
A User Survey of Configuration Challenges in
Linux and eCos

Arnaud Hubaux
PReCISE Research Centre,

University of Namur,
Belgium

ahu@info.fundp.ac.be

Yingfei Xiong
Generative Software
Development Lab,

University of Waterloo,
Canada

y6xiong@gsd.uwaterloo.ca

Krzysztof Czarnecki
Generative Software
Development Lab,

University of Waterloo,
Canada

kczarnec@gsd.uwaterloo.ca

ABSTRACT
Operating systems expose sophisticated configurability to
handle variability in hardware platforms like mobile devices,
desktops, and servers. The variability model of an operat-
ing system kernel like Linux contains thousands of options
guarded by hundreds of complex constraints. To guide users
throughout the configuration and ensure the validity of their
decisions, specialized tools known as configurators have been
developed. Despite these tools, configuration still remains
a difficult and challenging process. To better understand
the challenges faced by users during configuration, we con-
ducted two surveys, one among Linux users and another
among eCos users. This paper presents the results of the
surveys along three dimensions: configuration practice; user
guidance; and language expressiveness. We hope that these
results will help researchers and tool builders focus their ef-
forts to improve tool support for software configuration.

1. INTRODUCTION
An important aspect of variability modeling is configura-

tion. In a configuration process, the user assigns values to
options to produce a configuration. To help users produce a
configuration efficiently and correctly, researchers and prac-
titioners have developed tools to support the configuration
process. These tools are called configurators. Typically, con-
figurators assist users in two aspects. First, configurators
present the options and their explanations as defined in a
variability model—such as a feature model [14] or a decision
model [23]—, and help users navigate in the model. Second,
configurators ensure the validity of values assigned to the
options, i.e., that the values conform to the types of the op-
tions, the hierarchical constraints of the variability model,
and the cross-tree constraints on the variability model.

Various configurators have been developed for different
variability languages. For example, Linux is equipped with
different configurators for configuring the kernel, accord-
ing to variability models expressed in the Kconfig language.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VaMoS ’12, January 25-27, 2012 Leipzig, Germany
Copyright 2012 ACM 978-1-4503-1058-1 ...$10.00.

Similarly, eCos, an embedded operating system, comes with
two configurators for its CDL language. In the research
community, different open source [1, 3, 15, 17] and commer-
cial [5,6] configurators have been developed for feature mod-
els. Similar tools for decision models also exist [9].

Generally, configurators can be classified into command-
line-based and GUI-based. Figure 1 shows a screenshot of
a GUI-based configurator: eCos configtool for the CDL lan-
guage. On the left panel, the options are organized into
a tree according to their definitions in the CDL language.
Also, different input methods (such as check- and textboxes)
ensure that the input values conform to the types of the op-
tions. When constraints are violated, configtool either auto-
matically disables some options to prevent configuration er-
rors (such as option Use big-endian mode) or reports errors.
Command-line-based tools provide similar functionalities, in
a less interactive but scriptable way.

Although sophisticated configurator support exists, con-
figuring systems according to a variability model still re-
mains a difficult process. Users often cannot complete a
configuration without external help [2] and configuration er-
rors can cause disastrous results [27]. Thus, we need a better
understanding—backed by empirical evidence—of what con-
figuration challenges the users of modern configurators still
face.

To address this need, we have conducted two online sur-
veys with the users of the Kconfig-based configurators and
the CDL-based configurators, respectively. We submitted
two questionnaires to forums, mailing lists, and experts with
whom we collaborate, and collected answers from 97 Linux
users with up to 20 years of experience, and 9 eCos users
with up to 7 years of experience.

This paper presents the results of this survey. They are
grouped in three major categories:

Configuration practice. Our survey showed that the con-
figuration of an operating system is mostly a single user
activity, and that users resolve conflicting decisions as
soon as they appear.

User guidance. Many respondents complained about the
lack of guidance for making configuration decisions,
and the low quality of the advice provided by the con-
figurators. Specifically, activating an inactive option
can be difficult, advice is often incomplete, and deter-
mining only the necessary options is hard.

