HDW)

Power management
and ACPI options (95)

Bus options: PCI, etc
(95, HDW)

Executable file formats / Emulations (18)

Networking support (569)

General setup (140)

Firmware drivers (10)
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Kernel hacking: debugging and 
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Security options (26)

Cryptographic API (95)

Library routines (39)

Linux Kernel (114)

(b) Linux

Fig. 6. Summarized Freetz and Linux hierarchies
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declared in its own Kconfig file. CoreBoot relies on the
configurator merging the multiple declarations into a
single feature.

Fiasco. Fiasco’s hierarchy only has four top level
groups. Like the previous projects, it starts with a
group of hardware features (theme hardware environ-
ment) comprising architecture (Intel, AMD64, ARM),
platform (PC or Linux usermode), CPU, and more de-
tailed options that all affect derived invisible constants
used in the remainder of the model. This group is the
largest in the model with 105 features. Thereafter, a
group of only 16 features configures the functionality
of the kernel (theme domain-specific); while the third
group comprises debugging (theme diagnostics; and
the fourth compiler options (theme build).

BusyBox, Toybox. These two projects separate their
features into two groups: build-related features that
affect compilation (theme build), and by the shell
commands (theme domain-specific). ToyBox has two top-
level menus for these groups. BusyBox, being the larger
project, further groups the shell commands into sub-
categories, such as archival, console, or networking.

Linux. Although, as we will explain later, the Linux
model hierarchy has a depth of 8, we found that, for
the purpose of describing the overall organization, it
is sufficient to present only the top hierarchy level, as
shown in Fig. 6b. Differently from Freetz, Linux’ top
level of groups is already quite specific.

Similar to Freetz, top level groups are about core
hardware configuration: “General setup”, “Enable the
block layer”, “Processor type and features”, “Power
management and ACPI options”, and “Bus options:
PCI, etc”. The remaining groups—except “Kernel
hacking”, “Security options”, and “Library routines”—
are for configuring different functionalities (e.g. net-
working, file systems, and cryptography), devices, and
architectural components. “Kernel hacking”, “Security
options” and “Library routines” are groups of features
that cross-cut functionality and architectural compo-
nent groups. While “Security options” and “Library
routines” are grouped by the domain-specific theme,
the “Kernel hacking” features are grouped for their
common diagnostics theme.

We conclude that Linux’ main strategy for grouping
features is their common functionality, architectural
component or hardware. While experimental or depre-
cated features (theme lifecycle), for example, could also
be grouped together, Linux gives priority to grouping
them by functionality or by their architectural compo-
nents. Alternatively in Freetz, lifecycle-themed features
are put into separate groups, such as testing and
unstable, but these cross-cut the functionality groups.
Although Linux does not place lifecycle-themed features
into groups, they are tagged with a dependency on the
EXPERIMENTAL feature. This allows their visibility to
be toggled by enabling or disabling EXPERIMENTAL.
Examples are the features “User namespace” in the
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Fig. 8. eCos architecture, adapted from [34]. Shaded
architectural concerns could not be mapped to grouping
features in the model.

“Namespaces support” group and “PCI Express ASPM
support” in the “PCI Express support” group. Both
are only visible when EXPERIMENTAL is selected.

eCos-i386. In eCos, the variability model is aggregated
from smaller models that are distributed over the
500 packages in the codebase. Each package forms
a subtree with a feature of kind package at its root.
By default, all these subtrees become children of the
synthetic root of the aggregated model, except for re-
parented features. We find two common use cases for
re-parenting: The first use case is to place global build
options under a top-level component with this name.
The other use case is to place packages into the subtree
of other packages. For example, many core hardware-
specific packages are re-parented into the “eCos HAL”
(Hardware Abstraction Layer) package.

The organization of the model can be characterized
as follows. The first child of the synthetic root node is
“Global Build Options” containing the aforementioned
re-parented, build-specific features from several pack-
ages. The next child is the package “eCos HAL” with
hardware-specific options, into which other hardware
packages are mounted, such as the many i386-specific
packages. If the user selects another target (hardware
architecture) in the configurator, other packages would
be mounted into this HAL subtree. Thereafter, the
packages for the I/O subsystem and several rather
technical packages appear, such as the configuration
of the eCos kernel or various C libraries, such as libc,
libm (math) or snmplib. The rest of these top-level
packages comprise more domain-specific functionality,
such as networking, clients and servers, but also the
filesystems supported in the final eCos instance.

In summary, eCos-i386 features are grouped largely
by having a common architectural component. Fig. 7
shows the eCos-i386 model with links from the groups
to the architectural concern for whose configuration
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Fig. 9. Depth of leaf features in the models.

the group is responsible for. These concerns were
extracted from an eCos book [34], which we reproduce
in Fig. 8. For Linux, we did not find such a clear
mapping from feature groups to architectural concerns,
using the interactive Linux kernel map10 as a reference.
Linux has a much more fine-grained and complex
architecture and feature model. For example, although
the Linux architecture has a networking component, it
is subdivided into “socket access”, “protocol families”,
“protocols”, “virtual network device”, and “network
device drivers”. Such subdivisions are not explicit in
the Linux model.

5.2.2 Model Hierarchies
A quantitative analysis of the configurator hierarchy
shows that all models are wide and shallow. Their
average depth ranges between 3 and 4 (shallow outlier
CoreBoot with 2). The maximal depth is as low as 4
for uClibc and uClinux-base and not more than 8 for
the huge Linux model; see the leaf-depth distributions
in Fig. 9. At the same time, branching factors (number
of children per feature) vary to a great extent in our
models, which is in contrast to nicely balanced trees in
the literature. Although the vast majority of features
(between 72%–96%; 84% in average for Kconfig and
77% for CDL models) are leaves, we observe many
features with more than 100 children. Practically, none
these models could be rendered as a tree structure
like in Fig. 1, which is the common visualization in
literature. For illustration, we provide plots of the three
smallest models ToyBox (Fig. 17), axTLS (Fig. 18), and
Fiasco (Fig. 19) in the Appendix. With their scaling,
the Linux model would only be a flat line.

Further analysis shows that in all models, the
number of features with a given number of children
decreases sharply with the increase of the number of
children. Fig. 10 shows histograms of branching factors
in the models. It excludes leaves, which represent the
majority of features in the models. The second-largest
class are single-child parents (7% average in Kconfig,
6% in CDL models), followed by two-child parents

10. http://makelinux.net/kernel_map
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Fig. 11. Proportion of features violating hierarchy rules.
The black bar represents features not implying their
parent; the gray bar the unique parents that have
children not implying them.

