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ABSTRACT
Variability modeling, and in particular feature modeling,
is a central element of model-driven software product line
architectures. Such architectures often emerge from legacy
code, but, unfortunately creating feature models from large,
legacy systems is a long and arduous task.

We address the problem of automatic synthesis of feature
models from propositional constraints. We show that this
problem is NP-hard. We design efficient techniques for syn-
thesis of models from respectively CNF and DNF formulas,
showing a 10- to 1000-fold performance improvement over
known techniques for realistic benchmarks.

Our algorithms are the first known techniques that are
efficient enough to be applied to dependencies extracted from
real systems, opening new possibilities of creating reverse en-
gineering and model management tools for variability models.
We discuss several such scenarios in the paper.

1. INTRODUCTION
Variability models are central to development and man-

agement of software product lines (SPL). They comprise
simple problem space models and usually quite complex so-
lution space models. A problem space model describes ma-
jor decisions made during customization—such as whether
an Enterprise Resource Planning (ERP) system should in-
clude an e-commerce platform or not. The solution space
model explains how the problem space decisions affect the
realization—for example, how the e-commerce platform is
woven into the implementation, by extending data models,
user interfaces and services.

Variability models contain concepts referred to as deci-
sions [36], features [27] or variation points [21], depending on
the abstraction level. The abstract models tend to contain
relatively few concepts (up to hundreds in the largest mod-
els1), while the low level concrete models can reach thousands

∗Presently at Configit A/S, Copenhagen
1Personal communications with Big Lever and Pure Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

of variation points. These concepts are typically organized
hierarchically, and related to each other using constraints.

There exist multiple commercial (Pure Systems GmbH,
Big Lever Software Inc.) and research [13, 23, 22, 36] tools for
variability modeling. Recognizing the increasing significance
of this market segment, The Object Management Group
(OMG) has initiated [34] a standardization process for the
Common Variability Language (CVL).

Feature models [27, 14] are one of the prominent notations
used in variability modeling. Applications of feature model-
ing include automatic generation of product configurators,
driving code generators [14] and build systems [6] to com-
pose individual members of an SPL, and driving test and
verification [29, 11]. Feature models will also be part of the
CVL standard [34]. In this paper we use the term feature in
the abstract unifying sense, meaning either a decision or a
variation point. This simplification is justified, since we will
be exploiting the combinatorial structure of features, which
is similar in the solution space and in the problem space.

SPLs are typically large software projects, often resulting
from a long lasting evolution, based on substantial legacy
code. Industrial SPLs employ models containing thousands
of features, especially if they mix the problem and the so-
lution space. For instance, the Linux kernel project uses a
model containing in excess of 5000 features to describe its
x86 architecture [6]. At the same time, there exist SPLs,
such as the FreeBSD kernel, that could benefit from having
feature models, but presently no such models exist for them.
Communications with Pure Systems indicate that similar
models and situations are met in the industry.

Reverse engineering techniques for variability models, would
ease adoption of product line practices, enabling more smooth
migration of legacy code to systematic product line architec-
tures and their subsequent evolution. This paper addresses
the problem of synthesis of feature models, which is the core
algorithmic part of reverse engineering: to synthesize a fea-
ture model from a given set of dependencies. We construct
diagrams that contain a hierarchy of groups of binary features
enriched by cross-hierarchy inclusion/exclusion constraints.
Our algorithms assume a constraint system expressed in
propositional logics as input. In practice, these constraints
can be either specified by engineers, or automatically mined
from the source code using static analysis [5]. Furthermore,
effective management of large feature models requires model
management operations such as merge, compare, diff, and
project [1]. Such operations ease model evolution by allowing
developers to compare models to assess the impact of model
edits and build large models by composing smaller ones. The
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Figure 1: Components of FM synthesis

feature model synthesis problem is also at the core of sev-
eral such model operations, which are defined via logical
operators on formulas derived from the input models [1].

In this paper we formally define the problem of synthesis of
feature models, discuss its complexity, derive semantic based
algorithms and argue for their correctness. Technically, we
synthesize not a feature model, but a feature graph, which
is a symbolic representation of all possible feature models
that could be sound results of the synthesis. Then we show
that any of these models can be efficiently derived from the
feature graph. Our contributions include:

• Definition of feature model synthesis as an algorith-
mic problem, an NP-hardness result, and a complexity
driven analysis of suitable solution techniques.

• An algorithm for synthesis of feature models from con-
junctive normal form (CNF) formulas, least 10-times
faster than previously known algorithms.

• An efficient algorithm for synthesis of feature models
from disjunctive normal form (DNF) formulas.

• An implementation and an evaluation of the above.

The above techniques produce feature models, but can be
easily adjusted to other languages, such as the propositional
part of variability specifications of the current CVL proposal.
Importantly, the algorithm for synthesis of models from a
constraint in CNF form, is the first known technique for this
problem, which can be applied to data extracted from real
systems. The previous work of the same authors [16] has
shed light on the mathematical structure of the problem, but
has failed to provide scalable algorithms.

2. OVERVIEW AND MOTIVATION
Feature model synthesis takes as input a formula represent-

ing a set of feature dependencies or product configurations
and outputs a feature graph (FG) or feature model (FM). We
separate FM synthesis into two reusable steps (Fig. 1): (a)
DAG hierarchy recovery—which reconstructs the hierarchy
of the diagram, possibly with multiple parents for a feature,
and (b) group and cross-tree constraint (CTC) recovery—
which identifies feature groups and additional constraints
that can not be represented by the hierarchy.

The first step, DAG hierarchy recovery, takes the input
formula in either CNF or DNF, and produces a DAG that
contains all possible FM tree hierarchies.

The second step, identifies all feature groups and CTCs
given the propositional formula, DAG and an optional tree
hierarchy. This step outputs a FM or a FG depending on
whether a tree hierarchy is provided as input or is not.

These two steps can be used in a variety of scenarios. The
remainder of this section describes reverse engineering from
product configurations or code and operations on feature
models as examples (Fig. 2). The contribution of this paper
is to provide efficient algorithms for these two steps.

Scenario 1. FM synthesis from product configurations—
late tree hierarchy selection.

