
Sample Spaces and Feature Models: There and Back Again

Krzysztof Czarnecki, Steven She
University of Waterloo, Canada

{kczarnec, shshe}@swen.uwaterloo.ca

Andrzej Wąsowski
IT University of Copenhagen, Denmark

wasowski@itu.dk

Abstract

We present probabilistic feature models (PFMs) and il-
lustrate their use by discussing modeling, mining and inter-
active configuration. PFMs are formalized as a set of for-
mulas in a certain probabilistic logic. Such formulas can
express both hard and soft constraints and have a well de-
fined semantics by denoting a set of joint probability distri-
butions over features. We show how PFMs can be mined
from a given set of feature configurations using data mining
techniques. Finally, we demonstrate how PFMs can be used
in configuration in order to provide automated support for
choice propagation based on both hard and soft constraints.
We believe that these results constitute solid foundations for
the construction of reverse engineering tools for software
product lines and configurators using soft constraints.

1 Introduction

Feature models [24] represent common and varying
product characteristics in a product line. Figure 1a presents
a model of a simple family of vehicles. It contains cars
with a manual or automatic gear, sold in a regular and North
American variety. In general, a feature model consists of a
feature diagram, which is a hierarchy of mandatory (gear),
optional (drive by wire, for North America), and alterna-
tive (manual, automatic) features, and possibly additional
constraints such as feature implications (drive by wire im-
plies automatic) or mutual exclusions. Effectively a model
defines a set of feature configurations, each representing a
particular product in the family.

Basic feature models had been related to propositional
logic [6, 14]. A logic formula is obtained from conjoin-
ing the constraints represented by the feature diagram and
the additional constraints. It defines a set of legal feature
configurations for the model. The translation of feature
models into propositional logic has allowed the use of rea-
soning tools for automated feature model analyses, such
as checking consistency and identifying dead features [7],

manual automatic

gear drive
by

wire

for
North

America

car

d→ a

a given g [20%]
a given N [80%]

(a) (b)

Figure 1. Feature model and soft constraints

product configuration, such as choice propagation and auto-
completion [13], and feature model refactoring [2].

Although basic feature models effectively describe le-
gal and illegal configurations of features, they cannot ex-
press preference among the legal configurations. A model
can postulate that a car has an automatic or a manual gear
by marking them as alternative features; creating an XOR-
group. However, a basic feature model cannot express the
fact that in North America most of the cars have an auto-
matic gear, while only a small fraction is sold with a manual
transmission. The former is an example of a hard constraint
that is satisfied by all legal configurations, while the latter
is an example of a soft constraint that should be obeyed by
most of the legal configurations, but some may disregard it.

Interactive configuration [30, 17] uses constraints to
propagate configuration choices made by the user. For ex-
ample, if the user selects automatic gear, the manual gear is
eliminated since both features are exclusive in our example.
However, without soft constraints, selecting North America
as a market has no consequence for the choice of a gear.

Product configuration can be further automated by sup-
plementing hard constraints with soft constraints. In our
example, a soft constraint from North America to automatic
gear would enable preselecting automatic gear when a user
selects North America. Since the gear choice is just a com-
puted default, the user can still override it to manual gear
even though North America remains selected.

Probabilistic feature models (PFMs) extend feature
models with soft constraints. Consider again our exam-
ple, now extended with the soft constraints in Figure 1b.

These constraints specify that 20% of cars are sold with
an automatic gear, while this number gets as high as 80%
in North America. Semantically, a soft constraint of the
form “automatic given gear [20%]” specifies the conditional
probability of a configuration to contain automatic given
that it contains gear to be 0.2. We give a precise seman-
tics of PFMs via translation into probabilistic propositional
logic [19, 31, 27], which can be understood as a general-
ization of propositional logic. In the probabilistic context, a
propositional formula representing a hard constraint can be
thought as a probabilistic formula with an attached proba-
bility of one.

After defining and discussing the semantics of PFMs we
shall address the problem of retrieving PFMs from a sam-
ple set of configurations, or in other words feature model
mining—a technology aimed at reverse engineering mod-
els from a set of products. Feature model mining can be
used to identify product parts that should be supported by a
common platform, or to analyze how an existing platform
is used by several products. It can be applied to a variety
of artifacts, including source code, design models, or sales
data, in order to produce a range of feature models, such
as design or marketing-oriented ones. The first step of the
mining process involves extracting the feature configuration
of each product in the given product set. This step may in-
volve static or dynamic code analysis or queries to a sales
database. The desired feature model can then be generated
from the configuration set using the procedure given in this
paper.

Finally, we explain how choice propagation and auto-
completion can be implemented for PFMs to support in-
teractive product configuration with soft constraints. The
PFMs used in this context can be either specified a priori
by an expert or they could be obtained by mining. Choice
propagation algorithms, if applied to the example of Fig-
ure 1, would first conclude that the manual gear is the de-
fault feature for an arbitrary car, but would be able to revise
this choice to an automatic gear, as soon as a variant ori-
ented for North America is selected.