Language expressiveness. The functionalities provided by
the configurators largely depend on the expressiveness



Figure 1: eCos configtool

of the configuration languages. One respondent claimed
that configurators should provide support for multiple
but differently configured instances of the same piece
of hardware, suggesting the need for multiple instanti-
ation of features [8].

The rest of the paper is organized as follows. Section 2
introduces the languages Kconfig and CDL and their con-
figurators. Section 3 explains how we conducted the sur-
vey and Section 4 presents the results. Section 5 discusses
threats to validity. Finally, Section 6 describes related work
and Section 7 concludes the paper.

2. BACKGROUND
This section provides a brief description of the two vari-

ability languages in our study, Linux Kconfig and eCos CDL,
and their configurators. A more detailed description is avail-
able elsewhere [4].

Kconfig is the language designed for describing variants
in the Linux kernel. Figure 2 shows a fragment of a Kcon-
fig model. This fragment defines 6 options, where NR_CPUS

is an integer option; SCHED_MC, PREEMPT_NONE, PREEMPT_-
VOLUNTARY and PREEMPT are Boolean options; and I8K is a
tristate option. A tristate option can take three values: true,
false, or module, indicating that the corresponding function-
ality should be statically included into the kernel, should not
be available, or should be available as a dynamically loadable
module, respectively. The fragment also contains a choice
construct that allows the selection of only one option among
the three. By default, PREEMPT_NONE is selected.

To support the configuration of Kconfig models, several
configurators have been developed. A popular one is xcon-
fig. Figure 3 shows a screenshot of xconfig. The left panel
contains the high-level menu decomposition; the right panel
details the available options for each menu. For instance,
the Processor type and features menu contains the options
of the fragment in Figure 2. In the displayed configuration,
the Maximum number of CPUs (NR_CPUS) is set to 256, the
Multi-core scheduler support (SCHED_MC) and Voluntary Ker-
nel Preemption (Desktop) (PREEMPT_VOLUNTARY) options are
enabled, and the Dell laptop support option (I8K) is set to
module.

Configuration options are often related by constraints, and
violations of these constraints are considered as configura-
tion errors. To model these constraints and prevent configu-
ration errors, Kconfig introduces several types of constructs.
One such construct is the default property, as in lines 6-9.
If the so-called prompt condition following the if in line 3 is
violated, this option is hidden from the user and the default

1 ...
2 config NR_CPUS
3 int "Maximum number of CPUs" if SMP && !MAXSMP
4 range 2 8 if SMP && X86_32 && !X86_BIGSMP
5 range 2 512 if SMP && !MAXSMP
6 default "1" if !SMP
7 default "4096" if MAXSMP
8 default "32" if SMP && (X86_NUMAQ || ...)
9 default "8" if SMP

10 ...
11 config SCHED_MC
12 def_bool y
13 prompt "Multi-core scheduler support"
14 depends on X86_HT
15 ...
16 choice
17 prompt "Preemption Model"
18 default PREEMPT_NONE
19 config PREEMPT_NONE
20 bool "No Forced Preemption (Server)"
21 config PREEMPT_VOLUNTARY
22 bool "Voluntary Kernel Preemption (Desktop)"
23 config PREEMPT
24 bool "Preemptible Kernel (Low-Latency Desktop)"
25 endchoice
26 ...
27 config I8K
28 tristate "Dell laptop support"
29 ...

Figure 2: A fragment of a Kconfig model

Figure 3: Configuring the model in xconfig



Figure 4: Fix generation in configtool

value matching the first satisfied constraint in lines 6-9 is
automatically assigned. Kconfig also introduces other ad-
vanced properties such as the depends on construct, which
imposes dependencies, and range, which restricts the pos-
sible values a variable can take. Essentially, Kconfig-based
configurators use decision propagation to deactivate unavail-
able options and prevent configuration errors.

CDL is the variability modeling language for the eCos
operating system. It works in a similar way as Kconfig.
First, the developers describe the configuration options and
constraints in CDL as a variability model; they also imple-
ment the effect of the options in the code using preproces-
sor directives. Then, users configure the variability model
and obtain a customized operating system. As mentioned
in Section 1, two configurators are available for CDL mod-
els: a GUI-based configurator configtool and a commandline
configurator ecosconfig.

