Sample Spaces and Feature Models: There and Back Again

Krzysztof Czarnecki¹ Steven She¹ Andrzej Wąsowski²

¹University of Waterloo, Canada

²IT University of Copenhagen, Denmark

Software Product Line Conference 2008

Overview

Feature Models

Applet must override stop^[off] destroy^[off] paint^[on] start ^[off] init^[on] destroy encourages init start encourages stop stop encourages start init encourages destroy

Feature Model with Soft Constraints

Sample Spaces

Overview

Feature Models

Feature Model with Soft Constraints

Sample Spaces

Sample Set of Configurations

Overview

Feature Models

Feature Model with Soft Constraints

Sample Spaces

Sample Set of Configurations

Outline

- 1 Motivation
- 2 Probabilistic Feature Models
 - Semantics of Soft Constraints
 - Joint Probability Distributions
- 3 Configuration
- 4 Application: Feature Model Mining
 - Mining on Applets
- 5 Conclusions

Outline

- 1 Motivation
- 2 Probabilistic Feature Models
 - Semantics of Soft Constraints
 - Joint Probability Distributions
- 3 Configuration
- 4 Application: Feature Model Mining
 - Mining on Applets
- 5 Conclusions

- represent commonality and variability in a product line.
- describe a set of legal configurations
- But... existing feature models can not express preference among legal configurations.

- represent commonality and variability in a product line.
- describe a set of legal configurations
- But... existing feature models can not express preference among legal configurations.

- represent commonality and variability in a product line.
- describe a set of legal configurations
- But... existing feature models can not express preference among legal configurations.

- represent commonality and variability in a product line.
- describe a set of legal configurations
- But... existing feature models can not express preference among legal configurations.

- represent commonality and variability in a product line.
- describe a set of legal configurations
- But... existing feature models can not express preference among legal configurations.

- represent commonality and variability in a product line.
- describe a set of legal configurations
- But... existing feature models can not express preference among legal configurations.

- represent commonality and variability in a product line.
- describe a set of legal configurations
- But... existing feature models can not express preference among legal configurations.

- represent commonality and variability in a product line.
- describe a set of legal configurations.
- But... existing feature models can not express preference among legal configurations.

Probabilistic Feature Models (PFMs)

Probabilistic Feature Models add soft constraints.

...a constraint that should be satisfied by most configurations, but some may violate it.

automatic given North America

[80%]

automatic given North America

[80%]

automatic given North America

Outline

- Motivation
- 2 Probabilistic Feature Models
 - Semantics of Soft Constraints
 - Joint Probability Distributions
- 3 Configuration
- 4 Application: Feature Model Mining
 - Mining on Applets
- 5 Conclusions

Semantics of Basic Feature Models

The semantics of a basic feature model... is defined as a conjunction of it's hard constraints as a propositional formula.

This formula denotes a set of legal configurations

This formula denotes a set of legal configurations

This formula denotes a set of legal configurations.

This formula denotes a set of *legal configurations*.

This formula denotes a set of *legal configurations*.

Components of a Probabilistic Feature Model

A probabilistic feature model is...

Components of a Probabilistic Feature Model

A probabilistic feature model is...

• On-by-default if cond. probability between 80% and 100%.

• Off-by-default if cond. probability between 0 and 50%.

destroy encourages init
start encourages stop
stop encourages start
init encourages destroy

Joint Probability Distributions

Basic feature models...

specify a set of legal configurations.

Probabilistic feature models...

specify a set of legal joint probability distributions (JPDs).

A joint probability distribution...
assigns a probability to each possible configuration

Joint Probability Distributions

Basic feature models...

specify a set of legal configurations.

Probabilistic feature models...

specify a set of legal joint probability distributions (JPDs).

A joint probability distribution...

assigns a probability to each possible configuration.

Legal Configurations Compared with JPDs

Legal Configurations Compared with JPDs

Joint Probability Distributions

specify a set of legal configurations

Probabilistic feature models...

specify a set of legal joint probability distributions (JPDs).