We strongly believe that the present work constitutes a
solid foundation for (1) modeling soft constraints in feature
models, (2) constructing product analysis and reverse engi-
neering tools for software product lines, and (3) improving
interactive configuration using soft constraints. We connect
feature modeling to a large and well-founded body of work
in probabilistic logic, belief networks, and machine learn-
ing. Furthermore, we identifying algorithms for performing
feature model mining and automated configuration in the
presence of soft constraints. These algorithms are known to
scale to real-world applications outside of feature modeling
and our initial experiments show that they are also readily
applicable in the present context.

While the presented ideas open up new directions in vari-

ability modeling for product lines, transferring these ideas
into practice requires further work. We discuss several re-
search directions and challenges, such as providing support
for fusing mined and expert-provided knowledge.

2 Probabilistic Feature Models by Example

We start by giving a broad perspective on PFMs by us-
ing an example from framework-based development. We
shall look at a family of Java applets [35], and in particular,
on how they use the applet framework—on which methods
should be overriden and in which combinations. Although
the considered units of variability are very fine-grained, the
example illustrates well the basic variability structures that
are encountered in the context of a product family that is
based on a common platform.

An applet is simply a Java class that extends the Applet
class and overrides at least one of the methods: paint, start,
or init. The init method is used for initialization, paint is used
for redrawing the applet UI, and start/stop are used to initi-
ate and stop the main control thread, for applets that should
not be operating when not visible on screen. Finally, de-
stroy should be provided to free any resources claimed by
init, however, this is not strictly enforced. In fact, the frame-
work does not even guarantee that destroy will be called,
when the applet is terminated by its user.

Figure 2a presents a feature model capturing the above
requirements for Java applets. The model has been designed
by a domain expert, who has not participated directly in
writing of this paper. The expert has based the design on
his experience and official documentation [36, 35].

The model introduces an abstract OR-group “must over-
ride” that groups the features normally required by an ap-
plet: overloading of init, paint or start. The hierarchy also
includes overloading of stop and destroy as optional. Fi-
nally, several soft constraints are added. In particular, over-
loading of paint and init are on-by-default, while all the other
overloadings are off-by-default. The presence of destroy
encourages overloading of init, as destroy expects some re-
sources to be reserved during initialization. Similarly, init
encourages destroy since if init is used, then it likely allo-
cated some resources that should be freed. Such a model
could be used in a modern development environment to
guide designers of applets. See details in [5].

The soft constraints in this example have been expressed
using a linguistic form of defaults, specifically well suited
to expressing beliefs. Defaults can be formally understood
as probability intervals for probabilistic constraints, e.g.,
[0.8, 1]. For example, “a encourages b” means that b is se-
lected with high probability given that a is selected. Also, if
some feature c is on-by-default then that feature is selected
with high probability given that its parent is selected.

paint[on] start[off] init[on]

must override destroy[off] stop[off]

Applet

paint [75%] start [59%]

destroy [42%] stop [53%]

init [97%]

Applet

destroy encourages init
start encourages stop
stop encourages start
init encourages destroy

stop given start [84%]
start given stop [97%]
paint given destroy [88%]
paint given stop [88%]

init given start [97%]
init given paint [98%]

(a) A PFM specified by an expert (b) An automatically mined PFM (c) Interactive Configuration

Figure 2. A PFM of Java applets: specification, mining, and configuration

Apart from being interpreted as belief measures, prob-
abilities can also be given a frequentist interpretation, in
which a probability is viewed as the relative frequency of
seeing a particular outcome of an experiment in a large
number of trials. This perspective on probability naturally
fits the mining applications. Figure 2b presents a PFM for
the applet domain mechanically mined from a sample of 64
applets1. This model has been obtained by applying the pro-
cedure presented in Section 6. It is instructive to discuss the
differences and similarities between these two models.

First, the mined model lacks the “must override” group
as the automatic mining procedure is not able to introduce
abstractions. We believe that such improvements need to be
done by experts themselves. Secondly, probabilistic depen-
dencies are specified using probabilistic logics constraints
(and not linguistic conventions). Notice for example, the
additional constraint stop given start with the conditional
probability of 84% in the mined model corresponds to start
encourages stop in the expert model. The percentages in
nodes indicate the strengths of parent-child relationships.
For example, the conditional probability of destroy given init
is 42%. Our expert says that encourage and on-by-default
rules should be created if the conditional probability is at
least 80%. Furthermore, the off-by-default rules are should
be created when the probability is less than 50%. The min-
ing engine was tuned accordingly for this example.