CDL also employs a construct similar to the prompt con-
dition in Kconfig: active-if. When an active-if constraint is
violated, the corresponding option is disabled and its value is
automatically considered as zero (like option Use big-endian
mode in Figure 1). This behavior is an application of deci-
sion propagation. Besides active-if constraints, CDL allows
another type of constraints: requires constraint. When a re-
quires constraint is violated, the configurator reports an er-
ror. For instance, when the user enables Provide diagnostic
dump for exceptions (CYGHWR_HAL_ARM_DUMP_EXCEPTIONS),
the configurator reports an error because the requires con-
straint is not satisfied.

To help users resolve configuration errors, configtool gen-
erates fixes for configuration errors. A fix is a concrete
change on the configuration to satisfy the corresponding re-
quires constraint. For the configuration error, configtool will
propose the fix shown in Figure 4. If the user accepts this
fix, all the options under “Proposed solutions:” are changed
accordingly, and the configuration error will be fixed. eCos
thus adds conflict resolution to decision propagation. Note
that the list of options to change represents a single fix to
the configuration. Even though multiple fixes may exist for
a single configuration error, the current version of configtool
proposes at most one fix.

3. METHODOLOGY
The research question addressed in this paper is: What are

the challenges faced by Linux and eCos users during config-
uration?

To answer this question, we conducted two online surveys
among Linux and eCos users, respectively. The specific goals
of the surveys were to better understand:

• the profile of the respondent (e.g., what is his level of
expertise, and what type of projects he is using the
operating system for);

• the configuration practice of the respondent (e.g., how
many users are involved in the configuration, and how
many changes to the default configuration are made
per project);

• the challenges faced during configuration (e.g., which
configuration task is the most difficult, and how the
configuration problems are solved).

The questions in the survey contained dichotomous and multi-
chotomous choices, rating scales to collect interval levels,
and open text fields to collect explanations and examples.
The complete Linux and eCos questionnaires are available
online.1

To obtain a representative panel of Linux users, the Linux
survey was posted on 11 forums and mailing lists of main-
stream Linux distributions, and on the Linux Kernel mailing
list. The complete list of distribution forums used can be
found elsewhere [11]. The eCos community is much smaller;
the survey was posted on the developer and discussion eCos
mailing lists, and submitted to the developers of several
projects, including ReconOS and DancOS.

In total, 97 Linux users filled out the survey. The re-
sults presented in this paper are based on their answers and
on discussions on a Gentoo forum and the opensuse-factory
mailing list, following our posts. The quantitative data re-
ported here is based on a subset of 81 answers. 16 answers
were discarded either because the responses to some ques-
tions were inappropriate or too vague to conduct quantita-
tive or qualitative analyses.

Roughly half (49%) of these Linux users claimed to be
experts, with up to 20 years of experience with Linux. Most
respondents have experience with more than one distribu-
tion (three on average). Overall, 39 distributions have been
reported, showing a great diversity in the background of
the respondents. The use of Linux was primarily for per-
sonal purpose, followed by server maintenance, system ad-
ministration, development, embedded systems, and virtual
machines. The users who indicated personal use specified
frequently other uses too (e.g., server or enterprise). This
pattern is reasonable as many people use Linux both per-
sonally and professionally.

A total of 9 eCos users answered the survey, and no an-
swers were excluded from further analysis. A third (33%)
of the respondents consider themselves expert, counting up
to 7 years of experience with eCos. The types of projects
include FPGA (Field-Programmable Gate Array), solar in-
verter, powerline management, and research.

The results of the eCos and Linux surveys are presented
in the next section. The quantitative results were obtained
through categorizations, interval comparisons, additions, and

1See http://gsd.uwaterloo.ca/GSDLAB-TR2011-09-29



simple statistical functions (max, min, average and median).
The qualitative analysis is based on comments from 43 par-
ticipants, and 2 forum and mailing list members.