Scenario 2. Tool-assisted FM reverse engineering—
early tree hierarchy selection.

Scenario 3. Binary FM merge operation—
early tree hierarchy selection.

Figure 2: FM synthesis scenarios

Figure 3: Abstract workflow for FM synthesis with
early hierarchy selection

Scenario 1. This scenario describes the process of synthe-
sizing a FG from a set of product configurations. Here, the
product configurations are represented as a formula in DNF.
In this conversion, a product is represented as a conjunc-
tion of positive literals representing features present in the
product and negative literals representing features absent
from the product; a set of products is then a disjunction
of the conjunctions representing the individual products.
The two synthesis steps are executed consecutively in this
scenario yielding a feature graph. The final FM is built
using an interactive FM building tool that uses the FG as
a guide [26]. This scenario is an example of FM synthesis
where the FM hierarchy is decided at a later time, after the
FG is constructed.

Scenario 2. This scenario describes reverse engineering a FM
from code. Variability rich software, such as the FreeBSD
kernel, can benefit from having a FM. The FreeBSD op-
erating system kernel is configured in the build system to
derive variations of the kernel functionality. Unlike the Linux
kernel [6], the FreeBSD kernel does not have a FM to make
configuration of variants easier for users and management of
variability easier for developers.

The dependencies among features can be extracted from
source code using static analysis yielding a formula in CNF.
This scenario differs from the first by introducing an inter-
mediate step for deriving a tree hierarchy. In this scenario,



the tree is built by a user supported by a tool using a feature
similarity measure operating on the DAG [39]. This paper
describes a concrete realization of this scenario by reverse
engineering dependencies from build systems [5] and code
with conditional compilation directives, that is then used to
reverse engineer an FM for FreeBSD. The work presented
here allowed for the reverse engineering approach to scale to
large FMs, with several thousands of features.

Scenario 3. Our third scenario describes binary operations
on two FMs [1]. Examples of operations include merging,
diffing, comparing, and slicing feature models. The two
input models, FM1 and FM2 are first translated to their
propositional formulas [3], then an operation is applied to
merge the two models resulting in a single formula. This
formula is converted to CNF then inputted into FM synthesis.
In this scenario, a tree hierarchy is derived automatically
based on merge heuristics applied to the tree hierarchies of
the input FMs. Acher’s FM management infrastructure [1]
implements the operations using our previous BDD-based
FM synthesis solution [16], which does not scale beyond
small FMs, with few dozens of features. The algorithms
presented here can be used to improve the scalability of that
infrastructure.

Abstract workflow. In general, some form of additional input
is required in order to derive a tree hierarchy from the DAG.
In Scenario 1, the additional input came in the form of
user decisions supported by an interactive FM building tool.
Scenario 2, shifts tree hierarchy selection to before the group
and CTC recovery steps and uses user decisions supported
by a feature similarity measure to derive a tree. Scenario
3 uses FM merge heuristics. Scenarios 2 and 3 generalize
to the workflow in Fig. 3. Since the workflow in Scenario
1 builds all FMs that can be built from a formula, the
workflow in Fig. 3 can be seen as a special, easier case that
prunes alternative hierarchies from the DAG using a given
tree hierarchy and thus builds only a single FM. Since our
focus is on efficient algorithms, we will present only the
computationally harder workflow from Scenario 1 ; the easier
scenario is easily derivable from the presented one.

Methodology. We first analyze computational complexity of
the individual steps in the synthesis of feature models, and
of variations of the problems for different input representa-
tions. The complexity analysis allows us to decide what the
promising reductions of the problem are; for example using
SAT-based techniques for synthesis of or-groups from DNF
formulae, and not using these techniques for CNF formulae.
We exploit this in the design of algorithms, which are then
implemented and evaluated experimentally.

3. BACKGROUND
We begin the technical development with basic terminology

on propositional logics [9]. A clause is a disjunction of literals.
A term is a conjunction of literals. Syntactically, clauses and
terms are sets of literals. A clause C subsumes a clause C′

iff C ⊆ C′. A propositional formula is in conjunctive normal
form (CNF) iff it is a conjunction of clauses; in disjunctive
normal form (DNF) iff it is a disjunction of terms.

An implicate D of a propositional formula ϕ is a clause
such that (i) D is not a tautology and (ii) ϕ → D is a
tautology. D is prime iff it is minimal: no literals can be
removed from it without violating (ii). An implicant C of a
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Figure 4: An example feature model

c is a mandatory subfeature of p

c is an optional subfeature of p

1..k

{c1, . . . ck} are an or-group of p

1..1

{c1, . . . ck} are an xor-group of p

0..1

{c1, . . . ck} are mutex-group of p

Figure 5: Concrete syntax of feature diagrams

propositional formula ϕ is a term such that C is consistent
and C → ϕ is a tautology. C is a prime if it is minimal.
A formula ϕ is rooted if it has at least one variable r such
that for any other variable f : ϕ → (f → r) is valid (in
other words ϕ ∧ f → r is valid). We write ϕ[x 7→ 1] (resp.
ϕ[x 7→ 0]) meaning a formula created from ϕ by substituting
all occurrences of variable x by the constant 1 (respectively
0). We lift this to sets of variables writing ϕ[x 7→ 0]x∈X .

We now switch to defining feature diagrams and feature
models. Our definition largely follows the syntax of FODA [27].

Def. 1. A feature diagram is a tuple FD(F,E, (Em, Ei, Ex),
(Go, Gx, Gm)), where F is a finite set of features, E ⊆ F × F
is a set of directed child-parent edges; Em ⊆ E is a set
of mandatory edges; Ei ⊆ F × F is a set of cross-tree im-
plies edges, where Ei ∩ E = ∅; Ex ⊆ 2F and for each
e ∈ Ex, |e| = 2, is a set of cross-tree excludes edges; sets Go,
Gx, Gm contain non-overlapping subsets of E, participating
in or-groups, xor-group and mutex-groups respectively: each
member subset in any of Go, Gx and Gm is disjoint from
any other subset being a member of these sets.

