
GSDLAB TECHNICAL REPORT

Traceability Mappings as a Fundamental
Aspect of Model Transformations

Zinovy Diskin

GSDLAB–TR 2016-05-01 May 2016

Generative Software Development Laboratory
University of Waterloo

200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

WWW page: http://gsd.uwaterloo.ca/

The GSDLAB technical reports are published as a means to ensure timely dissemination

of scholarly and technical work on a non-commercial basis. Copyright and all rights

therein are maintained by the authors or by other copyright holders, notwithstanding

that they have offered their works here electronically. It is understood that all persons

copying this information will adhere to the terms and constraints invoked by each author’s

copyright. These works may not be reposted without the explicit permission of the

copyright holder.

Traceability Mappings as a Fundamental Aspect
of Model-to-Model Transformations

Zinovy Diskin1,2

1 McMaster University, Canada
2 University of Waterloo, Canada

zdiskin@gsd.uwaterloo.ca

Abstract. Technological importance of traceability mappings is well-
known. The paper argues that traceability mappings are also fundamen-
tal for semantics: we present a simple example showing that specify-
ing (model-to-model) model transformations without traceability makes
their semantics essentially incomplete. We also show that the traceabil-
ity mapping from the transformed to the original model should correlate
with a corresponding mapping from the target to the source metamodel.
Moreover, the transformation can be seen as the result of execution of the
metamodel mapping, and the latter thus appears as (a special encoding
of) the transformation definition.

1 Introduction

Translating models from one to another metamodel (also known as model-to-
model transformation, mmt) is ubiquitous in software engineering. The techno-
logical importance of traceability for mmt is well recognized in the mmt com-
munity. Such widely used transformation languages as ATL [10] and ETL [11]
automatically create traceability records/links during the transformation exe-
cution in order to resolve dependencies between the rules. After the execution
is finished, traceability data still have multiple important applications such as
debugging, change management and maintenance, and back-annotations [2,12,9].

In all applications mentioned above, traceability appears as an important but
auxiliary component of mmt, intended to facilitate the design and maintenance,
and correct execution, of the transformation rather than to define it. The goal
of the present paper is to argue, step-by-step, that traceability mappings (=
sets of traceability links) play a more fundamental—semantic—role for mmts so
that the very definition of an mmt can be seen as a (meta-)traceability mapping
from the target metamodel to the source one. We will first show that (trace-
ability) mapping-free semantics of mmts is essentially incomplete: we present
two simple different transformations that nevertheless produce the same target
model for any source model, but taking traceability into account does differenti-
ate the transformations. Then we argue that traceability links between models’
elements are to be complemented with traceability links between metamodels’
elements (extracted from transformation rules) so that the traceability and typ-
ing mappings form a commutative diagram. Commutativity ensures that model

traceability links are properly typed by meta-traceability links so that meta-
traceability mappings play the role of metamodels for traceability links. Finally,
we show that meta-traceability mappings can be executed, and moreover, trans-
formations can be defined by defining respective traceability mappings. In this
sense, the approach seems close to QVT [?] and TGG [8] mmts, but there is
an important distinction. QVT and TGG transformations are defined by sets of
transformation rules operating over individual model elements, while in the view
presented in the paper, an entire transformation is defined by a single metatrace-
ability mapping, involving operations (queries) over sets of model elements.

Including traceability mappings into semantics essentially changes the spec-
ification framework underlying mmts. It requires a convenient notation and ter-
minology, and a mapping-centric mathematical support with mappings properly
directed and operated. The paper proposes several steps in this direction bor-
rowed from category theory. On the other hand, defining an mmt by a mapping
provides several prominent technological benefits. Since mappings (being sets of
links) enjoy intersections and union operations over them, these operations can
be transferred to transformation definitions encoded by mappings and employed
for reuse. Since mappings (being sets of directed links) can be sequentially com-
posed, we obtain a natural composition operation for transformations, which can
be employed for their incremental compositional design.

Our plan for the paper is as follows. In Sect. 2, we first prove the semantic
necessity of traceability mappings, and then discuss their properties and present
categorical patterns for working with them. Section 4 shows how an mmt can be
decomposed into, first, execution of a query against the source model, and then
retyping the result by the target metamodel according to the meta-traceability
mapping. In Sect. ?? we discuss algebraic operations over mmts, related work is
discussed in Sect. 5, and Sect. 6 concludes.

2 Taking traceability mappings seriously

After showing the semantic necessity of traceability mappings in Sect. 2.1, we
consider their properties (structure preservation, commuting with typing, and
span representation, Sect. 2.2), show how traceability mappings can be executed
(Sect. 2.3), and finally discuss the underlying mathematical framework (Sect. 3).

2.1 The semantic necessity of traceability mappings

Semantics of a model-to-model transformation T is commonly considered (e.g.,
[?] and elesewhere) to be a function [[T]] : [[M]]→ [[N]], where [[M]] and [[N]] are
model spaces defined by, resp., the source, M , and the target, N , metamodels
However, in this section we present two different transformations generating the
same model space mapping, and then call traceability mappings to the rescue.