(3% average in Kconfig, 5% in CDL models). Note
that single-child features increase the proportion of
inner to leaf features. Features with more than ten
children are very seldom; nevertheless, the maximum
number of children is as much as 157 in Linux and
36 in one of the CDL models (ipaq). The median of
maximum branching is 85 in the Kconfig, and 33 in
the CDL models; however, we find outliers with 173
(uClinux-dist), 293 (CoreBoot), and whopping 2377
(Freetz) child features.

Relatively few features violate hierarchy rules—
child-to-parent implications—of feature modeling.
Thus, we believe that practitioners find hierarchical
organization of dependencies natural. Recall that,
unlike in feature modeling and CDL, Kconfig uses
hierarchy to depict a visibility relation instead of a
presence condition, allowing a child feature to be
configured without its parent. This possibility is indeed
exploited in the Linux model. Sometimes, children
even exclude their parent. We verified with a SAT
solver applied to a derived boolean semantics of the
Kconfig models [23] that all models except axTLS,
Fiasco, and ToyBox contain features not implying their
parents in the configurator hierarchy. Fig. 11 shows
these proportions among all models. A nice example
from the Linux model is the conditionally derived
feature JFFS2_ZLIB in Fig. 3 (Line k-32), which is
automatically selected if the parent is not, as we
explained in Section 4.5.

In CDL, all features in the configurator hierarchy
imply their parent. However, by manual inspection, we
found 39 (3%) re-parented features in eCos-i386, which
do not imply their syntactic parent anymore. Most re-
parentings move packages in the hierarchy, but ten
options and two components were re-parented as well.
For example, the “Global Build Options” component
from the i386PC HAL package was promoted to the
top-level and, in addition to its syntactic children, two
new options were re-parented under this component.

http://makelinux.net/kernel_map
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Fig. 10. Branching factors, excluding leaves and x-axis cut off at 15. The eCos-all diagram aggregates features
from all CDL models.

5.3 Constraints

In addition to the constraints residing in the hierarchy
(child-parent implications), each model has additional
constraints declared over features. This section reports
observations about group constraints and the various
types of feature constraints.

5.3.1 Group Constraints

Feature groups (Table 2, group constraints) are among
the core concepts in feature modeling. In fact, groups
are regularly used in all of our models. But surprisingly,
OR groups—commonly mentioned in literature—are
not supported by the Kconfig language and only
occur in three CDL models. Kconfig’s slightly similar
grouping concept—runtime XOR (cf. Section 4.4)—
appears only twice in Linux. The most frequent type of
group constraints is XOR, which is contained in every
model except ToyBox. Table 4 (grouping with constraints)
shows detailed numbers.

In Linux and all CDL models, at most 1% of the
features impose group constraints on their children.
The other models have higher percentages. Among all
Kconfig models, the average is 4%, whereas outliers are
EmbToolkit with 8% and uClinux-base with even 19%
of features representing XOR groups. MUTEX groups
are very rare—only the CDL models have one each,
except for one model with two MUTEX groups.

The insignificance of OR and MUTEX groups is sur-
prising. We speculate that both are realized separately
with constraints, such as dependencies to a capability.
Unfortunately, this is difficult to measure due to a lack
of a syntactic construct for capabilities in Kconfig (cf.
Section 4.1).

Let us see how group constraints are used in practice.
The two runtime XOR groups in Linux are motivated
by binding time: this constraint allows including
multiple alternative features in the configured kernel
as dynamically loadable modules; only one of them
will be loaded at runtime. The only MUTEX group in
eCos-i386 represents three alternative random number
generators. A possible reason for the lack of MUTEX
groups in Kconfig models is the need to define a build

symbol even when no group member is selected, see
for example the feature JFFS_CMODE_NONE in Fig. 3.

Recall that CDL interfaces generalize group cardi-
nality constraints. This generality is not exploited in
practice though. There is no cardinality constraint that
is a proper (m,n)-interval, as opposed to intervals
with lower bound of 0 or 1 and upper bound 1 or
*. Moreover, although an interface can place a group
constraint on features that are not siblings, all interfaces
are implemented by sibling features. Still, interfaces
and implementing features are usually far apart, that
is, do not have a common parent and are implemented
across different packages. In other words, the group
constraint is activated (implied) by the parent of
the interface, which is not the parent of the set of
constrained features. This form of a group constraint is
more general than what is found in feature modeling,
where the parent of the group activates the group
constraint. Such generalized group constraints are used
to model the case where a given package defines an
interface required by its implementation and multiple
other packages provide alternative implementations
of that interface. This case is relatively frequent, 81
interfaces are constrained this way in the eCos-i386
model.

5.3.2 Feature Constraints
All models declare additional configuration, default,
and visibility constraints for their features. In the
following, we discuss the frequency and usage of the
various types of feature constraints, and the number
of cross-tree dependencies per feature. The latter
is defined as the reference of another feature in a
constraint. Our observations are supported by Table 6,
which shows the percentage of features declaring a
certain type of constraint, and Fig. 12 and Fig. 13, which
show dependencies and their growth.
Types of Constraints. The vast majority of features,
in average 77% in the Kconfig and 86% in the CDL
models declare constraints of some sort11 (configura-
tion, visibility, default), as can be seen in Table 6. In

11. In [22], we discounted unconditionally and conditionally
derived features in the Linux model.
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Fig. 12. Dependencies per feature, including depen-
dency on parent feature. The y-axis is cut-off at 10.

the following, we explore the usage and quantity of
different types of constraints.

Derived features are mostly used to perform calcu-
lations that otherwise would be hidden in the build
system. This way, feature dependencies are specified
uniformly and explicitly in the model. Recall that
Linux supports conditionally derived features, which
are derived or user-changeable with a default value,
depending on a condition. However, only 1,5% (mean)
of the features in the Kconfig models (max 3% in
Linux) belong into this category. The proportion of
unconditionally derived features is higher, with 13%
in average for Kconfig, and 7% in CDL models (cf.
Section 5.1.2).

Visibility control is very frequently used in the
models. All except ToyBox declare explicit visibility
conditions. In the Kconfig models, in average 6% of the
features have an explicitly specified prompt condition
(like JFFS2_ZLIB in Fig. 3, Line k-32), rather than just
via depends on, and 10% of features in the CDL
models use active_if.

Default values (also computed) are used frequently
in the models; all except uClinux-base declare explicit
defaults. However, their proportions differ signifi-
cantly: Half of the Kconfig models have low (<20%)
percentages of features with explicit defaults, such as
Linux (16%). The others make heavy use of explicit
defaults for at least half of the features (uClibc,
uClinux-dist, and axTLS), or significantly more: 69% in
the CDL models, and at least 90% in ToyBox, BusyBox,
and Freetz. Only three Kconfig models compute (via
expression) their defaults: 4% of features in Linux,
and only one feature in both BuildRoot and uClibc.
However, in all CDL models, between 6–11% of the
features are computed. All other defaults are specified
with literals.
Dependencies. To characterize dependencies, we dis-
cuss three metrics: the ratio of features with a de-
pendency to another feature, the number of features
referenced in constraints of a feature, and the Cross

Tree Constraints Ratio (CTCR), a metric adapted
from [35].