The following well-formedness constraints hold in FD:

i. (F,E) is a rooted tree connecting all features in F

ii. All edges in a group share the same parent, so if g ∈ Gi

for i ∈ {o,x,m} and if (f1, f2), (f3, f4) ∈ g then f2 = f4

iii. Sets E, Ei, and Ex are pairwise disjoint.

A feature model FM is a pair (FD, ϕ) where FD is a feature
diagram, and ϕ is a propositional constraint over the features
of FD—a cross-tree constraint.

Fig. 4 presents a feature model of a simple family of cell-
phones (inspired by an example available at fm.gsdlab.org).
The root of the tree, or the root feature, represents the prod-
uct family itself (cellphone). The remaining nodes represent
mandatory or optional features of the products in the family.
Display and battery are mandatory subfeatures of the root,

fm.gsdlab.org
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Figure 6: Two diagrams (a-b) and a feature graph
(c), same configuration semantics

so in the abstract syntax of Def. 1, (display,cellphone) and
(battery,cellphone) are members of Em, whereas wireless is an
optional child of root, so (wireless, root) ∈ E \Em. Children of
display form an xor-group, meaning that display can be either
mono (i.e. monochrome) or color, but not both. In terms of
abstract syntax {(mono, display), (color, display)} ∈ Gx. The
children of wireless form an or-group, meaning that a cellphone
with local wireless support should include at least infrared
or bluetooth communication, and possibly both. Finally, the
diagram contains an implies edge, (bluetooth, Li-ion) ∈ Ei,
meaning that the bluetooth feature is only provided on the
phone with Li-ion batteries.

The configuration semantics [[FD, ϕ]] describes legal combi-
nations of features in the products described by the model [3]:

[[(F,E,(Em, Ei, Ex), (Go, Gx, Gm)), ϕ]] =[ ∧
(c,p)∈E∪Ei

c→ p
]
∧
[ ∧

(c,p)∈Em

p→ c
]
∧
[ ∧

(c,p)∈Ex

c→ ¬p
]
∧

[ ∧
{(c1,p),...,(ck,p)}∈Go∪Gx

p→ (c1 ∨ · · · ∨ ck)
]
∧

[ ∧
{(c1,p),..,(ck,p)}

∈Gm∪Gx

∧
i,j=1..k

i6=j

ci → ¬cj
]
∧ ϕ

(1)

This semantics does not subsume the entire meaning of
feature diagrams. Different diagrams can have the same con-
figuration semantics (see Fig. 6a-b). Other semantic aspects
include structural dependencies between features, or concep-
tual proximity of features. Here we focus on the configuration
semantics as the most central aspect of the models.

4. GENERIC SYNTHESIS ALGORITHM
The Problem. Our objective is to take an implicit descrip-
tion of the configuration semantics and synthesize a feature
diagram out of it. Since FODA feature diagrams, as defined
above, are not logically complete [37], for every formula ϕ
there may not exist a diagram D such that [[D]] ≡ ϕ. Instead,
we seek a diagram that is weaker than ϕ and, accompanied by
some cross-tree constraint ψ, coincides with ϕ: [[D,ψ]] ≡ ϕ.

To enforce creation of interesting diagrams, we require
that D is maximal, so that its hierarchy is connecting all
the features, that no more cross-tree edges can be added,
and that no group definition can be strengthened (no mutex-
or or-group can become an xor-group). This way as much
information as possible is represented in the diagram itself,
without resorting to the cross-tree constraint (otherwise an
empty diagram D and ϕ itself is a trivial answer to every
instance of the problem).

Def. 2. The feature model synthesis problem (FMS) is
given a consistent rooted formula ϕ over a set of features

F , synthesize a diagram D over F , such that ϕ → [[D]]
and D is maximal such, i.e. (i) no element can be added
to the collections of mandatory edges (Em), implies edges
(Ei), excludes edges (Ex), and or-, xor-, and mutex- groups
(Go, Gx, Gm) without violating the above implication, (ii) no
group can be moved from Go ∪Gm to Gx without violating
the above implication.

Recall that, by Def. 1, the above also implies that the diagram
D must connect all the features in F .

Thm. 1. The decision version of FMS is NP-hard.2

In practice, the requirement that ϕ is rooted is not a
limitation. This often follows from the way ϕ was obtained.
Otherwise, a fresh variable r can always be added to ϕ with
necessary implications to make it rooted. Consistency of
ϕ can be checked using a SAT solver. An inconsistency
normally indicates an error in software dependencies, which
should be fixed before synthesizing a feature diagram.

Representing Many Diagrams Symbolically. As shown in
Fig. 6a-b, there may be more than one solution to an FMS
instance. The parts (a) and (b) show syntactically different
diagrams that are equivalent in the sense of formula (1); both
corresponding to the following input formula:

ϕ ≡ (net→ drivers) ∧ (dst→ net)∧
∧ (staging→ drivers) ∧ (drivers→ staging) (2)

Our algorithm synthesizes a diagrammatic representation
of all possible feature diagrams that are compatible with
the input constraints, delegating resolving the tree hierar-
chy to various usage scenarios as described in Sect.2. This
diagrammatic representation is known as a feature graph [16]:

Def. 3. A tuple FG(F,E,Ex, (Go, Gx, Gm)) is a feature
graph iff F is a set of features, E⊆F×F is a set of directed
child-parent edges; Ex⊆ 2F is a set of undirected excludes
edges, for each e ∈ Ex, |e| = 2; sets Go, Gx, Gm contain
subsets of E, participating in or-groups, xor-group and mutex-
groups respectively. The following constraints hold in FG:

i. (F,E) is a connected DAG

ii. All edges in a group share the same parent, so if g∈Gi

for i∈{o,x,m} and (f1, f2), (f3, f4)∈g then f2 =f4,

iii. E, Ex are disjoint (no implies edge is an exclude edge).

Fig. 6c shows a feature graph embedding the feature diagrams
of (a) and (b). Feature graphs do not distinguish features
with mandatory relationships (here drivers and staging), be-
cause the configuration semantics does not distinguish them.
This is why in Fig. 6c there is a node labelled with the con-
junction of the two: drivers ∧ staging. Such sets of always
co-occurring features are sometimes called and-groups. To
preserve information about and-groups, we use sets of fea-
tures as nodes in the algorithms below (so in practice F in
the above definition is a power-set, where each node is an
equivalence class with respect to ϕ).