Figure 1(a) presents a toy transformation example. The source metamodel M
specifies two classes, Car and Boat, and the target metamodel N specifies their
possible roles as Commuting and Leisure Vehicles, connected by association same

2

Transformation T1:

c:Car --> cv: CV, lv:LV,
 cv.same = lv
b:Boat --> lv:LV

Model T1 (A)	

Metamod. M	

Car

Boat

Metamod. N	

Leisure
Vehicle

1

Model A	

c:Car	

b:Boat	

Commut.
Vehicle

same
0..1

:same

lv2:LV	

cv:CV	

Traceability mapping	

lv1:CV	

Model T2 (A)	

Metamod. M	

Car

Boat

:sam
e lv2:LV	

cv:CV	

Metamod. N	

Leisure
Vehicle

1

Model A	

c:Car	

b:Boat	

Traceability mapping	

lv1:CV	

Commut.
Vehicle

same
0..1

Transformation T2:

c:Car --> lv:LV,
b:Boat --> cv:CV, lv:LV
 cv.same = lv

(a) (b)
Fig. 1. Two sample transformations. fix 1.Change green and orange fonts to
black. Even blue fonts are to be darker/aslo black? fix 2. Why the figs
are of diff height? it’s ugly!!!! fix 3. Move def. terms metamod out of the
box? see the next figs and decide what’s better, but it’d be uniform, right?

if two roles are played by the same physical vehicle; e.g., such a transformation
may be needed for an insurance company. The transformation T1 consists of two
rules specified in Fig. 1(a) in some pseudo MT language. The first rule says that
a car produces a commuting vehicle and a leisure vehicle connected by a same-
link. The second rule says that a boat generates a leisure vehicle. An example
of executing this transformation for a model A consisting of a car and a boat
is shown in the lower half of Fig. 1(a), where T1(A) denotes the target model
produced by the transformation, but please ignore the traceability mapping from
T1(A) to A for the moment. Here we write T(A) for [[T]] (A), and we will often
abuse such a notation and use the same symbol for a syntactic construct and its
intended semantics.

Figure 1(b) presents a different transformation T2. Now a boat gives rise
to a commuting and a leisure vehicle, whereas a car only produces a leisure
vehicle (think about people living on an island). Clearly, being executed for
the same source model A, transformation T2 produces the same target model
consisting of three objects and a same-link. More accurately, models T1(A) and
T2(A) are isomorphic rather than equal, but as mmts are normally defined
up to OIDs, the same transformation T executed twice for the same model
A would also produce isomorphic rather than absolutely equal models. We will
always understand equality of models up to OID isomorphism, and thus can write
T1(A) = T2(A). It is easy to see that such an equality will hold for any source
model containing equal numbers of cars and boats. However, let us suppose that
the metamodel M includes a constraint requiring the numbers of cars and boats
to be equal, eg, it may have an association between classes Car and Boat with
multiplicity 1..1 at both ends. Then any instance X of M necessarily consists
of equal numbers of cars and boats, and hence T1(X) = T2(X) holds for any
source instance X∈ [[M]].

Thus, the common semantics of model transformations as model space map-
pings is too poor and should be enriched. Comparison of the two transforma-

3

tions in Fig. 1(a,b), now with traceability mappings, shows what should be done:
we need to include traceability mappings into the semantics of model transfor-
mations, and define it as a function [[T]] : [[M]]→ [[N]]×Map([[N]],[[M]]), where
Map([[N]],[[M]]) denotes the set of all mappings from N -models (i.e., elements of
[[N]]) to M -models (in [[M]]). The space of mappings is to be equipped with the
source and target functions ∂s: Map([[N]],[[M]])→ [[N]] and ∂t: Map([[N]],[[M]])→ [[M]],
and we write m : A← B for mapping m with ∂t(m) = A and ∂s(m) = B. Of
course, we require that if (B,m) = [[T]] (A), then ∂s(m) = B and ∂t(m) = A.
It is convenient to split semantics into two functions: [[T]]

•
: [[M]]→ [[N]] and

[[T]]
J−

: [[M]]→ Map([[N]],[[M]]) such that for any source modelA, ∂s([[T]]
J−

(A)) =
[[T]]
•

(A) and ∂t([[T]]
J−

(A)) = A. Thus, what is missing in the common mmt-
semantics is the mapping-valued function [[T]]

J−
. However, including this function

into semantics has several important consequences, which we discuss in the next
section.

2.2 Traceability under the microscope

Model T1�(A)	

Car

Boat

:same

:CV	

Commut.
Vehicle

Leisure
Vehicle

1

Model A	

c:Car	

b:Boat	

Traceability map, T1ç(A)

lv1:LV	

same
0..1 mtr2

mtr1

mtr3

mtr12

Typing	

mapping, τA	

tr2

tr1

tr3

tr12

Typing	

mapping, 	

τT�(A)	

[≤]

Source	

Metamodel, M	
 Metamodel

traceability, T 	

Target	

Metamodel, N	

lv2:LV	

Fig. 2. Meta-traceability [w=2.5]

We discuss properties of
traceability mappings:
structure preservation,
commuting with typing,
and their span represen-
tation.

2.2.1 Structure preser-
vation. A mapping is
a collection of directed
links that is compatible
with models’ structure.
If models are graphs,
then their graph struc-
ture, i.e., the incidence
of nodes and edges,
should be respected. The
dashed link from edge
same to node c:Car in
the traceability map-
ping T1

J−(A) shown in
Fig. 2 (whose lower level reproduces Fig. 1(a)) actually denotes a link targeted at
the identity loop of the node c, which relates c to itself. Such loops can be added
to every graph node, and when we draw a link from an arrow to a node, it us
just a syntactic sugar to specify a link targeted at the identity loop of the target
node. With this reservation, it’s easy to see that both traceability mappings in
Fig. 1 are correct graph morphisms, which map nodes to nodes and edges to
edges so that the incidence between nodes and edges is preserved.

4

2.2.2 Meta-traceability and commutativity. Another important condition
to be respected is compatibility of links between model elements with relation-
ships between metamodel elements established by the transformation definition.
To explicate the latter, we need meta-traceability links between metamodels as
shown in the upper half of Fig. 2. The mapping T consists of four links mtr i

“tracing” the origin of the target metamodel elements according to definition
T1 in Fig. 1(a): commuting vehicles appear from cars (rule 1) and only from
cars (neither of the other rules produce commuting vehicles), and leisure vehi-
cles appear either from cars (rule 1) or boats (rule 2). The dashed link to Car
again denotes a formal link from edge same to not-shown identity loop link from
Car to Car, and encodes the clause in rule 1 that a same-link appears when a
car generates both a commuting and leisure vehicle. Overall, the upper three
meta-links in mapping T “trace” rule 1 in transformation T1, and the lower link
traces rule 2.