4. RESULTS
We now report our results, classifying them into two types.

First, findings backed up by solid evidence are formulated
as statements (boldfaced). Secondly, emerging results that
still require further investigation are formulated as research
questions (italicized). All results are organized in three cat-
egories: configuration practice, user guidance, and language
expressiveness. The quotations used to illustrate and moti-
vate the findings and research questions are verbatim copies
of comments made by the respondents. The only edits we
made is hiding irrelevant text, indicated by ellipses [. . . ], and
clarifications, enclosed in brackets [].

4.1 Configuration practice
Configuring an operating system is mostly a sin-

gle user activity. For both Linux and eCos, almost 90% of
the respondents report that they configure the kernel alone.
When configuration is collaborative, very few people are in-
volved (5 at most for Linux and 2 at most for eCos). When
conflicts occur between decisions, they are resolved either
by consensus or by the project leader. Half of the Linux
respondents make between 20 and 50 changes to a default
configuration. In extreme cases, some users reported mak-
ing more than 2000 changes. As for eCos, the respondents
make between 10 and 20 changes to a default configuration
on average, with a maximum of 50.

Conflicting decisions are resolved as soon as they
appear. The eCos configurator allows users to postpone
conflict resolution, that is, users can “live with inconsisten-
cies” until they decide to resolve them. Some authors have
advocated this practice (e.g. [21]). Yet, all the respondents
to the eCos study answered that they solve conflicts as soon
as they occur. This observation could not be corroborated
for Linux because all the Kconfig configurators prevent con-
flicts through decision propagation.

Are two profiles of users emerging? Modern Linux dis-
tributions now render the configuration of the Linux kernel
unnecessary for most users. A limited knowledge of operat-
ing systems is sufficient to install and administer a personal
computer. Those who still configure the kernel have spe-
cific needs (e.g., server or virtual machine reconfiguration
and driver development) that require a significant amount
of experience and knowledge. One respondent explained:

I really think the kernel has a large number of
users of which only very few use the configurable
system since the modularization allowed distri-
butions to deliver a kernel in such a way that no
configuration is needed by end users anymore.
Thus, the users of the system are mainly the de-
velopers of the kernel and the packager of the
kernel packages in the distributions.

4.2 User guidance
Activating an inactive option is difficult. When

a user wants to change an option, but this option is hid-
den/disabled because the corresponding prompt/active-if con-
ditions are violated, the user needs to first satisfy the con-
straint to make the option visible/enabled. This process is

called the activation of an inactive option. 78% of the eCos
respondents report that activating an inactive option is the
most difficult task; setting the value of an attribute is the
most difficult task for the remaining respondents. 56% of
the respondents consider that enabling/disabling an option
is actually a problem in practice. 20% of the Linux users
report that, when they need to change an inactive option,
they need at least a “few dozen minutes”, on average, to
figure out how to activate it. Furthermore, to activate an
inactive option users either rely on their own expertise (26%)
or, most frequently, read and follow manually the constraints
described in the documentation (46%). 13 respondents pro-
vided a more elaborate response to this question. Two of
them phrased it as follows:

As far as consistency checking and helping de-
termine inter-related dependencies on settings, I
have long wished for a better kernel configura-
tion tool [. . . ], but it seems that the kernel guys
learn their way around the configurator by much
exposure, and the rest of us have to just figure it
out [. . . ]

I’d like all driver names mentioned in help, for
instance: enabling this driver as will give you
driver foo.

Advice is often incomplete, hard to understand or
incorrect. 18 Linux users complained about the incorrect,
incomplete, and unclear advice provided by documentation
or the tool. These flaws affect their efficiency during the
configuration of the kernel, e.g.:

Many options’ effects are insufficiently documented
so I end up blindly choosing the default or rec-
ommended value.

Quite often there is a recommended option [. . . ]
which is invaluable when you don’t know what
to choose, but there are also some items where
you just have to take your best guess. This can
be particularly difficult for a first-timer. With
more experience, you sort of get a feel for what’s
important and what isn’t.

[. . . ] the defaults often disagree with the help
text advice. For example, it will say, ”If not sure,
say Y”, but the option will be disabled by default,
or vice-versa.

My most common problem is inconsistencies in
the Kconfig files.

Stupid/nonsensical/dangerous defaults.