A feature graph is essentially a feature diagram in which
some conditions have been relaxed: sharing is allowed (it is

2Theorems are available in the appendix, to be accessed at
the discretion of referees at http://www.itu.dk/˜wasowski/
doc-appendix.pdf. The appendix does not extend the paper
but merely provides evidence for the interested reader.

http://www.itu.dk/~wasowski/doc-appendix.pdf
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a DAG, not a tree), and feature groups can overlap. Feature
graphs do not have implication edges as they are part of the
hierarchy now that sharing is allowed.

For a given formula a feature graph is potentially not
unique, but two special cases are unique: the transitively
reduced graph and the transitively closed graph. In this paper
we work with transitively closed graphs, like the one in Fig. 6c
(the child-parent relation E is transitively closed). One can
extract any maximal feature diagram from a transitively
closed feature graph FG in polynomial time. This is achieved
by the following steps:

1. Find a spanning tree over FG and move all the edges
not in the spanning tree to cross-tree implications (Ei);

2. Select greedily non-overlapping subsets from Go, Gx,
and Gm to form syntactically correct groups;

3. Choose one element from each equivalence class of
features, and create mandatory edges (Em) from it to
all other members of the class;

4. Remove from Ex all edges that participate in selected
mutex- or xor-groups.

So the actual algorithmic hardness of synthesizing a max-
imal feature diagram can be addressed by synthesizing a
feature graph and then applying the above linear time proce-
dure (the latter step is very fast in practice). Using a feature
graph has one more advantage: since a suitably constructed
feature graph encompasses all possible solutions to an FMS
instance, one can optimize against additional (extra-logical)
objectives to select a useful diagram out of many possible,
as described in Sect. 2.

Extracting The Feature Graph. Figure 7 presents the generic
algorithm for retrieving a feature graph from a propositional
formula (Fge). It follows the design proposed in [16], ex-
tended with mutex-groups and excludes edges. Our contribu-
tion is to show how Fge can be implemented very efficiently
for input represented in CNF and DNF. The implementation
in [16] could not scale beyond couple dozens of features.

Mendonca [33, 32] has shown that large feature models
can be analyzed efficiently using a SAT solver. The analysis
is usually feasible, because even though complex constraints
are present, the hierarchical tree constraint imposed over
all features by the diagram, significantly simplifies the task
of a SAT-solver. This hints that exploring a SAT-based
algorithms for synthesis may be beneficial. The difficulty
however, lies in the fact that not all the queries used in
the algorithm can be directly answered by a SAT solver,
thus we have to resort to additional techniques. The final
outcome demonstrates a dramatic performance improvement,
making the FMS problem practically tractable. Below, we
briefly summarize the main steps of the generic algorithm,
while we will address the details of CNF and DNF oriented
implementations in the upcoming sections.

Let us walk through the steps of Fge presented in Fig. 7.
The algorithm takes two parameters: a formula ϕ and its
root r. We begin by detecting dead features in ϕ (lines 1–2).
A feature is dead if it is not present in any configuration.
Fge produces a feature graph containing only live features;
dead features are either irrelevant, or they manifest errors.
The binary implication graph G is computed next where live
features are vertices in G and an edge (u, v) exists whenever
ϕ entails u→ v. See lines 3–4.

Feature-Graph-Extraction
(ϕ : formula over F rooted in r, r ∈ F )

� Find and remove all dead features
1 D = {f ∈ F | ϕ ∧ r → ¬f}
2 ϕ = ϕ[d 7→ 0]d∈D

� Compute the implication graph G(V,E)
3 V = F \D
4 E = {(u, v) ∈ V × V | ϕ ∧ u→ v}

� Compute strongly connected components
5 V ′ = {S ⊆ V | S is a SCC of G}

� Make edges between SCCs creating a DAG
6 E′ = {(u, v) ∈ V ′ × V ′ | u 6= v and
7 ∃u′∈ u, v′ ∈ v. (u′, v′) ∈ E}

� Compute the mutex graph M(V,Ex)
8 Ex = {{u, v} ⊆ V ′ | ∃u′ ∈ u, v′ ∈ v. ϕ ∧ u′ → ¬v′}

� Compute mutex-groups
9 Gm = {{(f1, p), . . . , (fk, p)} | {f1, . . . , fk} is

10 a maximal clique in M and ∀fi. (fi, p) ∈ E′}

� Compute or-groups
11 Go = {{(f1, p), . . . , (fk, p)} | f ′

1 ∨ · · · ∨ f ′
k is

12 a prime implicate of ϕ ∧ p′ and
13 p′ ∈ p and ∀fi. f ′

i ∈ fi ∧ (fi, p) ∈ E′}

� Compute xor-groups
14 Gx = {{(f1, p), . . . , (fk, p)} ∈ Go | ∀ i 6= j. (fi, fj) ∈ Ex}

15 return FG(V ′, E′, Ex, (Go \Gx, Gx, Gm \Gx))

Figure 7: The generic algorithm, mostly after [16]

And-groups—features that always co-occur—are identified
as the strongly connected components (SCCs) in the impli-
cation graph G. We lift the implication graph to its SCCs:
vertices V ′ are sets of co-occurring features (line 5). There is
an edge (u, v) in E′ between two and-groups iff there exists an
implication edge between any member of u and any member
of v in the implication graph G (lines 6–7). The resulting
graph (V ′, E′) is a DAG rooted in a vertex containing r.
Since r is the root feature, every feature co-occurring with r
is in the same and-group, and if there are two or more roots
in ϕ, then they would also belong in the same and-group (a
rooted formula can have more than one root, according to
the definition given in Sect. 3; r is one of these roots).

The mutex graph M is an undirected graph where the
vertices are and-groups. An edge exists between u, v iff ϕ
entails a mutual exclusion, u → ¬v (line 9). The edges of
the mutex graph become the excludes edges of the resulting
feature graph. Mutex-groups are computed by finding all
maximal cliques [8] in M . A mutex-group is created for each
clique and common ancestor p (line 8). Or-groups are com-
puted by identifying prime implicates among variables and
their common ancestor (line 11). Finally, to find xor-groups
either check for each or-groups if its children are mutually
exclusive (line 14), or for each mutex-group if disjunction of
its members is implied by parent (more efficient).