Now we need to recall that a model A is actually a pair DA, τA) with DA the
model’s datagraph, and τA: DA →M the typing mapping. By a common abuse
of notation, we denote the datagrapg by the same letter A as the entire model.
Two typing mappings and two traceability mappings in Fig. 2 form a square,
and it is easy to see that this square is semi-commutative in the sense that each
of the four paths from anmt1

•(A) to A (via traceability links tri) to M (via A’s
type links) can be matched by the same-source-same-target path from T1

•(A)
to N (via type links) to M (via meta-traceability links mtri), but there is an
upper path without match, namely, the path from object lv1∈T1

•(A) to class
LeisureVehicle to class Boat (hence the ≤ symbol denoting this property of the
square diagram). As commutativity is an important ingredient of the mapping
machinery, we need to fix the commutativity violation. The next sections shows
how it can be done.

mtr12

 T1�(A)	

Car

Boat

Commut.
Vehicle

Leisure
Vehicle

1

Model A	

c:Car	

b:Boat	

|T1ç(A)| 	

same
0..1

mtr1

mtr3

τA	

[=]

Source	

Metamodel, M	

Target	

Metamodel, N	

mtr2

span T1	

| T1 |	
T1M	
 T1N	

:mtr12

:mtr1

:mtr3

:mtr2

:same

:CV

:LV

:LV

[=]

≅

τT�(A)	

T1M
ç(A)	

T1M
é(A)	

T1
é

 (A)	

T1M
�(A)	
 T1

�(A)	

Fig. 3. Meta-traceability via spans. [w=2.]

2.2.3 Traceability map-
pings vis spans. As
traceability links are
fundamental, we reify
them as model ele-
ments, and mapping T
gives us three node-link
nodes mtr1,2,3 (see the
upper part of Fig. 3),
while the arrow-link (dashed)
link tr12∈T is reified as
an arrow mtr12 between
the respective node-link
reifications. Together, the
four reifications form a
metamodel |T |, consist-
ing of three classes (for
three inter-class links)

5

and one association (for
the inter-association dashed
link). The special na-
ture of |T |’s elements (which are links) is encoded by mapping each element
to its ends in metamodels M and N . These secondary links form totally-defined
single-valued mappings TM : M ← |T | and TN : |T | → N so that we replaced a
many-to-many mapping T by a pair of single-valued (many-to-one) mappings.
Working with single-valued mappings is usually much simpler technically, and
below we will see that it allows us to fix commutativity.

The triple T = (|T |, TN , TM) is called a span with the head |T |, and legs TM
and TN . Note that legs of the span are ordered and the triple T ◦ = (|T |, TM , TN)
is another span called the inverse of T . We will call the first leg in the triple the
source leg, and the second one the target leg. Thus, span T encodes mapping T
in Fig. 2, while span T ◦ encodes the inverse mapping. We denote the span by
the same letter as the mapping from which it is produced as they are essentially
the same, and we will often use the same letter for the head of the span to
reduce the number of symbols in our formulas. Note also that the head of the
span is a graph (because mapping T is a graph mapping), and its legs are correct
graph morphisms. This is an accurate formalization of the structure preservation
property discussed in Sect. 2.2.1.

The reification procedure applied to mapping T1
J−(A) provides the span

shown in the lower part of Fig. 3 (ignore the blue color for a moment, it weill
be explained in the next subsection). Since in contrast to mapping T , mapping
T1

J−(A) is many-to-one, the right (source) leg of the span is an isomorphism (of
graphs), which we show as a block-rectangle rather than a block-arrow (actually
we could identify the two models). Now it is easy to check commutativity of the
two square diagrams, which is recorded by markers [=] at their centers. Com-
muting makes it possible to type elements in model |T1

J−(A)| (i.e., traceability
links) by elements in model |T | (i.e., meta-traceabilitylinks), and ensures that
typing is a correct graph morphism. In other (UML’s) words, meta-traceability
links are classifiers for model traceability links, and commutativity provides con-
sistency of traceability links’ classification with model elements’ classification.
We have thus obtained an accurate formal specification of mutually consistent
traceability mappings, but this is not the end of the story.

2.3 Meta-traceability links can be executed!

A somewhat surprising observation we can make now is that the meta-traceability
mapping can actually replace the transformation definition T1: by applying two
standard categorical operations to the span T and the typing mapping of model
A, we can produce model T1

•(A) (together with its typing τT1
•(A)) and the

traceability mapping T1
J−(A) in a fully mechanized way.

The first operation is called (in categorical jargon) pull-back (PB). Its takes
two graph mappings with a common target (a cospan), TM and τA as its in-
put, and outputs a span of graph mapping shown in Fig. 3 blank and blue (to
recall the mechanic nature of the operation) so that the entire square diagram
is commutative. The PB works as follows. For any pair of elements a∈A and

6

n∈N such that there is an element m∈M together with a pair of links (`1, `2)
targeted at it, `1: a→ m in mapping τA and `2 : m← n in mapping T 1M , an
object (a, n) is created together with projection links to a and n. All such pairs
(a, n) together with projection links to N make a model T •1M (A) (whose typing

mapping is denoted by T ↑1M (A)), and projection links to A constitute its trace-
ability mapping T←1M (A). The entire operation can be seen as pulling the model
A together with its typing mapping back along mapping T1M , hence, the name
PB. Note that commutativity of the left square now becomes the very essence
of the transformation: we build model A∗ and its traceability mapping in such a
way that commutativity holds. Moreover, we make this model a maximal model
that respect commutativity by collecting in A∗ all pairs (a, n) that respect com-
mutativity. For example, if model A would have three cars and boats, model A∗

would have three commuting and five leisure vehicles with three same-links.