As can be seen in Table 6, in average 60% of
the features in the Kconfig and 35% in the CDL
models have dependencies to other features across
the hierarchy (cross-tree constraint). The highest can
be seen in the Linux model, where surprising 85% of
the features reference other features.

The average number of features referenced per fea-
ture (excluding parent implication) among all features
is 1.4 in the Kconfig, and 0.6 in the CDL models.
In Linux12, most features refer to 1–3 other features
(maximum of 52); this range is much lower in the CDL
models, with typically 0–1 cross-tree dependencies
(maximum of 20). Some features declare a large num-
ber of cross-tree dependencies; up to 127 in BuildRoot
and 101 in EmbToolkit. We visualize the number of
dependencies per feature as a boxplot in Fig. 12, which
includes the hierarchy dependencies (+1).

Interestingly, the average number of dependencies
per feature seems to grow linearly with the size of the
models and does not explode, as can be seen in Fig. 13.
This finding is in line with our observations from a
study of the Linux model evolution [36]. It indicates
that feature models abstract over implementation
dependencies, since code dependencies can potentially
grow quadratically [37].

Table 6 also provides an adapted version of the
CTCR metric [35] (ECR in [38], [39]) for all models. It
provides the percentage of features that have a depen-
dency or are the dependency target of another feature—
put simply, the proportion of features participating in
cross-tree constraints.

Examples. Let us look at some examples of con-
straints. Linux constraints are mostly logical expres-
sions, such as a single feature or more complex
expressions, e.g.,

SMP && (X86_32 && !X86_VOYAGER || X86_64)

Linux constraints often reference integer or string
features using equality tests. In a single case, an integer

12. In [22], numbers included dependency on parent.
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TABLE 6
Percentage of features with constraints and CTCR metric
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any constraint 92% 77% 60% 95% 86% 61% 85% 98% 96% 75% 19% 74% 86% 86%

configuration constraint 88% 41% 48% 64% 82% 48% 77% 92% 37% 51% 1% 53% 38% 38%
value restriction 1% 0% 0% 2% 0% 0.1% 1% 0% 0% 1% 0% 1% 11% 11%
unconditionally derived 12% 1% 2% 1% 78% 17% 23% 1% 6% 18% 1% 1% 7% 7%
conditionally derived 3% 0% 0.4% 0% 0.4% 13% 0% 1% 0% 0.3% 0% 0.2% N/A N/A

visibility condition 5% 10% 5% 1% 3% 22% 3% 1% 0% 5% 18% 2% 10% 10%
explicit default 16% 59% 12% 92% 4% 10% 11% 94% 90% 41% 0% 46% 69% 69%

expression (computed) 1% 0% 0.1% 0% 0.3% 0% 1% 0% 0% 0.3% 0% 0% 7% 7%
literal 15% 59% 12% 92% 3% 10% 10% 94% 90% 41% 0% 46% 62% 62%

features with dependency2 85% 55% 53% 65% 78% 52% 74% 92% 35% 54% 19% 55% 35% 35%
CTCR metric3 93% 70% 71% 79% 96% 88% 87% 96% 46% 75% 55% 68% 48% 49%

model size4 6,320 108 1,938 881 2,269 1,357 171 3,471 71 369 383 1,620 1,256 1,247
1 mean 2 cross-tree 3 Cross Tree Constraints Ratio (percentage of features participating in cross-tree constraints) 4 number of features

feature in Linux uses another feature as a bound in a
range constraint.

Many eCos constraints are logical expressions too,
but arithmetic and string operations (which we deeply
analyze in [40]) are not uncommon. For example:
requires { CYGNUM_FS_FAT_NODE_POOL_SIZE >=

( CYGNUM_FILEIO_NFILE + 2 ) }

String concatenation (denoted by “.”) is often used
to produce lists of test or implementation source files:
calculated {"tests/sprintf1 tests/sprintf2 " .

((FILEIO && RAM) ? "tests/fileio" : "")}

Other constraints check whether a particular
file name is included in a list; e.g. requires
is_substr(LIBS, "libtarget.a"). Such con-
straints implement code mappings. In Linux, these
are computed in KBuild [41], outside the model.

5.4 Comparison with Academic Feature Models

We now compare the properties of our models against
the models available in the popular S.P.L.O.T. repos-
itory [16], which currently hosts 264 feature models
extracted from research literature, or donated by
visitors. These models originate from various domains,
such as insurance, entertainment, and home automa-
tion. SPL2go [17] is another online repository, which
contains example product lines including their feature
models. Presently, SPL2Go hosts 32 models, which
are on average smaller then those in S.P.L.O.T., so we
focus on the latter.

S.P.L.O.T. models are expressed in their own feature
modeling language, which offers a subset of FODA con-
cepts (see Table 2). Naturally, we limit the comparison
to these concepts: model size, model shape (leaf-depth
and branching), feature groups (OR, XOR, and MUTEX),
and constraints (CTCR metric). Figures 14–16 show the
distribution of these metrics for our sets of S.P.L.O.T.,
Kconfig, and CDL models.

The model sizes (Fig. 14) differ significantly. The
S.P.L.O.T. models are mostly small, with sizes ranging
from only 9 to 290 features. Only 25% of the models
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Fig. 14. Sizes of S.P.L.O.T., Kconfig, and CDL models

have more than 31 features, and only four more than
100 features. The average model size amounts to 18
(median 27) features, which shows that our Kconfig
and CDL models are significantly larger.

S.P.L.O.T. models are relatively deeper than Kconfig
and CDL models (Fig. 15, left diagram). Given the
substantial differences in the model sizes, it is signif-
icant that the average depth of leaf features among
the S.P.L.O.T. models is 2.7, while the Kconfig leaves
(average depth of 3.7) and the CDL leaves (average
depth 3.3) are only slightly deeper. Prime examples are
the Electronic Shopping and the Thread model. The
Electronic Shopping model (size 290 features) is the
model with most features (70 in fact) with a depth
greater than 5. In this model, the average leaf depth
is 5, with a maximum depth of 9. The Thread model
(size 44 features) has the deepest hierarchy, with leaves
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up to a depth of 10.
Fig. 15 (right diagram) shows the model branching

factors on a log2 scale. The Kconfig and CDL mod-
els have a similar median, but higher variations in
branching then the S.P.L.O.T. models. The maximal
branching there is 28—a feature aggregating test cases
in the Billing model (size 88 features). The median of
maximum branching among the S.P.L.O.T. models is
only 5, in contrast to 85 for the Kconfig and 33 for the
CDL models (cf. Section 5.2.2).