Regardless of whether the PFM has been mined or de-
signed it can support automatic derivation of configurations
by means of choice-propagation, auto-completion, and de-
fault propagation. Figure 2c presents a possible sight of a
configuration tool—a screen shot created using the Hugin
[28] tool, which has been used as a configuration engine in
our project. In the figure, a user has just selected to over-
load init—the highlighted bar signifies that this feature is
now included with complete certainty. The other bars show

1http://gsd.uwaterloo.ca/projects/fsmls/applet-fsml/applet-examples/

the probabilities of the remaining features. This could of
course be visualized differently; for example by updating
the most probable defaults in a form, or by prioritizing sev-
eral most likely choices at the top of a drop-down list.

The probability of stop is around 50%, which indicates
almost no preference for or against it (no information). We
expect, however, that as soon as the user chooses to overload
start, the probability bar of stop will increase significantly
towards true. Indeed, in such a case Hugin reports 86%.

3 Semantics of PFMs

Before delving into the intricacies of PFMs, it is worth
recalling the semantics of ordinary feature models as de-
fined via translation to propositional logic [6, 14] (for
more general discussion of feature model semantics see
Schobbens et al. [34]. An ordinary feature model, such
as the one in Figure 3a, denotes a set of legal configura-
tions, as shown in Figure 3c. A legal configuration is a
set of features selected from the feature model according to
its semantics. The set of legal configurations is given by
conjoining propositional formulas defined over a set of fea-
tures. The set of propositional formulas to be conjoined is
systematically constructed for a given feature model. It con-
tains (i) the root feature,2 (ii) implications from all subnodes
to their parents, (iii) additional implications from parents to
all their mandatory features, (iv) implications from parents
to groups (as defined below), and (v) any additional con-
straints represented as propositional formulas. An implica-
tion from a parent feature p to its subfeatures f1, . . . , fk that
form an OR-group has the following form:

p →
_

i=1,...,k

fi (1)

Similarly, an implication from a parent feature p to its sub-
features f1, . . . , fk that form an XOR-group is defined as

2Unlike in our previous work [14], we require that the root feature is
always present, for consistency with PFMs, for which this choice is natural.

b c

a
a

b→ a

c→ a

a b c

1 0 0
1 1 0
1 0 1
1 1 1

(a) Sample FM (b) Formulas (c) Set of legal configurations

Figure 3. Semantics of ordinary FMs

b c

a

c given b [80%]

(a) Sample PFM

a

b→a

c→a

(c|b)[0.8, 0.8]

a b c P (a, b, c)
1 1 1 p1 ≥ 0.0
1 1 0 p2 = 0.25p1

1 0 1 p3 ≥ 0.0
1 0 0 p4 = 1−1.25p1−p3

0 1 1 p5 = 0.0
0 1 0 p6 = 0.0
0 0 1 p7 = 0.0
0 0 0 p8 = 0.0

where 1.25p1 + p3 ≤ 1

(b) Formulas (c) Legal probability distributions

Figure 4. Semantics of PFMs

follows:

p →
_

i=1,...,k

f1 ∧ . . . ∧ fi−1 ∧ fi ∧ fi+1 ∧ . . . ∧ fk (2)

The complete set of formulas for our example is given in
Figure 3b. The legal configurations shown in Figure 3c are
essentially all truth assignments that satisfy these formulas.

As the semantics of feature models was given by a trans-
lation to propositional logics, the semantics of PFMs is de-
fined via translation to probabilistic logic [19, 31, 27].

A PFM consisting of a feature diagram and a set of ad-
ditional hard and soft constraints denote a set of legal joint
probability distributions (JPDs). A JPD assigns a probabil-
ity to each possible configuration of features. A possible
configuration is a subset of a PFM’s features represented
by a characteristic vector (f1, . . . , fn)∈F = {0, 1}n. The
set of all possible configurations, F , represents the sample
space over which the JPDs are defined. For the PFM in

Table 1. A distribution and two samples
(a) A legal distribution (b) Sample 1 (c) Sample 2

a b c P (a, b, c)
1 1 1 0.0
1 1 0 0.0
1 0 1 0.8
1 0 0 0.2
0 1 1 0.0
0 1 0 0.0
0 0 1 0.0
0 0 0 0.0

a b c

1 0 0
1 0 1
1 0 1
1 0 1
1 0 1

a b c

1 0 0
1 0 0
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1
1 0 1

Figure 4a, the set of all legal JPDs is given in Figure 4c.3

An example of a concrete legal JPD for the PFM is given
in Table 1a. For a given JPD, legal configurations have
a probability larger than 0 and illegal configurations have
the probability of 0. A JPD determines a set of legal sam-
ples. A sample is a multiset of configurations with absolute
frequencies following the corresponding probabilities spec-
ified by the JPD. Tables 1b-c show two samples consistent
with the JPD in Table 1a.