The second operation is fairly easy: we sequentially compose mappings τ∗A and
TN by composing their links, and obtain a mapping A∗ → N that provides graph
A∗ with typing over N . We will denote the model (A∗, τ∗A;TN) by AN , whose
datagraph is A∗ or its any isomorphic copy A∗N according to our agreement
to consider models up to OIDs isomorphism. This completes the right square
in Fig. 3 (which can be seen as a syntactic sugar for the triangle of mappings
described above). Now it is easy to see that PB followed by composition produce
exactly the same model as rule-based definition T1 in Fig. 1(a), A∗N = T1

•(A)
(up to OIDs).

A bit more complex example out TR Sect.2.2.3 shows that metalink execution
for graphs can be non-trivial for even simple examples.

2.2.4 Constraints for trace models. Paper [12,] provides an extensive in
depth discussion of traceability modeling, and argues that stating proper con-
straints to trace links is an important component of traceability modeling. For
example, suppose we state that the back-end multiplciity of mapping T1M is
0..1, i.e., meta-trace mapping is injective (a.k.a. one-to-one mapping). Then, as
it is known that PB preserves injectivity (in fact, more general multiplicity con-
straints), mapping T←1M (A) and hence T←1 (A) must be also injective. If we obtain
the trace mapping by executing PB, this constraint is automatically satisfied,
but if the metatrace mapping is just an encoding of a rule-based transformation
built for analysis purposes, and trace links will specially be generated by the
tool during the run time, then injectivity appears as an important constraint for
a proper storage and management of the trace links. Note that if the mutiplicity
of the back-end of T1M is 1 (i.e., T1M is bijective), we cannot in general assert
that T←1 (A) is also bijective as the latter requires, in addition, surjectivity of
the typing mapping τA.

In this way we can manage some multiplicity constraints but not all. For
instance, in our example in Fig. 3, mapping T1M is not injective, but its submap-
ping responsible for Boat transformations is injective. In our example, the corre-
sponding submapping of the trace mapping T←1 (A) is injective too, but can we
assert this for a general case? We need some machinery to define submappings

7

and investigate constraint preservation for submappings. We will do it in the
next section.

3 Mathematical framework.

2: ;

1:p
b

M	
 N	

A	

τA	

TM �(A)	
TM
ç(A)	

TM	
 T 	
 TN	

≅	
 T �(A)	

TM
é(A)	

Meta-metamodel, MM	

ττM	

Té(A)	

[=] [=]

[=] [=]

1

1

1 1

1 * *

ττN	
ττT	

Fig. 4. Meta-traceability and model
transformations. Derived nodes and
arrows are blank (and blue).

3.1 Getting started. An abstract
schema of the examples we considered
above is shown in Fig. 4. All meta-
models are instances of a fixed meta-
metamodel MM (think of, e.g., graph
Node ⇔ Arrow, but more complex
graphs are not excluded), which pro-
vides meta-metatypes/classes (we will
say mm-type or mm-class) and ap-
pears as the target of all typing map-
pings ττ3. Commutativityof the trian-
gles ensures structure preservation: an
element instantiating mm-class Node in
T is mapped to an instance of Node in
M etc. Models are also (implicit) in-
stances of MM, but typing mapping ττ : A→M is not shown. To call a graph
A an instance of metamodel A, we need to equip it with a typing mapping
τA: A→M such that τA; ττM = ττA (imagine a commutative triangle diagram),
which ensures τA preserves the structure defined by MM.

The left square in the diagram is a PB application: two input mappings (to-
gether with their source and target objects) are shaded, the output elements are
blank (and blue). The arc 1:pb says that at step 1 operation pb was invoked and
produced two mappings spans by the arc. PB always results in a commutative
diagram, hence the marker = is blue (it’s a postcondition rather than a con-
straint). Recall that the argument (A) in the names of the blue elements refers
to the entire model A = (DA, τa) rather than its data graph (see footnote ??).

The right square show an application (step 2) of the sequential compositon
; operation (and the bottom rectangle mapping ∼= can be considered identity)
followed by an optional isomorphic coping (and then the bottom rectangle is an
iso). The mmt operation over model A is the composition (tiling) of PB and
;—it takes the entire (green) span T and mapping τA as its input, and outputs
the bottom (traceability) span and mapping T ↑ (A).

Our next step is to describe how this schema can be formalized. We will begin
with an outline of meta- and metamodeling, and then discuss pullbacks. We
will not include constraints into the picture—managing and formalizing general
constraints is a special story that goes beyond this paper, but we will discuss
simple but practically important multiplicity constraints.

3.2 Meta(-meta)modeling. We begin with fixing a category G whose objects
and arrows are called f graphs and graph mappings. In the abstract setting, we

3 read ττ as doubled τ rather than π

8

only require that G has pullbacks. But we would also like keep some set-and
-function intuition motivating the formal constricts, and then graphs can be
thought as ordinary (directed multi-) graphs, or edge- and node-labeled graphs,
or, 2-graphs (with arrows between arrows) so that pullbacks are defined com-
ponentwise (for nodes, for arrows, for 2-arrows).4 The reader may think about
G-graph as ordinary graphs, and this is what we want to achieve by calling
G-objects graphs.