Comparing the constraints shows that the S.P.L.O.T.
models typically have more feature groups than the
Kconfig and CDL models—there is an average of 12.5%
feature groups among a model’s features (Figure 16a).
In contrast, S.P.L.O.T. models have a significantly lower
cross-tree constraint ratio (CTCR metric) than our
models (Figure 16b).

6 THE CONFIGURATORS

Kconfig and CDL are equipped with GUI-based con-
figurators that both support a configuration process
known as reconfiguration: the tool is initialized with a
configuration loaded from a file, or based on default
values, which is then modified by the user to reach
a desired state. Each of the two configurators takes
a different approach to ensure that the user retains a
valid configuration. The Kconfig configurator prevents
the user from modifications that violate constraints;
the CDL configurator allows such modifications, but
it detects violations and helps in resolving them.

The Kconfig configurator offers little support for
propagating user configuration choices. If the de-
pendencies of a given feature are not satisfied, the
tool prohibits selecting it. The user has to find out
which other features need to be reconfigured to enable
the selection. A rudimentary propagation support is
offered by the select construct; it enforces a selection
of a single feature, when the feature hosting the
statement is selected. The selection is made without
respecting any constraints. This imperative behaviour
can lead to illegal configurations and requires Kconfig
developers to explicitly specify any transitive depen-
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Fig. 15. Shapes of S.P.L.O.T., Kconfig, and CDL models
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Fig. 16. Feature groups and cross-tree constraint ratios
in S.P.L.O.T., Kconfig, and CDL models

dencies to maintain consistency. For example, LA-
TENCY_TOP contains selects for both KALLSYM and
KALLSYM_ALL. KALLSYM_ALL depends on KALL-
SYM, thus, the sole selection of KALLSYM_ALL would
be sufficient if the configurator used a propagating
reasoner. In fact, the official documentation and the
Linux kernel commit log contain multiple warnings
and complaints about the error-proneness of using this
construct [36]. Still, the Linux model is full of select
statements, as this is the only way to obtain (limited)
propagation in the configurator.

The CDL configurator is far more intelligent than
its Kconfig counterpart. When the user modifies a
configuration, the tool detects all constraint violations
and offers the user support to resolve them via an
inference engine.

This engine works as follows. Every change to
the model is wrapped in a transaction and the con-
figurator checks for any constraint violation. If one
occurs, the inference engine tries to resolve the conflict
by a heuristics-based recursive search algorithm. It
builds a tree of transactions, starting a transaction
for each new sub-conflict that arises when testing
conflict resolutions. The engine estimates the benefit
of particular (sub-)conflict resolutions by using the
number of required changes and source of the values
being changed, that is, user, default or inference. If a
sub-resolution is beneficial, it gets committed to the
parent transaction. If one overall solution is found for
the top-level conflict, the tool lists necessary changes
and requests confirmation. Otherwise, the conflict
requires manual resolution.

We investigated the inference engine’s source code
with respect to correctness and completeness. The res-
olution is correct, since the proposed resolutions are
verified against the model constraints. The resolution
is incomplete as:

• The inference rules are incomplete. For example,
the engine has rules for handling cardinality
constraints on interfaces of 0 or 1, but not for
arbitrary bounds.

• The recursion depth is limited to three levels; thus,



TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 12, DECEMBER 2013 24

reasoning on transitive requires dependencies is
incomplete.

• The engine uses a greedy search, evaluating resolu-
tions to sub-conflicts in separation and pruning all
but the optimal one. This may prune all successful
branches.

Although the inference engine is less powerful than
general CSP solvers, it performs very well on the
actual eCos models. The support for MUTEX and XOR
groups is particularly effective and the resolution of
requires dependencies is far more maintainable than
the select statement in Kconfig.

The main limitation of the CDL configurator is that
if several resolutions exist, it finds at most one and
possibly not the desired one. The following comment13

on the mailing list indicates that developers struggle
with this problem:

[. . . ] if CYGPKG_MYPKG_OP1 is active, make
sure that the list of tests for that package is a
substring of CYGDAT_MYPKG_ACTIVE_TESTS.
This works 50% of the time. Problem is the other 50%
of the time, rather than fiddling with the substrings,
it enables / disables my subpackage!

Our findings underscore the importance of building
configurators based on strong reasoners. Both the
Kconfig and the CDL configurator support only a small
subset of analyses introduced by researchers. A recent
literature review [1] discovered 30 analysis operators
on feature models that have been addressed in research,
mainly for simple languages. Among the 30 operators,
the Kconfig configurator only supports the “valid
product” operator, whereas the CDL configurator im-
plements the “valid product”, “corrective explanations”
(conflict resolution), “dependency analysis” (complete
a partial configuration) operators. In addition, our
developed infrastructure enables many SAT-based
analysis operators, such as finding “void products”,
“dead features”, or “core features”.

7 LESSONS LEARNED

We now summarize the main lessons learned by
investigating our two research questions. Our discus-
sion combines findings from RQ1—what concepts are
offered by the languages and how; and RQ2—which of
these concepts are used in models and how frequently.

7.1 Modeling Concepts

Essentially all core FODA concepts are used in all mod-
els, that is, Boolean (switch), int and string features, a
hierarchy, group and feature (cross-tree) constraints.
Feature types. Boolean (switch) features are the most
common type. Data features (numbers and strings)
appear to be typical for systems software—the CDL

13. http://sourceware.org/ml/ecos-discuss/2001-11/msg00161.
html

models often use arithmetic operators and compar-
isons. Strings are primarily used for file names (library
and header file paths).
Hierarchy. The hierarchy shown to users in the Kconfig
and CDL configurators largely follows the syntactic
nesting in the corresponding model, just like in feature
models. Still, both languages offer mechanisms to
control the configuration hierarchy independently from
syntactic nesting, which helps to maintain modularity
of the developer view.
Groups. Group constraints are used, but much less
frequent than assumed in literature. OR groups are not
supported by the Kconfig language, and occur only
in three CDL models. The studied models use groups
with mostly XOR (interval [1..1]) and few MUTEX
(interval [0..1]) cardinalities.