The set of legal JPDs for a PFM is specified using the
following probabilistic propositional formulas (PPFs; with
ordinary propositional formulas being a special case):

1. Hard constraints implied by the feature diagram; these
formulas are determined the same way as for an ordi-
nary feature model (see items (i)–(iv) above).

2. Probabilistic formula (fc|fp)[x/100%, y/100%] for
each child feature fc displaying probability interval
[x%,y%] in its box, as in Figure 2b, where fp is its par-
ent. Note that we use [x%] as a shorthand for [x%,x%].

3. Any additional soft and hard constraints supplied
with the feature diagram. A soft constraint of the
form “A given B [x%,y%]”, where A and B are
Boolean expressions over features, is translated to
(A|B)[x/100%, y/100%].

For example, the set of PPFs for the PFM in Figure 4a is
given in Figure 4b. The PPFs for the PFMs in Figures 2a
and 2b are given in Figures 5a and 5b, respectively. Note
that the translation in Figure 5a assumes the thresholds of .5,
.8, and .8, for off-by-default, on-by-default, and encourages
relations, respectively.

Technically, a PPF induces a linear constraint on the set
of legal JPDs. As a result, the set of legal JPDs of a PFM
comprises of solutions for a system of linear inequalities (as
in Appendix A). Similarly, reasoning procedures for a set
of PPFs such as consitency checking (PSAT [31, 4]) and
logical entailment represent a linear programming problem.
Although the size of the linear systems grows exponentially
with the number of variables if represented explicitly, effi-
cient computation techniques exist, such as column genera-
tion, which avoid this explosion in practice [9]. An example
of a reasoner for probabilistic logic is nmproblog [27]. We
used this tool to verify the consistency of the formulas in
Figure 5a.

4 Underspecification in PFMs

As we have just said, a consistent set of PPFs, and
thereby a consistent PFM, is usually an underspecification

3The derivation of the JPDs for the example is given in Appendix A.

root: A

child→ parent :
m→ a

d→ a

o→ a

p→ m

t→ m

i→ m

OR-group:
m→ p ∨ t ∨ i

parent→ child:
a→ m

(d|a)[0, 0.5)
(o|a)[0, 0.5)
(p|m)[0.8, 1]
(t|m)[0, 0.5)
(i|m)[0.8, 1]
additional:
(d|i)[0.8, 1]
(i|d)[0.8, 1]
(o|t)[0.8, 1]
(t|o)[0.8, 1]

(a) Formulas for Figure 2a

root: A

child→ parent :
p→ a

t→ a

i→ a

d→ i

o→ i

OR-group:
a→ p ∨ t ∨ i

parent→ child:
(p|a)[0.75, 0.75]
(t|a)[0.59, 0.59]
(i|a)[0.97, 0.97]
(d|i)[0.42, 0.42]
(o|i)[0.53, 0.53]
additional:
(o|t)[0.84, 0.84]
(t|o)[0.97, 0.97]
(p|d)[0.88, 0.88]
(p|o)[0.88, 0.88]
(i|t)[0.97, 0.97]
(i|p)[0.98, 0.98]

(b) Formulas for Figure 2b

Figure 5. Mapping PFMs to formulas

b [0%] c

a

(a) p1 = 0, p3 = 1

b [62.5%] c [87.5%]

a

(b) p1 = 0.5, p2 = 0.375

Figure 6. PFMs with only a single distribution
consistent with Figure 3a

representing more than one probability distribution. For ex-
ample, the PFMs in Figures 2a, 2b, and 4a are underspeci-
fications of JPDs. This is in stark contrast to propositional
logics, and ordinary feature models, where a consistent set
of formulas is a complete and precise specification of the
legal configurations of the “hard” structure.

To further illustrate this point, let us analyze the range
of legal JPDs for the PFM in Figure 4. To this end, con-
sider the PFMs in Figure 6. Each of these PFMs happens to
represent a single JPD that is also consistent with the PFM
in Figure 4a. The corresponding JPD can be obtained by
substituting the specified values for p1 and p2 in Figure 4c.

In general, it is difficult to assess whether a PFM rep-
resents a single JPD or not just by looking at it. A naïve
way of deciding this would be to supply the probability of
every possible configuration as an additional constraint, ex-
ponential in the number of features (as in Figure 4c), and
checking whether the solution is unique (practical only for
the smallest PFMs).