Let MM be a graph considered as a meta-metamodel so that metamodels
in the sense of sections ??-2.3 above are instances of MM, i.e., pairs M =
(DM , ττM) with DM a metadata graph and ττM : DM →MM a typing mapping5,
which is a correct graph morphism. In our notation in sections ??-2.3 we followed
a common (inaccurate) practice and denoted datagraphs by the same letters
as (meta)models so that M will denote DM of the entire pair depending on
the context. The primary example to have in mind is again the metamodel for
ordinary graphs Node ⇔ Arrow, or better a (meta)metamodel for class diagrams
but more complex graphs are not excluded6 Interesting diversity appears on the
level of metamodels, e.g., M can be a metamodel for class diagrams, and N a
metamodel for relational tables, but both M and N are graphs (or, in the refined
setting, class diagrams) instantiating MM. We will denote the category of all
(double ττ typing) mappings into MM as objects, and triangle commutative

diagrams as arrows, by [[MM]]
?

with the upper index showing that objects of
this category can be legal metamodels if, in addition, they satisfy some extra
constraints, e.g., of being finite graphs.7 In general, legal metamodels make a
subcategory [[MM]] of [[MM]]

?
.

In its turn, an object M = (DM , ττM) ∈ [[MM]]
?

determines its own in-
stance category [[M]], whose objects are (single τ) typing mappings into M , say,
τ : DA → DM , and arrows are mappings f : A→ B such that f ; τB = τA (imag-

ine a commutative triangle again). We denote this category by [[M]]
?

since again
its objects can be, but not necessary are, legal instances—the latter must sat-
isfy constraints declared in M (so that actually M ’s datagraph DM contains a
non-instantiatable constraint part; details of this construction can be found in
[1]). Thus, the category [[M]] of M ’s legal instances is a subcategory of [[M]]

?
.

Now let M,N be two metamodels, and T a mapping (in [[MM]]) between
them. Then for any instance A∈ [[M]], we apply PB to the pair (T, τA) and
obtain a graph T •(A) together with its trace mapping T←(A) and typing map-

ping T ↑ (A), i.e., we define ττT•(A)
def
= T ↑ (A); ττN . Thus, we have a mapping

T •: [[M]]→ [[N]]
?

that constitutes the object part of mmt but as we have seen,
the traceability part is not less important. (Note that the result of transforma-

4 a categorician would say that G is a presheaf topos, whose base category is freely
generated by a graph.

5 read ττ as double-τ rather than π
6 to be logically accurate, category G is the external category providing the universe

in which everything else operates.
7 In category theory, such categories are called slice and often denoted by G/MM.

9

tion is only a pre-instance of N as we cannot, in general, guarantee that the
target constraints are satisfied.)

3.3 Pullback operation under the microscope. We will present several
basic results about PBs (one of them seems to be new), and show how they can
usefully be applied for several questions considered in the mmt literature. We
begin with PB-construction in the category Set os sets and functions (i.e., total
single-valued mappings).

pb
(b)

1

3

2

4

5
!	

pb

(d)

pb

[k..n]

[0..n]

(c) (a)

M	

A	

T	

M0	
 T0	

A0	
 B0	

B	

pb

pb

pb

pb

Fig. 5. Lemmas about pullbacks: (a) UP, (b) MP, (c) Pasting, and (d) VK.

Definition 1 (pullbacks in Set). Given two functions with a common target,
f1: X1 → Y and f2 : Y ← X2, their pullback, PB is a pair of functions with a com-
mon source, g1 : X1 ← Z and g2: Z → X2 where Z = {(x1, x2)∈X1×X2 : f1(x1) = f2(x2)},
and gi are projections: gi(x1, x2) = xi, i = 1, 2. It is esasy to see that g1; f1 =
g2; f2, i.e., the square diagram formed by functions is commutative.

The following two results are well known [3].

Lemma 1 (pullbacks in Set).
(a) Universal property, UP. For a given pb-square 1234 Fig. 5(a) and an outer
commuting rectangle 5312, there is one and only one mapping !: 5→ 4. Con-
versely, if square 12324 possesses the universal property, then it is a pb-square
according to Definition 1.
(b) Muiltiplicity preservation, MP. For a given pb-square, if multiplicity of the
upper mapping is [k..n], the multiplicity of the lower mapping is [0..n].

The universal property allows us to define PB for complex structures like graphs
or Petri nets componentwise by separately defining PB for the constituent sets:
nodes, arrows, etc. The the existence of necessary mappings like the source and
the target nodes for arrows in directed mutligraphs is provided by UP. Details
can be found in many textbooks, e.g., [3].

Now we switch to abstract categories whose objects and arrows are black-
boxes; the only fact we know about them is that arrows can be associatively
composed, and each node has an identity loops, which are units of the arrow
composition. Definition 1 does not work for this setting—there are no elements,

10

but we can take the result of Lemma 1(a) as a definition of PB: a commutative
square like in Fig. 5(a) is PB if it has the universal property described in the
lemma. It is easy to prove that for any given span of mappings (31, 21), its PB
completion up to a square 1234, if it exists, is unique up to canonic isomorphism
between nodes 4 (see again [3] for details).

For considering our practical scenarios, we will need the following two results.
The first is a well-known Pasting Lemma (see, e.g., [6]). For the diagram in
Fig. 5(b) in which the right-hand square is PB, the following holds: the left-
hand square is PB iff the outer rectangle is PB (the outer rectangle is logically a
square, if we compsoe the two upper arrows into one upper arrows, and similarly
for the two, lower arrows).

The second result is although simple, but (surprisingly) seems has not been
explicitly stated in the literature. We call it PB 3D-pasting lemma.

Lemma 2 (3D-pasting lemma for PBs). Take any category with PBs, and
consider the cubical commutative diagram in Fig. 5d), whose top face is a PB,
and the two front faces (those are marked with arcs) are PBs too. Then the
following holds: the bottom square is a PB iff one of the back faces is a PB (and
hence the other back face is a PB too).

The proof is in the appendix, and it is a typical categorical proof by chasing di-
agrams based on iterative applications of the universal property and 2D-pasting
Lemma.