Although CDL is more flexible, allowing arbitrary
cardinalities using CDL interfaces, they appear overly
general. It suffices to include n-ary XOR and MUTEX
operators in the constraint language. However, CDL
interfaces represent capabilities and, thus, improve
modularity in the CDL models.
Constraints. Feature constraints are used extensively.
The constraint language should support arbitrary
Boolean constraints, including mutual exclusion. Arith-
metic operators and comparisons are important for
embedded systems—they are often used in the CDL
models. String operations other than equality tests
seem essential if the build system lacks appropriate
support. Arithmetic operations are more likely to be
used in embedded software, such as eCos; whereas
string operations could be dealt with in the build
system outside of the models, as in Linux.

Furthermore, Kconfig uses three-valued logics to
specify whether a feature implementation is linked
statically, built for dynamic linking, or absent.
Scalability concepts. The concepts beyond FODA are
important to scale variability modeling.

Default values, either represented as literals or ex-
pressions, are used a lot in the models, saving the user
unnecessary configuration work. In particular, derived
defaults are often neglected in academic languages.

Visibility conditions are essential in the models; they
help to hide whole branches of the configurator hierar-
chy. Visibility conditions are applied immediately dur-
ing the configuration process and cannot be temporar-
ily ignored, in contrast to configuration constraints.
Despite the different behavior in the configurator,
visibility conditions should also define a configuration
constraint. Two language constructs are useful: a pure
configuration constraint (like CDL’s requires) and a
combined configuration-and-visibility condition (like
CDL’s active_if). Realizing visibility independent
of configuration leads to intricate semantics, as can be
seen in Kconfig.

Derived features are mostly used to simplify con-
straints and to perform calculations that otherwise
would be hidden in the build system. This way, feature

http://sourceware.org/ml/ecos-discuss/2001-11/msg00161.html
http://sourceware.org/ml/ecos-discuss/2001-11/msg00161.html
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dependencies are specified uniformly and explicitly
in one model. Many languages do not support this
concept.
Domain orientation. The languages benefit from being
domain-specific. The vocabularies are specific to the
projects and likely improve the understandability of
the models within the respective communities. For ex-
ample, Kconfig has tristate features, which are heavily
used in the Linux model for controlling binding mode;
more than half of the features are tristate. CDL uses
architectural terms, such as packages, components, and
interfaces.
Feature cardinalities. Feature cardinalities [42] were
introduced as FODA extensions that enable multiple
instantiations (or cloning) of features including all
descendants. Their benefit is discussed in the research
community. We have, so far, not found any empirical
evidence for the need of feature cardinalities, in
contrast to a study of configuration challenges [43]
(see Section 9.5).

Feature cardinalities are not supported by our
languages—perhaps not surprisingly, since even in
feature modeling, they are a heavyweight extension.
However, we found embedded Tcl for loops in some
CDL models that generate a number of occurrences
of a feature in the configurator, which indicates that
developers—although rarely—might find feature car-
dinalities useful. In some cases, even the number of
generated features varied depending on the processor
type (determined by the currently loaded target).
Feature attributes. Among the most expressive types
of feature modeling languages are attributed feature
models [1]. Attributed (sometimes also called extended)
feature models allow to define an arbitrary number
of attributes per feature, their domain, default values,
and cross-tree constraints over the attribute values.

In fact, we believe that many concepts, such as
visibility and binding modes could be emulated us-
ing additional attributes for each feature, when the
configurator’s implementation is extended to evaluate
these attributes. However, since many concepts (like
visibility) need to influence the configuration space,
modeling them in this way would require additional
cross-tree constraints over attributes, which might sig-
nificantly increase complexity of the models. Especially
representing the three-state logics for binding modes
in the Linux kernel would literally spoil the models
with many min/max constraints (assuming that these
are supported in a dialect of attributed feature mod-
els). Thus, explicit representation of binding mode
using additional switch features, or using attributes
in extended feature models [44], would be much less
succinct.

Other characteristics of the languages, such as com-
puted defaults, separation of model and configurator
hierarchy, or capabilities are not supported by popu-
lar attributed feature model languages. For instance,
neither CVL nor pure::variants support computed

defaults.

7.2 Model Properties
The comparison with S.P.L.O.T. models shows that our
subjects represent a new class of models that are larger
and more complex than existing ones. No S.P.L.O.T.
model displays basic characteristics at the levels close
to our subject models. We primarily attribute this to the
academic nature of the models available previously.

Our hierarchy analysis indicates special needs to
develop tool interfaces: first, to support wide and
shallow models; second, to support high variation
in branching from very limited to very wide. This
finding emphasizes that tools and languages should
support visibility control of particular features or
whole subtrees.

Our analysis of cross-tree dependencies shows that
features are highly inter-related. The high amount
of these dependencies challenges existing reasoners,
especially the existence of outliers that reference up to
127 other features in their constraints. Still, the linear
growth of density of dependencies in relation to the
model size indicates that the models abstract over
code dependencies and can reduce complexity when
reasoning can be done over models instead of code.

Assumptions in the literature about content, struc-
ture, and constraints of models differ from our results.
For example, Thüm et al. [45] and Mendonça et al. [35]
both present reasoning techniques for feature models.
Thüm et al. generate trees with maximal branching
factors of 10 (too low, see Section 5.2.2), with 25% of
inner features representing OR groups (too high, see
Section 5.3.1), and 10% of all features having additional
constraints (too low, see Section 5.3.2). Mendonça
et al. [35] assume an average CTCR of 30% (too
low, see Section 5.3.2). Our results challenge all these
assumptions.

7.3 Configurators
The Kconfig configurator lacks any kind of reason-
ing support. To mitigate this, the Kconfig language
includes an imperative construct for specifying choice
propagation: the select statement allows modelers
to specify limited propagation directly in a model;
however, both the Kconfig user manual and many
developer comments in the Linux revision history [36]
acknowledge that this construct is very error-prone.

Conflict resolution support in the configurators helps
scaling the configuration process. Only the CDL con-
figurator supports it, but the resolution is incomplete
and may produce undesirable results. Interestingly,
this analysis operator has rarely been considered in
literature [1], [46].

Finally, the observation that both configurators only
support a very small subset of analysis operations that
have been conceived in academia [1] shows that there
is significant potential for improving these tools.
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8 THREATS TO VALIDITY

External Validity. The main threat to the external
validity of our findings is that they are based on only
two languages and a limited set of models. On the
other hand, most are used in large, independently
developed real-world projects with different objectives,
ranging from Linux as a general purpose kernel, over
highly configurable system software tools, to eCos as
an entire specialized real-time operating system for
embedded devices. They are the result of an extensive
search for freely analyzable models, languages, and
their configurators. This selection can be seen as a
theoretical sampling [20], thus, we believe that our
results are representative for the domain of open source
systems software. We also conjecture that software
components in other related domains, especially em-
bedded real-time, such as automotive and avionic
control software, will share many characteristics with
the studied systems. For the systems of systems
architectures in these domains, our observations might
not hold, however.