The conflict resolution fixes proposed by the con-
figurator are incomplete. Existing eCos configurators
generate only one fix to resolve a conflict. However, there
are often multiple solutions to resolving a conflict, and the
user may prefer other solutions. 7 out of 9 eCos users have
encountered situations where the generated fix is not useful.
That claim is corroborated by Berger et al. [4] who report
that eCos users complain about the incompleteness of fixes
on the mailing list.

Determining only the necessary options is hard.
Overall, the size of the Linux kernel grows with every re-
lease [16]. This growing complexity often leads to bloated,
one-size-fits-all kernel configurations. These kernels are usu-
ally fine to boot mainstream distribution but are often too



general for dedicated machines. The selection of the de-
sired options is further complicated by the poor support for
searches for options and minimal configurations. Some re-
spondents formulated these challenges as follows:

It makes sense [. . . ] to get something up and
running to start the installation process, but a
production kernel needs to aviod unneeded com-
ponents both for speed, and economy reasons,
not to mention security.

Minimising the number of modules compiled in
is important in order to reduce the potential “at-
tack surface” within the kernel. Thus, enabling
all options is not an option, and discovering ex-
actly which options are required for given hard-
ware is necessary.

Usually it is difficult to search for new options.
In the nconfig interface, using F8 one can search
for a config option, but the search term must be
close enough to (a substring of) the actual con-
figuration/module name. Till now, to determine
the options I need to enable, I usually follow a
sequence of steps (1) Feed lspci -n into a debian
hcl [hardware compatibility list] webpage which
returns me the list of modules I need; (2) Search
for those modules in the kernel; (3) Search in
Google or Gentoo documentation for any other
options I might want to enable [. . . ] it would be
much nicer if the kernel provided a way to search
through all the documentation [. . . ]

The recent kernel seeds2 initiative is a first step toward more
economical kernels. The goal of a kernel seed is to include a
minimum amount of options for the kernel to be bootable.
Users then only have to tweak the options specific to their
equipment (e.g., graphics driver or file system).

Is better support to handle kernel updates necessary? Four
Linux users complained about the difficulty to maintain a
configuration across updates. Tools like make oldconfig
help avoid reselecting options during version upgrades. How-
ever, more information is necessary to track and understand
the impact of changes:

Occasionally, options which were introduced or
changed in new kernel versions aren’t fully docu-
mented, giving insufficient information regarding
whether I should enable or disable the new op-
tion.

Driver cleanups that move PCI ids between PCIe
and PCI drivers can be a real pain if it happens
on a kernel update and I wasn’t expecting it.

Is community-based configuration problem solving neces-
sary? One expert Linux user suggests the creation of a
knowledge base of known problems and solutions. A case-
based reasoning expert system would then be used to match
the posted problems to existing problems and solutions. Ap-
plied to configuration, this would mean that configurations
are shared and can be used to guide users during their con-
figuration process. Bad configuration should also be posted,
provided a description of the problem is also available. The

2http://www.kernel-seeds.org/

expert proposes to design the solution in JESS (Java Ex-
pert System Shell), which integrates easily with the web
(Apache Tomcat). A web-based interface would be ideal as
it would allow the global Linux community to contribute to
it easily. Furthermore, the knowledge base could already be
pre-loaded with data mined from forum threads that archive
a lot of human dialog.

4.3 Language expressiveness
Should option multiplicities be included? The need for

multiplicities has already been debated in variability mod-
elling [8, 20]. One eCos user expressed the need to include
this functionality in configurators:

I had an issue whereby I added a SPI flash driver
in order to support a flash device. To get one
flash device supported was easy. You checked
the boxes and the flash device popped up and
was usable. I had [...] another of the same flash
device on a different chip [...] and when I tried to
add the second device the CDL tool fell apart. I
had to hack the source CDL files of the [...] flash
driver to make this possible.

This quotation gives a clear example of a use case for mul-
tiple instantiation. The respondent wants to include multi-
ple instances of a flash driver, each configured differently,
and eCos does not provide this functionality. CDL allows to
capture the variability of one particular piece of equipment.
It does not allow to enable or disable multiple instances of
the same equipment on a single board.