5. COMPLEXITY DISCUSSION FOR FGE
Before we move on to describing how Fge can be imple-

mented for CNF and DNF inputs, we want to clarify, which
are the hard steps in the FGE algorithm. Observe that all
steps except computing or-groups reduce to establishing en-



tailment of binary implications between literals, and it is
well known that this can be often efficiently done using a
SAT-solver (at least if the input is a CNF formula [32]).

It remains to discuss the complexity of the most difficult
step in the algorithm—the computation of prime implicates
in lines 11–13. Observe that if π is a prime implicate of ϕ,
then ¬π is a prime implicant of ¬ϕ. So the prime implicate
problem for CNF is as hard as the prime implicant problem
for DNF, and, dually, the prime implicant problem with CNF
is equi-difficult with the prime implicate problem of DNF.
We now define decision versions of these problems:

Def. 4. CNF-Shortest-Implicant Problem: given a for-
mula ϕ in CNF and an integer k, is there an implicant of ϕ
that contains k or fewer literals?

DNF-Shortest-implicant: given a DNF formula ϕ and an
integer k, is there an implicant of ϕ of at most k literals?

Thm. 2. The DNF-Shortest-Implicant problem is coNP-
hard, so it is not in NP unless NP = coNP.

Since NP = coNP is an important and long outstanding open
problem, it is unlikely that a SAT solver, an efficient solving
technique for NP-complete problems, can be used as the
main part of the solution for the problem of finding prime
implicants of a DNF formula, or equivalently computing
prime implicates of a CNF. Consequently, we will seek other
techniques for finding or-groups in a CNF formula.

Thm. 3. CNF-Shortest-Implicant problem is NP-complete.

Since CNF-shortest-implicant is just as hard as the satisfia-
bility problem, there exists a polynomial reduction between
SAT and CNF-Shortest-Implicant. Likely finding prime im-
plicants can be realized by solving SAT, and thus, given
efficiency of current SAT solvers, it will likely be beneficial to
use them to find or-groups within a DNF formula (or-groups
are prime implicates; prime implicates of a DNF formula,
are prime implicants of its negation, a CNF formula).

6. SYNTHESIS WITH FGE-CNF
Even though synthesis of or-groups is harder for CNF

than for DNF, studying algorithms assuming CNF on input
remains relevant. As sketched in Sect. 2, applications of Fge-
CNF include synthesizing feature diagrams from declarative
constraints specified by engineers and reverse engineering a
model from existing code artefacts (Scenario 2 ). In the latter
case it is normally natural to generate CNF representation of
dependencies. Similarly, since semantics of a feature diagram
is also expressed as a CNF formula (equation (1)) one can
use Fge-CNF to reason about existing diagrams (Scenario
3 ). CNF clauses can be reinterpreted as implications from
conjunctions to disjunctions of literals, naturally expressing
properties like x requires y, or x excludes y. Furthermore,
clauses are very naturally combined using conjunction.

Let the version of Fge, assuming CNF input be called
Fge-CNF. The structure of Fge-CNF is the same as of Fge
(Fig. 7). We detail how to implement the individual parts of
the algorithm, assuming that the ϕ is in CNF.

Lines 1–2 Dead Features: To detect whether a feature f
is dead, check if ϕ ∧ f is consistent. Now ϕ ∧ f is a CNF
formula; a single SAT call establishes consistency. Further, a
positive answer comes with a witness, which proves liveness

of all variables to which it assigns true, not just f . No further
SAT calls are made for these. Also, the SAT solver is tuned
to prefer witnesses with multiple true values, over those with
many zeroes, to allow learning about many features in one
call. Still, in the worst-case, detecting dead features performs
O(|F |) SAT calls.

Lines 3–4 Implications: Detecting binary implications re-
quires proving validity for formulas of the ϕ ∧ fi → fj kind,
or, equivalently, checking if ϕ∧ fi ∧¬fj is inconsistent. Thus
one implication edge is detected by one SAT call. Detecting
all implications requires O(|F |2) calls. In practice, again, a
single witness can be used to disprove all implications be-
tween variables fl and fk, whenever fl is assigned true, and
fk is assigned false.

Line 8 Mutual Exclusions: Detecting mutexes resembles
detecting positive implications and is done by checking if
ϕ ∧ fi ∧ fj is inconsistent. Like above, finding all exclusions
requires a quadratic number of SAT checks on a formula
which is (essentially) the same size as ϕ. Again this number
can be decreased by learning about more than one pair of
features from a single witness.

Line 11–13 Or Groups: To identify or-groups we need to find
prime implicates. We will rely on the following lemma:

Lemma 1. Let ϕ be a formula in CNF and C a clause,
then ϕ→ C if and only if there exist a clause C′ such that
C′ ⊆ C and C′ is derivable from ϕ by resolution.

See [9] for a proof. The idea is to perform consecutive
resolutions of clauses of ϕ discarding subsumed resolvents,
otherwise adding them to ϕ and removing clauses that are
subsumed by them. If the fixpoint is reached with a result
other than the empty clause, the result is the set of all prime
implicates of ϕ. Completeness of this procedure was shown
by Quine in the fifties, his proof is rephrased in [10, p. 24].

We synthesize or-groups using the Pig algorithm [25, 24],
which orders the resolutions in the above scheme heuristi-
cally. Proofs for the completeness and soundness of Pig
are outlined in [24]. However Pig itself is not sufficient. It
generates all possible resolvents, and it is unlikely that it can
be optimized to find or-groups efficiently. In our case we are
only interested in implicants containing features that share
the same parents in the (E′, V ′) graph, and these features
should only appear in positive form. Our brief experiments
show that it is not feasible to generate all implicants and
then filter out the uninteresting ones. Thus we apply variable
elimination. For a given parent p, we eliminate from ϕ all
features that are not its children, before proceeding to search
for prime implicates of p in this smaller formula. This leads
to significant performance gains.