Our subject models and their host projects were
likely not developed according to a dedicated software
product line engineering process, including systematic
domain and application engineering. They are not
engineered by a company that carefully manages an
explicit portfolio of products. However, the projects
share many characteristics with product lines, such
as integration in one platform, high configurability,
and support for automated derivation of products.
Yet, it is not clear whether models developed with a
systematic domain engineering share characteristics
with our models. This issue is part of our ongoing
research [47].

Projects such as Mozilla Firefox or Eclipse IDE are
organized as plug-in architectures, with dynamically
loadable extensions. Such extensions are often listed
on marketplace sites, rather than managed centrally
in a closed feature hierarchy. Variability languages
for these systems (extension manifests) only capture
use dependencies and required version ranges, but
no exclusions or other complex constraints. Our study
does not apply to such systems.

On a final note, we carefully avoid drawing gener-
alized conclusions for the whole space of variability
modeling. Our main contribution is the qualitative and
quantitative analysis of individual cases. Our conclu-
sions, such as showing the existence of concepts both
in languages and models, or untangling interesting se-
mantic interactions, do not require representativeness
of our cases (cf. [20]). It would not even be possible
to judge the representativeness of our cases, since the
whole population of variability modeling solutions
is unknown. Only the space of published academic
approaches can be considered well-known so far.

Internal validity. A threat to the internal validity is
that our statistics are incorrect. To reduce this risk, we

instrumented the native tools to export models in our
own format rather than building our own parsers, and
we thoroughly tested our analysis infrastructure using
synthetic test cases and cross-checked overlapping
statistics. We tested our formal semantics specification
against the native configurators and cross-reviewed
the specifications. We used the Boolean abstraction of
the semantics to translate both models into Boolean
formulas and run a SAT solver on them to find dead
(always inactive) features. We found 114 dead features
in Linux and 28 in eCos-i386. We manually confirmed
that all of them are indeed dead, either because they
depend on features from another architecture or were
intentionally deactivated. The other models mostly
have no (axTLS, BusyBox, Fiasco, uClinux-dist) or
just a few (four in Freetz, Toybox, and uClinux-base)
dead features. Only Buildroot (54), CoreBoot (58) and
EmbToolkit (53) have significantly many dead features.

Further, we only look at the available artifacts: the
languages, manuals, models, and mailing lists. We
have not interviewed developers and users. We plan
to perform such interviews in the future. In this work,
our confidence is based on formalizing the language
concepts and on thoroughly testing the configurators
and build systems with hand-crafted examples.

For Linux, we only examined the x86 architecture;
however, it represents large and mature portions of
the system: it covers 61% of the total of 10415 features
and 67% of the total of 8M SLOC.

Since we have not performed interviews with the
language designers, we might have misunderstood
the original intention of certain language concepts
and of actual features in the models. For example,
the feature themes were determined by manual model
analysis, and the corresponding author could be biased
classifying features according to a theme. On the other
hand, these themes are based on a consensus of all
authors.

9 RELATED WORK

Variability modeling is a key discipline to manage vari-
ability in software product lines. Over the past twenty
years, academic and industrial research has introduced
around 91 variability management approaches [12],
most of which (33) are based on feature models to
specify variability information. Unfortunately, there
are relatively few empirical studies that aim at under-
standing the use of these techniques in practice.

In fact, a recent survey on the use of feature
models [10] identified only five papers (2%) reporting
practical experience. References 14, 16, and 17 in [10]
are experiences from researchers applying feature
modeling to sample problems from industry. Refer-
ences 31 and 37 therein are self-reported industry
experiences: the first on using a feature modeling
tool prototype on automotive control software and the
second one on managing avionic control software with
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feature models, but with few details on the languages
and tools used. Another systematic literature review
on variability management (VM) [11] concludes that
“there is only little, if any, experimental or detailed
comparative analysis to show the relative advantages
or disadvantages of different VM approaches”. The
authors argue that all approaches share similar con-
cepts, and that a reference model would be needed
for model transformations, tools, and further research.

9.1 Variability Modeling Languages

Concepts and semantics of variability modeling lan-
guages have been studied before.

Sinnema et al. [48] provide a classification of five
academic (CBFM [42], COVAMOF [49], VSL [50],
ConIPF [51], Koalish [52]) and one commercial
(pure::variants [53]) variability modeling language.
Each represents a different modeling style: CBFM,
ConIPF, and pure::variants model variability as fea-
tures, COVAMOF and VSL as variation points, and
Koalish is embedded in the architecture description
language Koala [54]. Using a small sample product line,
each technique is categorized according to its modeling
capabilities and tool support. Notably, the authors
point out the lack of defined modeling processes,
particularly to extract and evolve variability.

Schobbens et al. [55] survey seven feature modeling
languages—all variants of FODA. Arguing that most
of them are not defined formally enough to avoid
ambiguities, they develop a common abstract syntax
(Free Feature Diagrams) and define individual for-
mal semantics. They also introduce a new language
(Varied Feature Diagrams) that is as expressive, but
more succinct than the others. The authors conclude
that many of the existing variants are expressively
complete, thus, further extensions cannot be justified
by expressiveness.

Czarnecki et al. [56] systematically compare fea-
ture modeling with decision modeling [57]—another
prominent variability modeling technique that became
popular with the Synthesis method [58] for software
reuse. They compare both techniques on ten dimen-
sions (inspired by [22], [59]), using Kconfig, CDL, and
a current proposal [6] of CVL [5] as a reference. The
study concludes that there are no major conceptual
differences between feature and decision modeling—
except for the support of modeling commonality (via
mandatory features) in feature models, as decision
models focus purely on variability.

Our work complements these three studies mainly
in two respects: we analyze languages originating from
practice in their full richness, and we quantitatively
analyze their real, large-scale instances. In consequence,
we provide empirical evidence for the occurrence
and frequency of variability modeling concepts in
practice. Compared to Sinnema et al. [48], we study lan-
guage concepts on a more fine-grained level and also

reverse-engineer and analyze their formal semantics.
Compared to Schobbens et al. [55], our quantitative
analysis shows that more advanced concepts than
found in the FODA variants are commonly used, which
challenges their conclusion about expressiveness. With
Czarnecki et al.’s work [56], we can also confirm the
use of decision modeling concepts in practice. Studying
real decision models would be valuable future work,
however.

Our first publication on this topic was a workshop
paper [33], in which we reported very early findings
on the Linux model. Its contribution was to extract a
FODA feature model from Linux and to compare it
with feature models from research papers. Our subse-
quent conference publication [22] differed significantly;
it compared the two languages Kconfig and CDL in
their full richness, including formal semantics, and
analyzed the Linux and eCos-i386 model—less broad
then our current analysis, however.