Now we consider two scenarios of mmt management, in which the PB-
machinery we presented is essentially employed.
Scenario 1. Sub-transformation and constraints. Consider the front face
of the prism diagram in Fig. 6: we have a metamodel M , an (unnamed) mmt
definition mapping TM , a model A over M and PB execution gives us the
transformed model T •(A) with its trace mapping to A.

A	

T	

T0	

 pb

T�(A)	

T0�(A)	

2:p

b
5: [pb]

[*]

[*]

[k..n]

M	

1: ;

4: !pb1

[0..n]

3: ;

Fig. 6. An mmt scenario via PBs.

Now suppose that we are interested in
some local property of transformation T , e.g.,
for the example in Fig. 3, mutliplicity of the
transformation part related to boats. Hence,
we select a subgraph T0 of the transforma-
tion span head T : a special arrow with tri-
angle tail denotes the embedding of this sub-
graph into grah T . Now we will consecutively
perform several operations over mappings and
their properties to analyse the situation.
Step 1: We compose mappings T0T and TM ,
which gives us mapping T0M : we encode this
data by making the arrow dashed (blue) and
attaching to it a small arc labeled 1:; to be
read “at step 1 operation ; was invoked and
produced the mapping captured by the arc”.
Step 2: is to apply PB to the pair of mappings
AM and T0M and thus derive two mappings captured by the arc 2:pb.

11

Step 2+: apply MP Lemma and deduce mutliplicity for mapping T •0 (A).
Step 3: compose mappings T •0 (A)T0 and T0T and get arrow T •0 T .
Step 4: note that pair T •0 (A)A, T •0 (A)T completes the span AM,TM up to
a commutative square, and hence, by the universal property of PB, there is a
unique mapping T •0 (A), T •(A).
Step 5: note that the right-hand back face tiled with the front face conform to
the situation of the Pasting Lemma (see Fig. 5c)with the left-hand back face
being the outer rectangle. Hence, the right-hand square is PB. As PBs provide co-
images, it means that model T •0 (A) derived by executing subtransformation T0,
is simultaneously the submodel of T •(A) corresponding to the T0 part. In words:
any subtransformation results in the respective submodel of the transformation.
This statement has obvious practical consequences as it allows us to obtain the
result of subtransformation wihout executing it! Finally,
Step 5+: ensures that mapping T •0 (A), T •(A) is injection.

M

A	

T	

M0	
 T0	

A0	

1:pb

pb

2:pb

T�(A)	

T0�(A)	

4:p

b

[k..n]

[*]

[*]

[0..n]3:mp

[pb]

[pb]

Fig. 7. An mmt scenario with PBs.

Scenario 2. Sub-metamodel
and constraints. The front face
of the prism diagram in Fig. 7 is
the same: we have a metamodel
M , an mmt definition mapping
TM , a model A over M and
PB execution gives us the trans-
formed model T •(A) with its
trace mapping to A.

4 Towards a
general approach:
Transformation via
queries

Pulling a source model A back
along a meta-traceability map-
ping T1 produces one or multi-
ple copies of A’s elements, which
covers a useful but not too wide
class of transformations; more
complex transformations need a
more expressive mechanism. In [4,7], it was proposed to separate an MT into
two parts: first, a complex computation over the source model is encoded by a
query against the source metamodel, and then the result is relabeled (with, per-
haps, multiplication) by the target metamodel according to the meta-traceability
mapping.

4.1 Traceability with queries We will illustrate how the machinery works
by encoding the same transformation T1 by a different type of meta-traceability
mapping employing queries against the source metamodel as shown in Fig. 8. The

12

first basic idea of the transformation—creation of commuting vehicles by cars
only—is encoded by direct linking class Commut.Vehicle to class Car as we did
before. The second idea—creation of leisure vehicles by both cars and boats— is
now encoded in two steps. First, we augment the source metamodel M with a de-
rived class Car + Boat computed by applying the operation (query) of taking the
disjoint union of two classes; we denote the augmented metamodel by Q(M) with
Q referring to the query (or a set of queries) used for augmentation. Second, we
link class LeisureVehicle to the derived class Car + Boat, and association same in
metamodelN is linked to its counterpart in metamodelQ(M), as shown in Fig. 8.

Car

Boat

Commut.
Vehicle

Leisure
Vehicle

Augmented model, Q(A)	

c:	 Car	

b:	 Boat	 blv:LV	 clv:LV	

ccv:CV	

Car + Boat
qmtr2

c’: Car+Boat

b’: Car+Boat

qmtr1
1

1
0..1

0..1

1
same

0..1 qmtr12

:same

Typing	

mapping	

T1q
é(Q(A))	

	

Typing	

mapping

Q(τA)	

same

same

:same

:same

Augmented source	

metamodel, Q(M)	

Transformation	

definition mapping, T1q	

 	

Target	

metamodel, N	

Model T1q
�(A)	

Traceability map,	

 T1qç(Q(A))

Fig. 8. Meta-traceability via queries [w=2.5]

All links have a
clear semantic mean-
ing: given a link qmt
from an element n of
N to an element m
on Q(M), we declare
that n is to be in-
stantiated exactly as m
is instantiated, that is,
for any model A, ev-
ery element instantiat-
ing m in A or Q(A)
(see below), generates
an element instantiat-
ing n in T1

•(A). Note
also that the mapping
is of one-to-one type:
two classes responsible
for LeisureVehiclegeneration now contribute to a single query, and two respec-
tive links (mtr2 and mtr3 in Fig. 2) are replaced by one link qmtr2 into the
query.