Applet

paint start

stop

init destroy

(a) DAG

t o P (p | t, o) P (p̄ | t, o)
1 1 0.91 0.09
0 1 0.00 1.00
1 0 0.17 0.83
1 1 0.72 0.28

(b) CPT for paint

Figure 7. Automatically learned BN for Applet

A complete and compact representation of a single JPD
can be represented by a Bayesian Network (BN) [32], as
shown in Figure 7. A BN consists of a directed acyclic
graph (DAG) (Figure 7a) and a conditional probability ta-
ble (CPT) (Figure 7b) for every node. Each node in the
DAG represents a variable and the edges represent direct
dependencies. The DAG encodes all the dependencies and
independencies among the variables. The rules for how de-
pendencies and independencies are inferred from a DAG
are somewhat technical, and will not be further explained
here; see [32] for details. For example, the DAG in Fig-
ure 7a states that Applet is independent of the other vari-
ables, which is consistent with the fact that every legal
sample has to include it. To give another example, paint
is dependent on all the other variables except Applet. Be-
cause of space constraints, only the CPT for paint is given
(Figure 7b) and the CPTs for stop and destroy are elided.
Each of the nodes without ancestors have a marginal (i.e.,
“unconditional”) probability attached. For example, the
marginal probabilities for Applet and init are 1 and .97, re-
spectively. It is important to note that there are many differ-
ent DAGs, even with the same underlying undirected graph,
that can represent the same JPD [22].

As a BN represents a single JPD, we can use it to in-
fer precise probabilities (as opposed to probability intervals)
for events defined as propositional formulas. Well-studied
algorithms exist for both inference in BNs and for learning
BNs from concrete configuration samples [22]. In fact, the
BN shown in Figure 7 was automatically learned4 from the
same sample from which the PFM in Fig. 2b was extracted.

Our analysis of underspecification in PFMs would be in-
complete without briefly discussing the connection between
PFMs and BNs. On the one hand, BNs offer several ad-
vantages. For one, reasoning in BNs, while still computa-
tionally hard, is typically more efficient than reasoning in
general probabilistic logic. Furthermore, BNs offer a sys-
tematic way to elicit all dependencies and independencies
among variables and to specify just a single JPD. Also, BNs
are supported by several industry-strength tools, which are
used in various domains, such as economic modeling and
medical diagnosis. On the other hand, PFMs have strengths
that BNs lack. Most importantly, a PFM provides a spec-
ification of variability that is easier to understand just by

4Using Hugin [28], ver. 6.9, with significance factor of 0.4.

looking at the model. As an example, consider the PFM
in Figure 2b and the BN in Figure 7, which were extracted
from the same configuration sample. In general, the hierar-
chy that is typically present in modular software (even if the
software is not entirely modular) is easily reflected in a fea-
ture model. However, a BN does not make this hierarchy
readily visible. While a feature model with no additional
constraints can be mapped to a hierarchical BN, supplying
additional constraints tends to destroy the hierarchy in the
corresponding BN. Nevertheless, as will be shown in the
following sections, PFMs can be meaningfully combined
with BNs for some applications.

The underspecification of PFMs is a very powerful fea-
ture which enables abstract modeling. For example, the
PFMs in Figures 2a and 2b are both abstract in the sense
of denoting sets of legal configurations. The first PFM is
even more abstract than the second since it specifies proba-
bility intervals for some of the feature dependencies that are
given as concrete probability values in the other PFM. Yet,
both PFMs are still more abstract than the BN in Figure 7.
In a sense, the BN represent a possible “ground model” con-
taining all the details about the JPD it represents.

5 Application-Specific Semantic Refinements

The abstraction afforded by PFMs is particularly useful
in model specification and mining. Just as a UML model
of a system design does not show all the implementation
detail present in the system, a PFM can choose to abstract
the details of a particular JPD that it models.

However, the underspecification present in the standard
semantics of PFMs may sometimes need to be restricted de-
pending on usage context. For example, a reasonable re-
striction could be that any hard constraints that the legal
JPDs for a PFM satisfy and that can be represented in a fea-
ture diagram (e.g, as subfeature relations or feature groups)
must be shown in the PFM’s feature diagram. Under this
restriction, the set of legal JPDs for the PFM in Figure 4a
could not include any of the special cases shown in Fig-
ure 6. Furthermore, in PFM mining, a particular mining
technique might guarantee a complete recovery of certain
structures (e.g., the feature diagram) from a given sample.
For example, the mining procedure given in the following
section guarantees this; however, additional constraints are
recovered only if they have a certain form. The mined PFM
needs to be interpreted with this restriction in mind.