We use Ver [41] to eliminate variables. The output of
Ver(ϕ, x) is a CNF formula ψ not containing the variable x,
but equisatisfiable to ϕ. It turns out that formulas presented
by Ver are not only equisatisfiable, but also the set of prime
implicants of ϕ over the kept variables is preserved:

Thm. 4. Let ϕ be a formula in CNF over the set of vari-
ables X, x ∈ X and let ψ = Ver(ϕ, x). Let π be a clause
consisting only of variables in X\{x}. Then π is a prime
implicate of ϕ if and only if π is a prime implicate of ψ.

Incremental Computation of or-groups. The above way of
identifying or-groups appears to do a lot of redundant work.



We first find implicates of ϕ ∧ f for some parent feature f ,
and then seek for implicates of ϕ ∧ f ′ for the next parent
f ′. But these two formulas are very similar. Alternatively,
one can use an algorithm computing the prime implicates of
ϕ∧ f , assuming the prime implicates of ϕ are already known.

This procedure is strongly inspired by the Piglet algo-
rithm [24], which computes the prime implicates of a formula
ϕ ∧ ψ, where ϕ is an arbitrary formula and ψ a formula in
CNF, assuming the prime implicates of ϕ are known. Let Πϕ

denote the set of prime implicates of the formula ϕ. Then the
prime implicates Πϕ∧f of ϕ ∧ f can be computed as follows:

1. Let Π = Πϕ. Add f to Π and remove all clauses from
Π subsumed by f .

2. Let S = {Resolve(π, f) | π ∈ Πϕ,¬f ∈ π}. Add the
clauses in S to Π and remove all π ∈ Π with ¬f ∈ π
from Π as they are subsumed by a clause in S, since
Resolve(π, f) = π\{¬f}.

This procedure can be used to compute the prime impli-
cates of ϕ ∧ r ∧ f efficiently. First, compute implicates of
ϕ∧ r and then reuse the results to find implicates of ϕ∧ r∧f
for each parent feature f . The resolution steps needed to
compute the implicates of ϕ ∧ r are only performed once.

7. SYNTHESIZING WITH FGE-DNF
Fge-DNF is a variant of Fge assuming DNF as input. In

Sect. 2 we have shown that it is applicable to scenarios where
models are to be synthesized from a list of existing variants
of a product (Scenario 1 ).
Fge-DNF shares the structure with Fge (Fig. 7). We

describe the details of the computation for DNF below. We
assume that the DNF formula only contains satisfiable terms.
A term is satisfiable if it does not contain a literal and its
negation. Unsatisfiable terms can be removed in linear time.

Lines 1–2 Dead Features: A variable f is dead iff it appears
negated in every term of ϕ. This can be checked in linear
time in |ϕ|. So the step runs in O(|ϕ||F |) time.

Lines 3–4 Implications: Since ϕ is in DNF, checking if ϕ ∧
fi → fj is valid can be done by checking if ϕ ∧ fi ∧ ¬fj is
satisfiable, which takes time linear in |ϕ|. Check if each term
contains {¬fi, fj}. Thus the detection of all implications can
be done in O(|ϕ||F |2) time.

Line 8 Mutual Exclusions: Similarly, the satisfiability of
ϕ ∧ fi ∧ fj can be computed in linear time. So detection of
exclusions also takes O(|ϕ||F |2) time.

Line 11–13 Or Groups: Recall that synthesizing or-groups
requires identifying prime implicates of ϕ and, since ϕ is in
DNF, this is equivalent to finding prime implicants of its
negation. We will use a procedure based on Binary Integer
Programming (BIP), a special case of Integer Linear Pro-
gramming (ILP) that assumes binary domain for variables,
to address this problem. BIP is an NP-complete problem [20]
and thus strongly related to the NP-complete CNF-Shortest-
Implicant problem (see Section 5).

We outline a straightforward polynomial reduction from
finding implicants to BIP [40, 31]. It translates a CNF
formula, here ¬ϕ, into a BIP problem P , with the property
that any optimal solution to P corresponds to a shortest
implicant of ¬ϕ. Let L be the set of literals occurring in ¬ϕ.

Solve(f : objective function, S : set of constraints,
k : upper bound)

1 while (k ≥ 0)
2 S = S ∪ {f(x) ≤ k}
3 status = SAT(S)
4 if (status == satisfiable) then k = f(x′)− 1
5 else return k = k + 1
6 return k

Figure 8: A SAT-based solver for BIP

1. For each l ∈ L introduce a Boolean variable xl. The
objective is to minimize

∑
l∈L xl

2. For each clause l1 ∨ · · · ∨ lm in ¬ϕ add the linear in-
equality xl1 + · · ·+ xlm ≥ 1 to the set of constraints.

3. As a literal l and its negation ¬l cannot both be true
in the same assignment of ϕ, a constraint of the form
xl + x¬l ≤ 1 is added to the set of constraints.

As every feasible solution must satisfy all constraints in the
BIP, at least one literal in each clause of ϕ corresponds to a
variable assigned the value 1 (second constraint). Constraint
3 ensures that none of these literals are conflicting, i.e. the
variables xl and x¬l do not both occur with the value 1 in
a feasible solution. It follows that a conjunction of literals
corresponding to the set of variables assigned the value 1
in any feasible solution is an implicant of ϕ. Moreover an
optimal solution to the BIP corresponds to a prime implicant
of ϕ, since the number of literals in the solution is minimal
and therefore cannot be subsumed by another implicant.

In [31] two SAT-based algorithms Min prime and Bsolo
for finding a shortest implicant by solving the corresponding
BIP problem are presented. Experimental results comparing
these algorithms to other BIP/ILP solvers show that SAT-
based algorithms are preferable when computing minimal
prime implicants, and that Bsolo tends to be more efficient
than Min prime. Despite this conclusion, we have chosen
to implement the Min prime algorithm because it can be
implemented easily on top of any SAT solver that allows BIP
input. The Min prime algorithm transforms a CNF formula
¬ϕ into a BIP as described above and subsequently calls the
subprocedure Solve (Fig. 8).