5. THREATS TO VALIDITY
We see two major external threats to this work. First,

the results in this paper are specific to Linux and eCos.
Yet, both Linux and eCos tools use configuration strategies
that are also used in other tools; further, one of them, de-
cision propagation, is shared between the Linux and eCos
tools. Moreover, we observed a significant overlap between
the challenges reported by users of both operating systems.
Also, the Linux kernel is a configurable system with a large
community of users and developers and spans a wide variety
of application domains.

Secondly, the respondents may not be representative of
the user population, i.e., they are not a controlled random
sample from the user population. The small sample of eCos
respondents (9) is counterbalanced by the significant sample
(97 respondents) for Linux, meaning that the results have
merit. Also, the different levels of expertise, years of ex-
perience, types of projects, and high number of used Linux
distributions (39) show a great diversity in the background
and profile of the respondents.

Two main internal threats also exist. First, our survey
might reflect a partial picture of the configuration practice.
Specifically, our formulation of the questions and the ex-
plicit description of possible problems like option activation
and attribute assignments might have influenced the respon-
dents. To diminish that threat, we collaborated with both
eCos and Linux users prior to writing the questions in the
survey to gain some understanding of their practice. We also
capitalized on our own experience with the Linux kernel to
pinpoint likely challenges.

Secondly, we might have misinterpreted some answers and
comments made by the respondents. To mitigate that threat,



we followed up on some questions with the respondents via
email and through discussions on forums and mailing lists.
We used the received answers to clarify ambiguities and go
deeper into some points raised in the original responses.

6. RELATED WORK
Both CDL and Kconfig fall under the umbrella of vari-

ability modelling languages [7]. Another popular variability
modelling language is feature models [14]. Feature mod-
els have expressiveness comparable to that of Kconfig [4,
24] and CDL [4], and have been successfully implemented
in commercial product-line tools like pure::variants [5] and
Gears [6]. Decision propagation for feature models has been
studied extensively [12,13,18,19] and conflict resolution tech-
niques are emerging [25,26].

Rabiser et al. [22] conducted a systematic literature sur-
vey and an expert survey on product-derivation support (aka
product-configuration support), that is, support for the se-
lection and customization of assets from a product-line to
create individual products. About 20% of the analyzed pa-
pers related to product derivation dealt with this topic as
their primary one. The challenges discussed in these pa-
pers include low degree of automation in product derivation,
missing support for project management, and visualization
being inadequate for users. In the expert survey, conducted
among product-line engineering researchers and practition-
ers attending VaMoS’08 and SPLC’08, respondents rated
tool flexibility and adaptability, support for managing product-
specific requirements requiring custom development, and flex-
ible visualizations as significantly more important than guid-
ance for decision making and project management support.
Our survey gives a different perspective on product configu-
ration as it is focused on the users of actual derivation tools.
In contrast to the surveyed experts, the users do care about
the guidance for decision making and complain about it if it
is inadequate; however, both the users and the experts agree
on the importance to support users in the exploration of the
available configuration options via searches, filtering, and vi-
sualization. Further, additional requirements suggested by
the experts included “understandable constraint resolution
or guidance in case of problems,” which also coincides with
the needs of the users in our survey.

In a preliminary review on the application of feature mod-
els in practice, Hubaux et al. [10] conclude that evidence on
the practical use of such models is not well documented. In
an initial pool of 414 papers related to product-line engineer-
ing, only 16 papers focussed on variability models and in-
dustrial practice. Only 8 of these 16 papers discussed actual
cases of using feature models in industrial projects and none
showed examples of such models. This finding indicates that
challenges related to the use of variability models might be
hard to extract from the research community (note that fea-
ture models are the most popular form of variability model-
ing today, both in the number of published papers and avail-
able tools). Thus, we aim at collecting challenges related to
configurators used in mainstream open-source projects and
contributing these back to the variability modelling commu-
nity.

Yin et al. [27] studied 546 real world configuration er-
rors from commercial and open source systems. Their ma-
jor findings are that most configuration errors result from
(i) ill-formatted parameters or violations of constraints, and
(ii) incompatibly of the configuration between the hardware

and software environment. The first problem is not appli-
cable to eCos and Linux because their configurators embed
support for consistency preservation. However, the conflict
resolution of the eCos configurators might not propose any
solution—due to its incompleteness. Thus, the user may be
left with an error without suggestions on how to correct it.