Semantics restrictions are not uncommon in other mod-
eling languages. For example, just by looking at a UML
class diagram that shows some associations but without any
multiplicities, it is difficult to say whether the multiplicities
are just elided or some default values should be assumed.
Each choice represents a refinement of the standard UML
class modeling notation, and the particular refinement used

FEATURE-MODEL(S : dataset; š, ŝ,m : [0, 1])
1 ¤ š is min. support and ŝ is max. support;
2 ¤ m is min. confidence

3 ¤ Mine strong conjunctive association rules [1]
4 C ← CONJ-RULE-MINER(e(S), š,m)

5 ¤ Mine frequent minimal OR-clauses [40]
6 O ← BLOSOM-MO(S, š, ŝ)

7 ¤ Select strong disjunctive association rules
8 D ← {r = p⇒ f1 ∨ . . . ∨ fk |
9 f1 ∨ . . . ∨ fk ∈ O

10 ∧ c(f1 ∨ . . . ∨ fk) ⊆ c(p)
11 ∧ conf(r) ≥ m ∧ supp(r) ≥ š}
12 ¤ Select rules for feature graph generation
13 H ← {r ∈ C ∪D |
14 (r has one of the forms:
15 fi ⇒ fj , fi ⇒ f̄j , fi ⇒ fj ∨ . . . ∨ fk)
16 ∧ conf(r) = 1}
17 ¤ Generate feature graph [14]
18 G← FEATURE-GRAPH

(∧
r∈H r

)

19 ¤ Collect soft constraints
20 E ← C ∪D \H

21 return G,E

Figure 8. Mining of a feature model

in a model needs to be indicated in order to be able to cor-
rectly interpret the model.

Configuration is a special case as it typically requires
the most restricted semantics. In configuration, we want
to efficiently propagate configuration choices, which is best
achieved only if a single JPD is given. Thus, an underspec-
ified PFM needs to “completed” to a concrete JPD for con-
figuration. The minimum requirement for such completion
is that it does not introduce new hard constraints. We will
give two techniques for achieving this goal in Section 7.

6 Mining (Probabilistic) Feature Models

We present an automatic mining procedure (Figure 8)
that retrieves a feature model from a multiset of sample con-
figurations of the kind shown in Tables 1b-c. The procedure
first applies existing data mining algorithms [1, 40] in or-
der to detect reoccurring feature patterns and then generates
the feature diagram using an algorithm described in [14]. In
consistence with data mining literature, we refer to the mul-
tiset of configurations as a dataset, however we still prefer
“configurations” over “transactions”—more typically seen
in the data mining literature.

The first part of the procedure involves mining three
kinds of implications, needed to construct the feature dia-
gram [14]:

1. Binary feature implications fi → fj : These rules are
used to construct the feature hierarchy.

2. Group implications fi → fj ∨ . . . ∨ fk: These rules
are needed to identify OR- and XOR-groups.

3. Exclusion clauses fi → f̄j : These rules are needed to
identify XOR-groups.

The rule mining is achieved using two algorithms:

1. Conjunctive association rule mining (line 3): Several
well-known data-mining algorithms extract conjunc-
tive association rules, i.e., rules of the form A ⇒ B,
where A and B are conjunctions of features. The con-
junctive rule miner is used to retrieve both binary fea-
ture implications and exclusion clauses. To mine for
exclusion clauses, the feature space is extended to in-
clude representations of unselected features. We define
e(S), which extend each transaction in S to include the
representations of absent features, where f - is a new
feature which represents f̄ .

e(S) = {t ∪ {f - | f /∈ t} | t ∈ S} (3)

The mining of such rules involves finding appropri-
ate AND-clauses, known as frequent itemsets [18]. In
our tests, we used LCM [37] to find frequent itemsets
and generated association rules using the procedure de-
scribed by Agrawal et al. [1].

2. Disjunctive association rule mining (lines 5–11): Min-
ing disjunctive rules has not been as extensively stud-
ied as conjunctive rule mining. Simple disjunctive as-
sociation rules have the form a ⇒ B, where a is a
single feature and B is a disjunction. These rules are
constructed from so-called minimum OR-clauses (lines
5–6) which are computed using an algorithm by Zhao
et al. [40]. The c(B) operator used in the algorithm re-
turns the configurations that satisfy the expression B.

The mining algorithms use two standard relevance measures
for the mined rules: support and confidence [18]. The sup-
port of a Boolean expression, e.g., an OR-clause, in a dataset
is defined as the relative frequency of the expression being
true for the configurations in the dataset S:

supp(B) =
|c(B)|
|S| = P (B) (4)

In the above definition, |c(B)| is the number of configura-
tions that satisfy B and |S| is the dataset size.

The rule support for (conjunctive or disjunctive) associ-
ation rules is defined as follows:

supp(A ⇒ B) = supp(A ∧B) = P (A ∧B) (5)

The confidence measure for association rules is defined
as follows:

conf(A ⇒ B) =
supp(A ∧B)

supp(A)
= P (B|A) (6)

Thus, expression support and rule confidence provide a
clear connection between the data mining and the prob-
abilistic interpretation of expressions and rules with re-
spect to S (cf. Section 3): supp(B) = P (B) and
conf(A⇒ B) = P (B|A). An association rule A ⇒ B
with confidence c% is equivalent to the PPF (B|A)[c, c],
and consequently the soft constraint B given A [c%]. A
rule with 100% confidence is equivalent to the implication,
A→ B. The rule mining algorithms used in Figure 8 return
the confidence and support for mined rules.