The Min prime algorithm can be extended to incremen-
tally enumerate all prime implicants of ¬ϕ [19]. Details about
this extension, called Prime, can be found in [2]. Instead
of calling Solve just once, Prime calls Solve iteratively.
In each iteration, a prime implicant l1 ∧ · · · ∧ lk is returned
by Solve. By adding a new constraint xl1 + · · ·+ xlk < k
to the set of constraints, the Prime algorithm ensures that
the same prime implicant will not be returned again in the
following iterations.

Recall that given a formula ϕ over variables {f1, . . . , fn}
an or-group of a feature f in ϕ corresponds to a prime
implicate (f1 ∨ · · · ∨ fk) of ϕ ∧ f containing only positive
literals corresponding to children of f in the implication
graph. By negation of this implication, it follows that an
or-group corresponds to a prime implicant (¬f1∧· · ·∧¬fk) of
¬ϕ ∨ ¬f 3 that contains only negative literals corresponding

3Note that ¬ϕ ∨ ¬f is not in CNF, this can however easily
be achieved since the operators ∨ and ∧ are distributive.



to children of f . Thus every prime implicant of interest
corresponds to an optimal solution of the BIP program, where
each variable corresponding to a positive literal in ¬ϕ ∨ ¬f
is assigned 0. To avoid the computation of prime implicants
containing positive literals, we modify the BIP program by
removing every variable corresponding to a positive literal in
¬ϕ∨¬f . Furthermore, if a variable in the BIP corresponding
to a non-child of f in the implication graph is assigned the
value 1 in a solution, this solution cannot correspond to an
or-group of f . Consequently, we can also remove all variables
in the BIP corresponding to non-children of f .

8. EXPERIMENTAL EVALUATION
We implemented the algorithm using the core SAT4J li-

brary (http://sat4j.org/). SAT4J is a widely used open-source
Java interface to SAT solvers that implements the initial Min-
isat specification [18]. An advantage of SAT4J is the support
of cardinality constraints, which allows a straightforward
implementation of the Prime algorithm (cf. Sect.7). The
performance of the Pig algorithm is heavily dependent on
the expense of forward an backward subsumption and we
have implemented the algorithms presented by Zhang [42].

We will now evaluate the efficiency of our techniques. Note
that quality of the produced models does not need to be
evaluated, since by design we create a compact representation
of all possible diagrams consistent with the input. Evaluation
of quality of the derived models belongs to work on tools
that help deriving them (see Section 2 for possible scenarios).

To imitate a realistic usage of the algorithm our evaluation
used input formulae representing dependencies amongst fea-
tures, which were obtained from feature models translated
into CNF, DNF and BDDs. We took a subset of models
available at SPLOT and the feature model repository (splot-
research.org) and (fm.gsdlab.org) with sizes ranging from 9
to 287 features. We further generated an additional 20 ran-
dom 3-CNF feature models having 100 or 200 features using
the Feature Model Generator on the SPLOT website. The
3-CNF feature models are tougher benchmarks than the real
models since they tend to induce harder problems [32]. The
experiments were run using Java 1.6 on a 2.0 GHz Intel Core
2 Duo processor. We used JavaBDD 1.0b2 for the BDD-
based implementation. The memory available to the JVM
was set to to 1.6GB and a timeout was recorded after one
hour for all models (excluding the Linux kernel, see below)

Linux is an operating system kernel with an explicit vari-
ability model used to configure features in the kernel prior
to compilation. In contrast to the other models, here we
followed the early FM hierarchy selection workflow described
in Scenario 2. Group and CTC recovery was performed after
a hierarchy was selected. We used a propositional translation
of the variability model in the version 2.6.28.6 of the Linux
kernel [39, 38]. The model, with 5701 features, was too large
for computing or-groups, however we used an alternative
method of computing xor-groups that does not rely on or-
groups as shown in Fig. 7. The alternative method first finds
the set of mutex-groups and then checks for each of them
whether at least one group member must be present:

G′
x = {{(f1, p), . . . , (fk, p)} ∈ Gm | ϕ∧p→ f1∨· · ·∨fk} (3)

Table 1 shows the total running time of the BDD-based
implementations and of Fge-CNF with non-incremental
or-group computation. The times are broken down into
three components: the computation time of the implication

|F | DNF-terms Model name BDD SAT-DNF

67 6400 Home-Integration-System 270 s 2.9 s

44 80658 Thread-Domain • 35 s

• timeout

Table 2: Running time of the BDD-based vs the
SAT-based implementation for DNF input

graph (ig), mutex graph (mg) and or-groups (or). The total
time includes the computation of and-groups, mutex-groups,
and xor-groups. We only show results for models with 43 or
more features since the two implementations show no notable
difference for smaller models.

The computation times for the implication and mutex
graphs are similar for Fge-BDD. However, the mutex graph
computation for Fge-CNF takes significantly longer for large
models—3.5 times longer for the Linux kernel. BDD methods
are generally slightly faster if they succeed (but we are talking
about differences in miliseconds). Unfortunately, they run
out of memory for some cases. For the E-Shop model, the
Fge-CNF performs better by computing the implication
graph roughly 6 times faster and the mutex-graph 2 times
faster than Fge-BDD. On the computation of or-groups,
the SAT-based implementation is significantly faster than
the BDD-based implementation for all models. 7 of the
models did not terminate within an hour (timeout) while
the other 3 ran out of memory while building the BDD.
The BDD-based implementation managed to compute or-
groups for only 2 models, (Documentation-Generation and
Home-Integration-System) and was roughly 1000 times slower
than the SAT-based implementation. With the randomly
generated 3-CNF models, the results are similar where the
Fge-CNF completed the computation and Fge-BDD timed
out during the or-group calculation. See the online appendix.

We also evaluated Fge-DNF, using formulas obtained by
enumerating all legal configurations for small models (below
67 features). Fge-DNF was at least 100 times faster than the
BDD-based results when computing or-groups. See Table 2.

The main threat to validity in the above experiment lies in
selection of instances for experiments. Since we are dealing
with NP-hard problems it is always possible to tune the in-
stances that are favourable for one technique and adversarial
for the other. We avoid this bias by using realistic examples
from public repositories and randomly generated models.