Bak and Ali [2] carried out a user experiment on the con-
figuration of the Linux kernel. Their work reports four ma-
jor challenges: the menu hierarchy is overly complex; feature
names and description are obscure for non-experts; searching
mechanisms are too primitive; and proper hardware detec-
tion is missing. Our paper converges towards similar con-
clusions but targets a much larger sample of users, compares
results from Linux and eCos, and does not impose particular
configuration scenarios on the participants. We also focus
on the guidance provided by configuration tools.

7. CONCLUSION
Our survey showed that the configuration of an operat-

ing system is mostly a single user activity and that users
resolve conflicting decisions as soon as they appear. Many
respondents complained about the lack of guidance for mak-
ing configuration decisions, and the low quality of the advice
provided by the configurators. Specifically, activating an in-
active option can be difficult, advice is often incomplete,
and determining only the necessary options is hard. A few
participants also required better support for Linux kernel
updates, and one expressed the need for multiple instances
of the same component in eCos.

We see two directions for future work based on this sur-
vey. First, other domains than operating systems could be
explored. It would be particularly interesting to study large
commercial configurators such as those used in ERPs and
compare the results with the open-source projects. Secondly,
both the Linux kernel and eCos configurators could be ex-
tended with better guidance mechanisms (e.g., automated
support to activate inactive options).

Acknowledgements
This work is sponsored by the Interuniversity Attraction
Poles Programme of the Belgian State, Belgian Science Pol-
icy, under the MoVES project.

8. REFERENCES
[1] M. Antkiewicz and K. Czarnecki. FeaturePlugin:

feature modeling plug-in for Eclipse. In Proceedings of
the 2004 OOPSLA workshop on eclipse technology
eXchange (eclipse ’04), pages 67–72, 2004.

[2] K. Bak and K. Ali. Improving usability of the Linux
kernel configuration tools.
http://gsd.uwaterloo.ca/sites/default/files/cs889-
report.pdf.

[3] D. Benavides, S. Segura, P. Trinidad, and
A. Ruiz-Cortés. FAMA: Tooling a framework for the
automated analysis of feature models. In Proceedings
of the First International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’07),
pages 129–134, Limerick, Ireland, January 2007. Lero
Technical Report 2007-01.

[4] T. Berger, S. She, R. Lotufo, A. W ↪asowski, and
K. Czarnecki. Variability modeling in the real: a



perspective from the operating systems domain. In
Proceedings of the 25th International Conference on
Automated Software Engineering (ASE’10), pages
73–82, Antwerp, Belgium, 2010. ACM.

[5] D. Beuche. Modeling and building software product
lines with pure::variants. In Proceedings of the 2008
12th International Software Product Line Conference
(SPLC ’08), page 358, Washington, DC, USA, 2008.
IEEE Computer Society.

[6] BigLever Software (Inc.). Product line engineering
solutions for systems and software.
http://www.biglever.com/extras/BigLever Solution
Brochure.pdf, November 2011.

[7] L. Chen and M. Ali Babar. A systematic review of
evaluation of variability management approaches in
software product lines. Information and Software
Technology, 53(4):344–362, 2011.

[8] K. Czarnecki, S. Helsen, and U. W. Eisenecker.
Formalizing cardinality-based feature models and their
specialization. Software Process: Improvement and
Practice, 10(1):7–29, 2005.

[9] D. Dhungana, P. Grünbacher, and R. Rabiser.
DecisionKing: A flexible and extensible tool for
integrated variability modeling. In Proceedings of the
First International Workshop on Variability Modelling
of Software-intensive Systems (VaMoS’07), pages
119–127, Limerick, Ireland, January 2007. Lero
Technical Report 2007-01.

[10] A. Hubaux, A. Classen, M. Mendonça, and
P. Heymans. A preliminary review on the application
of feature diagrams in practice. In Proceedings of the
Fourth International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’10),
pages 53–59, Linz, Austria, January 2010. Universität
Duisburg-Essen.