Note that the support of a rule is a measure of the sta-
tistical significance of the rule in S . For example, the rule
A ⇒ B may almost trivially achieve the confidence of 1
if supp(B) ≈ 1 and supp(A) is some very small number,
e.g., .0001 in S . In other words, the satisfaction of the rule
by most of the configurations in S , as reflected by the high
confidence, stems mostly from the fact that S exhibits only
very few cases of A. However, the small number of cases is
reflected by the low rule support of .0001. The generation
of such weakly supported rules can be avoided by requiring
some sufficiently minimal support. Rules that satisfy both
minimal support and confidence thresholds are referred to
as being strong.

The final step of the procedure involves the generation
of the feature diagram (line 17). This step uses the algo-
rithm described in [14]. The input to that algorithm is a for-
mula obtained by conjuncting the mined binary feature im-
plications, group implications, and exclusion clauses with
confidence of 1 (lines 12–16). The remaining rules are col-
lected as soft constraints (line 19). For simplicity, we do
not recover all hard additional constraints. This step can be
achieved by computing the disjunction of all transactions
and conjoining it with the negation of the formula corre-
sponding to the feature diagram.

The computational cost of the procedure consists of the
cost of rule mining and the cost of feature diagram gen-
eration. Conjunctive association rule mining has been ex-
tensively studied and a wealth of efficient algorithms exist
that were shown to scale to large problems (e.g., rule min-
ing in market basket analysis or genomics) [18]. The mini-
mum OR-clause miner [40] is exponential in the number of
features; however, several search space pruning techniques
used in the algorithm enabled scaling it to practical prob-
lems. For example, mining minimum OR-clauses from 300
configurations with 50 features takes less than 20 seconds
on a 1.4GHz Pentium-M with 448MB running Windows XP
through VMware [40]. We have argued in [14] that the cost
of feature diagram construction is polynomial in the size of
the BDD representing the input propositional formula. The

BDD itself can be exponential in the number of features, but
rarely is for typical feature models.

One can consider useful extensions to our basic miner:

• Rule pruning: Several rules generated by the basic
miners may be redundant. For example, the rules “init
given start” and “init given paint” in Figure 2b add
little new information to the already shown P (init |
Applet) = 0.97. Standard techniques for rule pruning
are available [29, 8].

• Using a priori structures: Some structures may be al-
ready known from the problem domain and do not
need to be mined. For example, it is clear that
method overrides and method calls imply their con-
taining classes and there is no need to rediscover such
structures through data mining. The standard mining
algorithms can be optimized to take such a priori con-
straints into account through constraint-based associ-
ation mining [18]. Finally, some structures may not be
present in the mined dataset, but they may be known
to the domain expert. Such structures can be simply
added as constraints to C ∪D. This kind of model re-
finement may need dedicated tool support in order to
discover inconsistencies and propose fixes.

• Treating bias and outliers: The dataset might not be
representative of a population, e.g., legal configura-
tions might be absent from the sample, or it may con-
tain errors or outliers. In particular, rules with confi-
dence 1 need to be reviewed by an expert to determine
whether they should be confirmed as hard rules or their
confidence needs to be lowered because of bias in the
dataset. Similarly, strong rules with confidence lower
than 1 should be reviewed whether they should be con-
firmed as soft rules or need to be “hardened” because
of outliers or errors in the dataset. For example, dur-
ing mining of the Applet model in Figure 2b, the ini-
tial sample of applets contained two applets that did
not override any of init, start, or paint. As a result,
the corresponding OR-group was lost from the feature
diagram and the simple disjunctive rule for the three
methods only appeared in the soft constraints. Upon
closer inspection, we determined that these two ap-
plets were outliers; they were examples demonstrating
the implementation of applet constructors rather than
complete applets. Following that discovery, the two
applets were removed from the sample and the model
was regenerated.

7 Configuration Under Soft Constraints

As discussed in Section 4, PFMs in general, do not
uniquely determine a probability distribution on configura-
tions. Instead, a range of legal JPDs is possible. However,

given a concrete legal JPD, a PFM can be used to guide
users in their selections of desired configurations. We shall
now discuss the advantages of such an approach in contrast
to discrete interactive configuration, and mention briefly the
algorithms that would support it.

First, introduction of probabilities into the modeling lan-
guage has allowed us to configure soft preferences, among
many combinatorically related selections of features. Sec-
ond, these preferences can change dynamically throughout
the configuration process in a non-monotonic way. Recall
the car example. The manual gear is a preferred feature ini-
tially, as nothing is known about the variant of the car. How-
ever, the order of preference (probabilities) will be reversed,
from manual to automatic, as soon as the North American
variant is selected. A user of such a configuration system
will experience a more adaptive form of guidance than just
being presented with valid choices, as the guiding engine
will not only propagate hard constraints about the product,
but also reason about the user’s preferences.