Execution of the transformation for a model A also goes in two steps. First,
the query used in the mapping definition is executed for the model. In our
example, we take the disjoint union of Car and Boat instantiations in A, i.e.,
the set {c′, b′}. (A reasonable implementation would add a new type Car + Boat
to the same object c rather than creating a new object c′, but the pair (c,Car)
is still different from pair (c,Car +Boat). Thus, it may happen that c′ = c and
b′ = b, but this is just a special case of a general pattern presented in Fig. 8.)
Second, objects c, c′, b′ are retyped according to the respective meta-traceability
links qmtr1 (for c) and qmtr2 (for c′ and b′). The link cc′ is also retyped along
the link qmtr1212.

Thus, a model transformation definition is divided into two parts: finding a
query (or a set of queries)Q against the source metamodelM , which captures the
computationally non-trivial part of the transformation, and then mapping the
target metamodel into the augmentation Q(M), which shows how the results
of the computation are to be retyped into the target metamodel. The second

13

part can capture some simple computations like multiplication of objects (which
appear in mmt surprisingly often), but not more. In contrast, with a broad
understanding queries as general operations, the first part is Turing complete
with the only reservation that all result of the computation must have new
types (which distinguishes queries from updates; a detailed discussion and an
accurate formalization can be found in [5]).

ηT	

M	

:qEexe

QT(M)	
 N	

QT(τA)	

A	

ηA	
 QT(A)	

:P
B

τA	

(QT (A))ç	
(mT)é	

(QT (τA))ç	

mT
	
 M	
 N	

A	

:trExe τA	

T �(A)	
Tç(A)	

Té(τA)	

T	

(a)	
 (b)	

Fig. 9. Meta-traceability and model transformations. Derived nodes ands arrows are
blank (and blue).

4.2 Mathematical abstraction. A formal abstraction of the example is de-
scribed in Fig. 9(a). A model transformation is considered to be a pair T =
(QT ,mT) withQT a query against the source metamodelM andmT : QT (M)← N
a mapping from the target metamodel N to model M augmented with derived el-
ements specified by the query. Formally, we have an inclusion ηT : M ↪→ QT (M).
On the level of metamodels, query QT is a query definition, which can be exe-
cuted for any data conforming to schema M , i.e., for any model properly typed
over the metamodel M . Execution is modeled by an operation qExe, which for
a given query QT and model A produces an augmented model QT (A)8 prop-
erly typed over the augmented metamodel by an augmented typing mapping
QT (τA). To complete the transformation, the result of the query is retyped ac-
cording to the mapping mT (retyping is given by pulling back the augmented
typing mapping as discussed above). In Fig. 9(b), an abstract view of Fig. 9(a)
is presented, in which the upper double arrow encodes the two upper arrows in
diagram (a), and operation trExe of transformation execution is a composition
of two operations in diagram (a). Paper [5] presents an accurate formalization of
this construction by modeling the query language as a monad, view definitions
as Kleisli arrows over this monad, and view executions as Cartesian lifting.

5 Related Work, Discussion, and Future work

5.1 Traceability modeling. Traceability understood broadly is an enormous
area [2,12] in the present paper we consider its special sub-area connected with
mmt. However, in MDE, which is vitalized and driven by model transformations,
this special sub-area is a central one. Consider- ing traceability as a special
artifact that itself important and deserves (meta)modeling (and even a special

8 we should write [[QT]] (A) but we again use the same symbol for both syntactic and
semantic constructs.

14

DSL for building such metamodels) is now well acknowledged by the community:
see [12] for an extensive in-depth discussion and motivation.

common terms this paper

trace record element of the trace span

trace model trace mapping as a span

case-specific trace
metamodel

trace metamapping as a span
(with commuting rectangles)

general purpose
trace metamodel

meta-metamodel (with com-
muting triangles)

Table 1. Dictionary [w=1.5, 2.5,4

Table 1 shows correspon-
dences between a common ter-
minology now used in the liter-
ature (in the left column) and
constructs used in this paper
(the right one, where commuting
refers to Fig. 4. The counterparts
are even technically close as ev-
idences by Fig. 9, in which we
present the trace model of our
example in Fig. 3 in the style
borrowed from [9]. Abstract class
traceRe- cord provides several general attributes (such as creationDate and the
like), and its subclasses represent elements in the head of our meta-trace span T .
In fact, Fig. 9 can be seen as a special representation of spans, in which commutativ-
ity conditions are replaced by link inheritance (only two of them (with dotted
lines) are shown in the figure). Comparison of the categorical model in Fig. 4 and
the metamodel in Fig. 9 shows two advantages of the former. First, commuta-
tivity seems to be a more economic notation for the same semantics: imagine all
link inheritance arrows are shown in Fig. 9; the more so if we agree to consider
all possible commuting diagrams to be commutative by default, and specially
mark non- commutativeones (which is a usual category theory practice). Second,
UML does not allow for associations between attributes, and the latter need to
be reified, which would complicate the metamodel even more. Moreover, Fig. 9
(and its counterparts in the literature) miss the important structure preserva-
tion conditions for ref source and ref target associations, which are expressed by
commutativity of the triangle diagrams in Fig. 4.

* *
1..*

ref_source
sourceElem.

traceab.Record
 creatDate: Date
 …..

Car
self:Car

cv2car
 same:
 lv2boat

targetElem.

1..*

ref_target

comm.Veh.
 same: leisureVeh.

lv2boat Boat leisureVeh.

lv2car

Fig. 10. Traceability metamodel [w=2.]

Trace constraints are
important for trace (meta)modeling
and deserve a special
discussion. Two major
types of constraints are
identified in [12, Sect.4]:
type-safety and case-
specific correctness. In
our framework, the for-
mer is ensured by com-
mutativity constraints,a
nd the latter is provided
by the localization ma- chinery (submappings) explained in Sect. 3.3. Note that
as our trace metamodel (i.e., span) is executable, we can ensure satisfiability of
trace constraints if the respective constraints are properly stated on the meta-
trace level and PB pre- serves them. This could free the user from the burden
of watching whether these trace constraints are satisfied. Of course, not all con-

15

straints can be treated in this way, but two exemplar constraints considered in
[12, Sect.4] can be handled in our framework: one is a local multiplicity con-
straint, and the other can be captured by introducing a respective arrow into
the meta-trace span (and us- ing a simple query (arrow composition) in one of
the metamodels (out TR [Sect.4] provides details).