An internal threat is a possible incorrectness of our im-
plementation that could affect performance. To mitigate
this problem we have tested the algorithms against each
other, primarily the CNF and the BDD version, but also the
DNF-CNF-BDD triple for smaller examples.

9. RELATED WORK
The present work is described in greater detail in [2]. In [16],
we show a BDD-based algorithm for synthesis of feature mod-
els from formulae. The algorithms presented here are based
on SAT solving, resolution and binary integer programming,
achieving improved performance. Essentially, the procedure
presented in [16] was of theoretical interest—it explained how
to identify semantic traits of feature diagrams in proposi-
tional constraints. The present paper provides an executable
scalable technique. Scenario 1 scales to medium size models

http://sat4j.org/
http://www.splot-research.org/
http://www.splot-research.org/
http://fm.gsdlab.org


Fge-BDD[16] Fge-CNF

|F | ig mg or total ig mg or total

43 Web-Portal 2 ms 2 ms • • 8 ms 38 ms 28 ms 89 ms

44 Documentation-Generation 18 ms 11 ms 220 s 220 s 30 ms 52 ms 159 ms 261 ms

44 Thread-Domain 6 ms 2 ms • • 28 ms 31 ms 711 ms 945 ms

46 Dell-Laptop-Notebook 13 ms 11 ms • • 24 ms 27 ms 360 s 360 s

58 GG4 65 ms 30 ms • • 24 ms 27 ms 21 s 21 s

61 Arcade-Game 20 ms 17 ms • • 55 ms 72 ms 711 ms 875 ms

67 Home-Integration-System 16 ms 3 ms 270 s 270 s 108 ms 17 ms 195 ms 347 ms

88 Model-Transformation 19 ms 8 ms • • 181 ms 264 ms 342 ms 858 ms

94 BerkleyDB ◦ ◦ ◦ ◦ 103 ms 153 ms 438 ms 1.0 s

170 Violet ◦ ◦ ◦ ◦ 125 ms 866 ms 2.9 s 4.0 s

287 E-Shop 19 s 15 s • • 3.0 s 7.2 s 110 s 120 s

5701 Linux kernel 2.6.28.6 ◦ ◦ ◦ ◦ 1.7 h 6.1 h • 7.8 h†

• timeout ◦ out of memory

Table 1: Performance of the BDD-based and the SAT-based method for input formulas in CNF on real models

(a few hundred features). Scenario 2 scales to very large
models of thousands of features (without or-groups).

As discussed in Sect. 2, the presented synthesis problem
is an essential subproblem in many usage scenarios. We
have shown how the algorithm can be used with additional
information coming from feature name similarity and user
decisions to reverse engineer FMs from the build system and
code with conditional compilation [39]. That work targets cre-
ating FMs for systems such as FreeBSD, which have a build
system exposing several hundred variable features as compile
options as a flat list. Other reverse engineering scenarios
may require additional steps, such as feature identification
and feature location [17], before the feature dependencies can
be identified and fed into the presented algorithms. Acher [1]
presents a model management framework for FMs based on
[16]. His framework would experience a significant perfor-
mance boost if employing our new algorithms. Janota et
al. [26] propose an interactive tool for building feature models
from propositional formulas. The tool uses a feature graph
synthesized using [16] to determine the editing operations
that create valid feature diagrams. Fge-CNF can be used
to drastically improve the scalability of that tool.

Using logics and reasoners to analyze feature models is
now well established [4]. Some of the steps in Fge, like dead
feature detection, are known as separate analyses listed in [4].

Probabilistic feature models (PFM) extend feature mod-
els with soft constraints, expressing preference among legal
configurations [15]. In [15] we have presented a method for
extracting a PFM from a set of configurations using Bayesian
statistics. Fge-DNF achieves a specialized result where all
constraints have 100% probability. The group detection meth-
ods in [15] were based on [16], so [15] would considerably
benefit from the current performance improvement.

Loesch and Ploedereder [30] extract variability from a sam-
ple set using formal concept analysis. The extracted variabil-
ity is used to construct a concept lattice, exposing and-groups,
mutually exclusive and dead features. Unlike the feature
graph constructed by Fge, their lattice does not include
or-groups. Ryssel et. al. [35] also exploit concept analysis to
synthesize FMs including or- and xor–groups, from product
matrices that correspond to our DNF representation. The
complexity of this problem depends primarily on the number
of configurations in the input. While we handle models of up

to 80 thousand products, in up to 35 seconds, they report up
to 63 products with times from 120s to 3 days. On the other
hand, their technique synthesizes new abstract concepts (fea-
tures), which do not. It would be interesting to investigate
whether that technique could enhance our method, without
significant loss of performance.

Coudert and Madre give two prime implicant algorithms [12].
Other methods for CNF input are found in [28, 25].

10. CONCLUDING REMARKS
We have presented algorithms for synthesis of feature mod-

els from propositional constraints by deriving symbolic repre-
sentations of all candidate diagrams, and deriving instances
from this diagrams.

We have designed and implemented the algorithms for the
input expressed as a CNF or DNF formulae. We have shown
experimentally that both techniques outperform the old BDD
implementation by a factor of 10 to 1000 times, enabling the
use of synthesis techniques in tools. The biggest tractable
model for the BDD technique had 67 features (as opposed to
287 for Fge-CNF). More importantly, the BDD technique
was extremely unpredictable failing for many smaller models
as soon as they exceed 30 features. We also know that Fge-
CNF scales to up to above 5000 features, if the or-group
computation is switched off, whereas for the BDD-technique
it is usually not even possible to build BDD-representations
for feature model instances exceeding 2000 features [32].

Once a diagram FD is derived, one still needs to construct
a textual cross-tree constraint ψ such that the entire feature
model is equivalent to the input formula ϕ. Obviously, one
choice for ψ is ϕ itself. However, normally we would like
to simplify the formula, seeking a (syntactically) minimal
ψ such that [[FD]] ∧ ψ ≡ ϕ. Unfortunately, finding minimal
representations is difficult. Another possibility is to use an
almost optimal approach such as the Espresso-II [7], known
to efficiently produce close-to-minimal representations in
practice. The efficiency of Espresso-II for our particular
problem still needs to be investigated.
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