A joint probability distribution...
assigns a probability to each possible configuration

Under-specification in PFMs

а	b	С	P(a,b,c)
1	1	1	$p_1 \geqslant 0.0$
1	1	0	$p_2 \geqslant 0.0$
1	0	1	$p_3 \ge 0.0$
1	0	0	$p_4 \geqslant 0.0$
0	:	:	$p_{58} = 0$

An abstract PFM is under-specified and specifies a range of JPDs.

Under-specification in PFMs

а	b	С	P(a,b,c)
1	1	1	$p_1 \geqslant 0.0$
1	1	0	$p_1 \geqslant 0.0$ $p_2 = 0.25p_1$
1	0	1	$p_3 \geqslant 0.0$
1	0	0	$ \begin{vmatrix} p_2 - 0.25p_1 \\ p_3 \geqslant 0.0 \\ p_4 = 1 - 1.25p_1 - p_3 \end{vmatrix} $
0			$p_{58} = 0$

where
$$1.25p_1 + p_3 \le 1$$

An abstract PFM is under-specified and specifies a range of JPDs.

Under-specification in PFMs

а	b	С	P(a,b,c)
1	1	1	$p_1 = 0.1$
1	1	0	$p_1 = 0.125$
1	0	1	$p_3 = 0.1$
1	0	0	$p_4 = 0.775$
0	:	:	$p_{58} = 0$

A concrete PFM specifies a single JPD.

Outline

- 1 Motivation
- 2 Probabilistic Feature Models
 - Semantics of Soft Constraints
 - Joint Probability Distributions
- 3 Configuration
- 4 Application: Feature Model Mining
 - Mining on Applets
- 5 Conclusions

Configuration

Requires a single concrete JPD.

- Abstract PFMs need to be completed.
- Entropy maximization.

Probabilistic Inference

- Relation with Bayesian Networks
- Most probable explanation algorithms
- Adaptive guidance given current state

Configuration

Requires a single concrete JPD.

- Abstract PFMs need to be completed.
- Entropy maximization.

Probabilistic Inference.

- Relation with Bayesian Networks.
- Most probable explanation algorithms.
- Adaptive guidance given current state.

Outline

- 1 Motivation
- 2 Probabilistic Feature Models
 - Semantics of Soft Constraints
 - Joint Probability Distributions
- 3 Configuration
- 4 Application: Feature Model Mining
 - Mining on Applets
- 5 Conclusions

Feature Model Mining

Synthesize a feature model that is representative of the variability in a sample set of configurations.

conf		b	С	d
1	√		\checkmark	√
2	✓	\checkmark		
3	✓		\checkmark	
4	✓	\checkmark	\checkmark	

Sample Set

Feature Model Mining

Synthesize a feature model that is representative of the variability in a sample set of configurations.

Sample Set

Association Rules

Association Rule Mining

Feature Model Mining

Synthesize a feature model that is representative of the variability in a sample set of configurations.

Association Rule Mining

Feature Model Synthesis Czarnecki and Wąsowski 2007

Feature Model Mining on Applets

Applets

Sample Set

Construct sample set by analysing overridden methods in 64 applets:

destroy, paint, init, start and stop.

Case Study Results

Mined Feature Model

Expert-specified Model

destroy encourages init start encourages stop stop encourages start init encourages destroy

Outline

- 1 Motivation
- 2 Probabilistic Feature Models
 - Semantics of Soft Constraints
 - Joint Probability Distributions
- 3 Configuration
- 4 Application: Feature Model Mining
 - Mining on Applets
- **5** Conclusions

Related Work

Probabilistic Feature Models.

- Soft Constraints [Czarnecki 2000] [Wada, Suzuki and Oba 2007]
- Feature Models and fuzzy logic [Robak, Pieczyński, 2003]
- i* goal models [Giorgini et al., 2002]

Reverse-engineering models.

- Using concept analysis [Loesch and Ploedereder, 2007]
- Identifying code differences [Jepsen et. al., 2007]

Conclusions

Feature Model with soft constraints

Probabilistic Feature Models

Sample Space

- Basic feature models extended with soft constraints.
- Specifies a set of joint probability distributions.
- Modeling, reverse-engineering, configuration.

Conclusions

Probabilistic Feature Models

Sample Space

- Basic feature models extended with soft constraints.
- Specifies a set of joint probability distributions.
- Modeling, reverse-engineering, configuration.

Questions?

Feature Model with soft constraints