9.2 Variability Modeling in Practice
Although large industrial product lines with thousands
of features exist [13], [14], [15], studies or experience
reports on variability modeling are sparse. We now
describe some notable exceptions.

Grünbacher et al. [60] report on the industrial use
of their Dopler tool suite for variability modeling and
product derivation. It has been used by Siemens VAI
to automate component-based software development
since 2007 and to manage Eclipse-based tools. While
the language and its semantics are formally defined [8],
unfortunately, neither the models nor further empirical
data is available. In line with our findings, the authors
also point out the need for domain-specific adaptions
of tools and languages in various papers [2], [61], with
[62] focusing directly on this topic.

Reiser et al. [63] report industrial experiences on
variability modeling from the automotive domain.
They sketch a framework based on FODA and define
seven requirements for highly flexible variability mod-
eling: (1) principal feature modeling concepts with
some extensions, (2) feature meta information with
typed attributes, (3) determined order of features (for
wide and shallow trees), (4) domain-independence
without project-specific cases, (5) formal foundation, (6)
open reference implementation and mapping to XML,
and (7) compliance constraints (restrict modeling to a
subset of concepts). Our study confirms requirements
1, 3, and partly 2 (attribute types) and 6; refutes 4; and
shows absence of 5, 7, and partly 6 (no XML mapping)
in our languages.

Gillan et al. [64] report on application challenges of
feature modeling in the telecommunications domain.
They conclude that there are many ways to express a
feature model for a telecommunications system, which
calls for research on methodologies for variability
modeling. We confirm the absence of documented
methodologies for our languages.
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Recognizing the lack of experience reports, re-
searchers have performed case studies on variability
modeling. Hubaux et al. [65] present a case study
on reverse-engineering variability models. They mi-
grate the heterogeneous configuration mechanisms of
PloneGov [66] to a feature-oriented approach, unifying
its configurability into a feature model. The authors
report challenges, such as modeling binding times,
large numbers (>50) of direct children, or the need
to introduce intermediate derived features to opti-
mize dependencies. Unfortunately, neither the size
nor further statistics about the model are available.
Kästner et al. [67] refactor the Berkeley database into
a configurable product line, concluding that very fine-
grained variability mechanisms are necessary (even to
split expressions in IF statements), which are not even
provided by any mature aspect-oriented framework.
The created, but relatively small model (38 features)
is freely available. Unfortunately, both case studies
are performed by researchers and neither product line
went into production.

In [36], we study the evolution of the Linux model.
Specifically, we investigate how the statistics from
our workshop paper [33] have evolved over the last
five years and classify the types of edits applied to
the model. The analysis shows that the number of
dependencies has grown proportionally to the number
of features over the last five years, which supports our
finding that dependencies grow linearly with the size
of a model (see Section 5.3.2).

9.3 Variability Modeling Benchmarks
Using benchmarks or generating variability models
are common approaches to evaluate new variability
modeling tools or techniques. For both, realistic as-
sumptions about real models are crucial.

Segura et al. [68] introduce a framework for testing
and benchmarking feature modeling analysis tools, af-
ter recognizing the lack of such [69], [70]. However, the
feature model generator requires parameters as input,
which the user has to provide. Our study provides
realistic properties for such benchmark generators
within the domain of systems software.

Passos et al. [40] (including authors of the present
study) perform an in-depth analysis of the non-Boolean
constraints in all 116 CDL models. The results show
that these constraints tend to be simple, but closer anal-
ysis identifies challenges to reasoners. The semantic
expansion of individual expressions leads to non-linear
constraints including multiplication and division of
data features; and even the linear constraints appear
within complex combinatorial expressions.

The S.P.L.O.T. website also contains generated large-
scale feature models based on assumptions stemming
from the models in the repository (cf. Sections 5.4
and 7.2). These generated models are used by others
to evaluate the performance and scalability of their
approaches, such as by Bagheri et al. [30].

9.4 Variability in Open Source Projects

Research community has recognized the appeal of
studying configurable open source software due to
large source code archives available.

Particularly the Linux kernel has been a frequent
study object; several variability-related aspects have
been addressed. Sincero et al. [71] are the first to dis-
cuss whether the Linux kernel can be seen as a product
line, concluding that it shares many characteristics
with software product lines, such as configurability
and code reuse. In [41], [72], we study the map-
ping between features and source code in the Linux
kernel. This mapping is hidden in imperative build
logic, thus, we implement static analysis techniques
for Makefiles to derive explicit presence conditions.
The latter are expressions that determine inclusion
or exclusion of individual source code files for a
certain configuration. Tartler et al. [73] apply SAT
checks to #IFDEF conditions in Linux source code
in order to identify dead code. Furthermore, the code
cloning research community has extensively studied
the Linux kernel [74], for example to aid product line
analysis [75].

Also eCos was studied before. A survey on con-
figurable operating systems [76] emphasizes eCos’
component-oriented architecture. Lohmann et al. [77]
quantitatively analyze aspects (cross-cutting concerns)
in the eCos system and perform a feasibility study
on the refactoring of these code parts into an aspect-
oriented approach with AspectC++. Our works on
CDL ([22], [40], [43], [56]) complement these studies
and identify eCos and its configurator infrastructure
as highly interesting study objects for further research.

Software ecosystems represent massive variability.
Schmid [78] compares metadata (manifest files) of
Debian packages and Eclipse bundles with FODA.
Notably, Schmid considers manifest files a form of
variability models. We take another perspective: while
manifests are always fully distributed and evolved as
individual units that have relations to other manifests,
variability models (even if split over multiple files)
are created around a central hierarchy and used and
evolved as a whole. Despite this conceptual difference,
Cosmo et al. [79] and Galindo et al. [80] show that
subsets of variability models can be converted into a
Debian package structure with manifest files and back.

9.5 Work Related to our Findings

Table 2 provides references to research on feature mod-
eling concepts. Most of them were present in FODA;
however, computed defaults, visibility conditions, and
derived features, are marked as rare. State-of-the-art
feature modeling languages, such as TVL [9] and
pure::variants do not support them. Computed defaults
were proposed by researchers [27], but not provided
by feature modeling languages.
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None of the other variability languages supports
binding modes via three-valued logics. Interestingly,
Dopler supports visibility conditions. Although it has
been defined as a decision modeling language [8], it
shares many characteristics with feature modeling.
The connection between Kconfig and feature modeling
was made in [81]. We advance this work by studying
Kconfig’s semantics and the Linux model.