5.2 Execution of meta-traceability links. Executability of meta-trace links
is considered in now well-developed framework of triple-graph grammars (TGG),
which provide explicit trace-link modeling with correspondence models [8]. How-
ever, as mentioned in Sect.1, TGG transformations are defined by sets of trans-
formation rules operating over individual model elements, while in the view
presented in the paper, an entire transformation is defined by a single meta-
traceability mapping, involving operations (queries) over sets of model elements.
This essential distinction seems possessing a non-trivial mathematical re ection:
TGG is based on pushouts, while our framework is based on pullbacks dual to
pushouts in some precise technical (and deep) sense. Further exploration of the
duality between elementwise TGG and set-based approach of the present paper
may be an intriguing research problem.

An industrial standard QVT is a technological counter-part of TGG, in which
links specifying inter-model relationships are executed. Paper [13] provides an in-
depth discussion of traceability in the context of QVT-rules execution, and hence
executability of meta-traceability links. The machinery employed is described in-
formally, but seems close to our use of PB. The overall picture is broader than
ours and includes mapping refinement, dynamic dispatch, and concurrency. A
precise formalization of these constructs in terms of our framework would be a
useful application; we leave it for future work. Separation of transformation into
the query part, and retyping (the PB part), is not considered.

5.3 Traceability with queries and sequential composition. The separa-
tion mentioned above is discussed in [7], but the expressiveness of PB seems
underestimated; particularly, the many-to-many traceability mappings are not
considered. A precise formalization of traceability mappings with queries in cat-
egorical terms as so called Kleisli mappings is provided in [5], sequential com-
position then follows from Kleisli mapping composition. However, the general
context for paper [5] is general inter-model relationships (which corresponds to
a broad view of traceability as correspondence emphasized in [2]), while in the
present paper we are more focused and consider traceability in the mmt context.

5.4 Algebra for mmts. In neither of the works mentioned above, Boolean
operations over transformations are not considered, and we are not aware of
their explicit introduction and discussion in the literature. An important future
work is to enrich the formal framework developed in [5] with Boolean operations
for traceability mappings.

6 Conclusion

A list of idea the reader is expected to take home from reading this paper is as
follows.

16

−Traceability belongs to semantics, not only to technology.
−Traceability mappings have several important properties:
−Meta-traceability mappings can be executed. Moreover, transformation defini-
tions can be represented by traceability mappings. Moreover, algebra of map-
pings gives rise to an algebra of transformations.
−Working with mappings needs a certain notational and formal discipline pro-
vided by category theory.

17

References

1.
2. N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni. Model trace-

ability. IBM Systems Journal, 45(3):515–526, 2006.
3. M. Barr and C. Wells. Category theory for computing science. Prentice Hall, 1995.
4. Z. Diskin. Model synchronization: Mappings, tiles, and categories. In J. M. Fer-

nandes, R. Lämmel, J. Visser, and J. Saraiva, editors, GTTSE, volume 6491 of
LNCS, pages 92–165. Springer, 2009.

5. Z. Diskin, T. Maibaum, and K. Czarnecki. Intermodeling, queries, and kleisli
categories. In J. de Lara and A. Zisman, editors, FASE, volume 7212 of LNCS,
pages 163–177. Springer, 2012.

6. P. Freyd and A. Scedrov. Categories, Allegories. Elsevier Sciece Publishers, 1990.
7. H. Gholizadeh, Z. Diskin, and T. Maibaum. A query structured approach for

model transformation. In J. Dingel, J. de Lara, L. Lucio, and H. Vangheluwe, edi-
tors, Proceedings of the Workshop on Analysis of Model Transformations co-located
with ACM/IEEE 17th International Conference on Model Driven Engineering Lan-
guages & Systems (MoDELS 2014), Valencia, Spain, September 29, 2014., volume
1277 of CEUR Workshop Proceedings, pages 54–63. CEUR-WS.org, 2014.

8. H. Giese and R. Wagner. Incremental model synchronization with triple graph
grammars. In O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, editors, Model
Driven Engineering Languages and Systems, 9th International Conference, MoD-
ELS 2006, Genova, Italy, October 1-6, 2006, Proceedings, volume 4199 of Lecture
Notes in Computer Science, pages 543–557. Springer, 2006.

9. Á. Hegedüs, Z. Ujhelyi, I. Ráth, and Á. Horváth. Visualization of traceability
models with domain-specific layouting. ECEASST, 32, 2010.

10. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A model transformation
tool. Sci. Comput. Program., 72(1-2):31–39, 2008.

11. D. S. Kolovos, R. F. Paige, and F. Polack. The epsilon transformation language. In
A. Vallecillo, J. Gray, and A. Pierantonio, editors, Theory and Practice of Model
Transformations, First International Conference, ICMT 2008, Zürich, Switzer-
land, July 1-2, 2008, Proceedings, volume 5063 of Lecture Notes in Computer Sci-
ence, pages 46–60. Springer, 2008.

12. R. F. Paige, N. Drivalos, D. S. Kolovos, K. J. Fernandes, C. Power, G. K. Olsen,
and S. Zschaler. Rigorous identification and encoding of trace-links in model-driven
engineering. Software and System Modeling, 10(4):469–487, 2011.

13. E. Willink and N. Matragkas. QVT Traceability: What does it really mean? In
Analysis of model transformations, AMT’15, 4th Workshop Models’15, 2015.

18