[11] A. Hubaux, Y. Xiong, and K. Czarnecki.
Configuration challenges in Linux and eCos: A survey.
Technical Report GSDLAB-TR 2011-09-29,
Generative Software Development Laboratory,
University of Waterloo, 2011.

[12] M. Janota. Do SAT solvers make good configurators?
In Workshop on Analyses of Software Product Lines
(ASPL 2008), pages 191–195, Limerick, Ireland,
September 2008.

[13] M. Janota. SAT Solving in Interactive Configuration.
PhD thesis, University College Dublin, 2010.

[14] K. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical report, Software
Engineering Institute, Carnegie Mellon University,
1990.

[15] C. Kästner, T. Thüm, G. Saake, J. Feigenspan,
T. Leich, F. Wielgorz, and S. Apel. FeatureIDE: A
tool framework for feature-oriented software
development. In Proceedings of the 31st International
Conference on Software Engineering (ICSE’09, pages
611–614, Vancouver, Canada, 2009. IEEE.

[16] O. Koren. A study of the Linux kernel evolution. ACM
SIGOPS Operating Systems Review, 40:110–112, 2006.

[17] M. Mendonca, M. Branco, and D. Cowan. S.P.L.O.T.:
software product lines online tools. In Proceeding of
the 24th ACM SIGPLAN conference companion on

Object oriented programming systems languages and
applications (OOPSLA’09), pages 761–762, New York,
NY, USA, 2009. ACM.

[18] M. Mendonca, A. W ↪asowski, and K. Czarnecki.
SAT-based analysis of feature models is easy. In
Proceedings of the 13th International Software Product
Line Conference (SPLC’09), pages 231–240, San
Francisco, CA, USA, 2009. Carnegie Mellon
University.

[19] M. Mendonça. Efficient Reasoning Techniques for
Large Scale Feature Models. PhD thesis, University of
Waterloo, 2009.

[20] R. Michel, A. Classen, A. Hubaux, and Q. Boucher. A
formal semantics for feature cardinalities in feature
diagrams. In Proceedings of the 5th International
Workshop on Variability Modelling of
Software-intensive Systems (VaMoS’11), pages 82–89,
Namur, Belgium, 2011. ACM Press.

[21] A. Nöhrer and A. Egyed. Conflict resolution strategies
during product configuration. In Proceedings of the
Fourth International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’10),
pages 107–114, Linz, Austria, 2010. Universität
Duisburg-Essen.

[22] R. Rabiser, P. Grünbacher, and D. Dhungana.
Requirements for product derivation support: Results
from a systematic literature review and an expert
survey. Information and Software Technology,
52(3):324 – 346, 2010.

[23] K. Schmid, R. Rabiser, and P. Grünbacher. A
comparison of decision modeling approaches in
product lines. In Fifth International Workshop on
Variability Modelling of Software-Intensive Systems
(VaMoS’11), ACM International Conference
Proceedings Series, pages 119–126. ACM, 2011.

[24] J. Sincero and W. Schröder-Preikschat. The Linux
kernel configurator as a feature modeling tool. In
Proceedings of the 1st Workshop on Analyses of
Software Product Lines (ASPL’08), pages 257–260,
Limerick, Ireland, 2008.

[25] J. White, D. C. Schmidt, D. Benavides, P. Trinidad,
and A. Ruiz-Cortés. Automated diagnosis of
product-line configuration errors in feature models. In
Proceedings of the 12th International Software Product
Line Conference (SPLC’08), pages 225–234,
Limercick, Ireland, 2008. IEEE Computer Society.

[26] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki.
Generating range fixes for software configuration.
Technical Report GSDLAB-TR 2011-10-27,
Generative Software Development Laboratory,
University of Waterloo, 2011.

[27] Z. Yin, X. Ma, J. Zheng, Y. Zhou,
L. Bairavasundaram, and S. Pasupathy. An empirical
study on configuration errors in commercial and open
source systems. In Proceedings of 23rd ACM
Symposium on Operating Systems Principles (SOSP),
pages 159–172. ACM, 2011.