Interactive support for resolving variability was
ranked highest in a recent expert survey of require-
ments for product derivation [82]. A study on con-
figuration challenges in Linux and eCos by Hubaux
et al. [43]—performed by surveying actual users—
also emphasizes the lack of guidance for making
choices and the low quality of advice offered by the
configurators. Users spend substantial time trying
to enable features. This emphasizes the necessity to
investigate real-world tools like the Kconfig and CDL
configurators, to identify their shortcomings, and to
discuss potential improvements.

Interestingly, Hubaux et al. [43] also identify one
participant claiming the need for feature cardinalities
(cf. Section 7.1). The participant reported having to
extend a CDL model in order to support two instances
of a flash device. We found emulations of multiple
instantiations in CDL models using for loops, which
limit the number of instantiations to static properties,
such as the processor type. The reported case would, in
fact, require dynamically setting the number of instan-
tiations, which is not supported by the configurators.

A variety of reasoners have been used to create
feature model analyzers and configurators, includ-
ing CSP solvers [3], SAT solvers [45], [35], and BDD
packages [39]. These works tested the reasoners on
either small meaningful models or large automatically
generated models; however, it is not clear how these
tools will scale to handle the Kconfig and CDL models.
This remains future work. However, our previous work
[22] meanwhile has inspired the work by Xiong et al.
[46], who provide scalable conflict resolution support
that is evaluated on the eCos-i386 model.

9.6 Knowledge-Based Configuration

While our focus is on variability modeling for soft-
ware, product configurators for physical goods or
services have been actively researched in the field of
Knowledge-Based Configuration [83], [84], a branch of
Artificial Intelligence (AI). A public catalog14 currently
lists impressive 900 web-based configurators.

Recognizing many overlaps between software con-
figuration, and the older AI-related field of knowledge-
based configuration, recent research has started to
investigate their relationships, including work on
leveraging product configurators and AI techniques
for software product lines [85], [51], [52]. Although

14. http://www.configurator-database.com

the relationships between software and product con-
figuration are blurred and part of ongoing research,
the following works are closely related to ours.

Hubaux et al. [86] present a research agenda on
unifying software and product configuration. Their
comparison of both fields concludes that software
configuration can benefit from existing techniques in
product configuration, such as in the expressiveness
of modeling languages and reasoning support (e.g. to
optimize configurations according to certain criteria).
Notably, they emphasize that both fields lack research
on evolution of models.

Abbasi et al. [87] study 111 web-based product con-
figurators. They develop a JavaScript-based analysis
tool to semi-automatically extract datasets (configura-
tion options and attributes) from the configurators.
They investigate the visualization of configuration
options, the handling of constraints, and the type
of configuration process supported. Among others,
the authors confirm that hierarchical organization
and grouping of configuration options is commonly
used, and that XOR groups are the most frequent
kind of grouping with constraints. Furthermore, cross-
tree constraints exist. The authors also identify many
limitations in the reasoning procedures, with regard
to reliability and runtime efficiency.

Rabiser et al. [88] study user guidance support
in product configurators. They identify seven core
capabilities from the literature, implement these in
their DOPLER tools suite, and evaluate each capability
in a user study with industrial participants. Among
others, capabilities such as visibility control (hide
and show options), views and filters, or freedom
in navigation are very important, while immediate
feedback turns out to be hard to comprehend for users.
Reset and undo functionality is essential to experiment
with choices and their impact.

10 CONCLUSIONS

We have thoroughly analyzed two real-world vari-
ability modeling languages and all identifiable in-
stances used in open source projects, most of which—
particularly Linux and eCos—are also used in indus-
trial contexts. Altogether, we quantitatively analyzed
128 models and performed a deep qualitative analysis
of 13 of these models.

Kconfig and CDL were interesting and highly rele-
vant study objects. Designed not by researchers, but by
developers of large industrial-strength systems, they
satisfy the needs of both small (ToyBox, axTLS) and
large projects (Linux kernel). The size of the models
with up to 6320 features witnesses the scalability
of the respective modeling approaches. Furthermore,
both languages were developed independently from
each other, and independently from feature modeling
research. Since they share many similar concepts, they
can confirm the importance of the modeling constructs

http://www.configurator-database.com
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discussed in the literature. As all our study objects
are open source, they can be analyzed openly, and
researchers can validate and replicate our results.

Our study was based on two research questions.
The first one—RQ1—aimed at qualitatively exploring
concepts found in real-world variability modeling
languages and the capabilities of configurators. The sec-
ond one—RQ2—focused on studying realistic variabil-
ity models expressed in these languages, specifically
to quantitatively analyze the use of modeling concepts,
to qualitatively investigate content and structure, and
to compare the models to those commonly used in
academic research.

Our results raise three main conclusions. First, we
confirm that core feature modeling concepts are used
in real-world models. However, some concepts have
characteristics not discussed in literature yet, such as
the separation of syntactic and configurator hierarchy.

Second, our study shows that more advanced con-
cepts, such as visibility conditions, derived features,
derived defaults, modularization or binding modes
are frequently used. These concepts aim at scaling
variability modeling, particularly the creation, mainte-
nance, and configuration of models. While supporting
binding modes or modularization in the languages
might merely be for convenience, visibility conditions
and derived features with expressive constraints seem
to be essential for large-scale models. Our language
comparison also showed intricate semantic interac-
tions among the advanced concepts, deepening our
understanding of such languages.

Third, our studied Kconfig and CDL models have
significantly different properties than feature models
commonly used in academia. They challenge existing
tools and common assumptions in the literature about
model content, structure, and constraints. They are
used to configure very diverse variable aspects of the
projects, including debugging, external libraries or test
cases. Their shapes significantly deviate from the deep
and well-balanced feature trees we commonly see in
research. They also follow very different strategies
to organize features; these strategies vary across and
within the models. More diverse types of constraints,
such as visibility, configuration, derived features, and
defaults, are used in the models along with a high
density of the dependency graph between features.

The publication of the Kconfig and CDL models
makes a significant difference in the feature modeling
research community. So far, realistic industrial quality
models of substantial size were hardly available. This
situation has hindered development of trustworthy
evaluation methods in research works about variability
models. In our study, we explored the differences
between these benchmarks, and the state of the art
available prior to this work.

As one follow-up of this work, we currently perform

an empirical study on industrial variability modeling15,
using a survey questionnaire, expert interviews, and
grounded theory as research tools. Initial results are
available [47]. Furthermore, we investigate the bound-
aries between variability models and code, for example
to characterize what information is uniquely contained
in variability models, and what can be extracted from
code by static or dynamic analysis.
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APPENDIX
MODEL PLOTS
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Fig. 17. ToyBox hierarchy (71 features).
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Fig. 18. axTLS hierarchy (108 features).
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Fig. 19. Fiasco hierarchy (171 features).
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