In order to provide this functionality one needs address
two problems: (1) obtain a unique and useful probabil-
ity distribution consistent with a PFM; (2) provide inter-
active configuration algorithms that can compute poste-
rior marginal probabilities for feature variables and groups,
given the current state of the system (i.e., the features that
were selected or eliminated so far), and that can support
model auto-completion with a most-likely configuration.
Two methods relying on existing technology meet these re-
quirements and will be discussed next.

Configuration with a BN. As mentioned, if the model
is mined from sample data, one could use the same sample
to automatically learn a BN reflecting the JPD of the con-
figurations. There exist numerous algorithms for learning
BNs from a sample [22]. A BN constructed in this way
would be automatically consistent with its PFM, however,
this method requires an unbiased sample that is represen-
tative of the entire configuration space. Once the JPD is
represented as a BN, one can use inference and evidence
propagation algorithms to compute marginal probabilities
for features in a given system state. Also, a most probable
explanation algorithm [22, 15, 20, 32] can be applied to find
a maximum probability assignment to all unobserved vari-
ables (i.e., undecided features), given the observed state of
the system.

Maximum Entropy Configuration. Entropy is a mea-
sure of uncertainty used in information theory. A high
entropy means a lack of information or low predictabil-
ity, while low entropy means the presence of precise in-
formation or high predictability. There exist methods
[27, 21, 19, 31] for finding the JPD satisfying an underspec-
ified system of constraints that maximizes entropy. Search-
ing for a maximum entropy JPD generalizes the principle
of indifference; entropy maximization distributes the prob-

abilities among each possible configuration as uniformly as
possible, such that the distribution still satisfies all the con-
straints imposed by the PPFs of a PFM. Entropy maximiza-
tion is guaranteed not to introduce new hard constraints that
are not already logically entailed by the hard PPFs of the
PFM. In fact, the JPD inferred by entropy maximization
from a set of PPFs is the only “honest” conclusion from
these PPFs, i.e., one that does not take any other evidence
into account [21]. Entropy maximization can be seen as a
specialized reasoning method for probabilistic logic [27].

Even though we can reduce the configuration algorithms
on PFMs to existing solutions, more practical evaluation is
required in future. In particular, we would like to imple-
ment prototype configurators and investigate solutions that
improve the running times of the above algorithms, such as
direct encodings of hard constraints in Bayesian networks
[38], compilation based inference in BNs [10, 11], and col-
umn generation methods [3].

8 Related Work

Throughout the paper, we have extensively referred to
the body of foundational work that has been used to build-
ing the PFM infrastructure. Here we should briefly mention
related contributions that have not been referred so far.

Encourages and discourages constraints have been sug-
gested as an extension to FM several times, for example in
[12, 39]. However, no precise semantics have been given to
these extensions in the previous work. The work that comes
closest to PFMs is Robak’s extension of feature models with
fuzzy logic [33]. Fuzzy logic is an alternative way of rea-
soning under uncertainty, different from probabilistic logic.
The advantage of probabilistic logics are that it gives in eas-
ily to both interpretations as degree of belief and as relative
frequencies, which allows us to use the same modeling lan-
guage for specification, mining and configuration. Related
to PFMs are also i* goal models, which can be thought of
as AND-OR trees augmented with encourages and discour-
ages relationships [16]. Such models have been used in the
configuration of software [25].

Reverse engineering of variability models was addressed
before. Loesch [26] has discussed a variability extraction
and visualization method based on concept analysis. He
does not directly use feature models. Interestingly, concept
analysis corresponds to mining closed AND-clauses [40].
Our work also considers OR- and XOR-groups and soft con-
straints. Jepsen [23] and colleagues describe a manual pro-
cess of identifying code differences between variants and
structuring them in a feature model. Our ultimate aim is to
automate these kind of procedures. The present paper is just
a step towards this goal.

9 Conclusion

We have presented probabilistic feature models, which
are basic feature models extended with soft constraints.
We have argued for the need of soft constraints in model-
ing, reverse-engineering and configuration applications. We
then presented a mining procedure that retrieves PFMs from
representative samples of configurations and discussed the
algorithms and data structures that can be used to perform
interactive configuration with soft constraints. PFMs have
been illustrated with examples from automotive and soft-
ware engineering domains.

To the best of our knowledge, PFMs are a substantial ex-
tension of feature model that will enable a new generation
of tools for feature modeling, reverse engineering and con-
figuration. We intend to address several challenges posed
by such tools in the near future.

Acknowledgements. Authors would like to thank
Michał Antkiewicz for creating the feature model in Fig-
ure 2a and the anonymous reviewers for their valuable feed-
back.

A Derivation of JPDs denoted by a PFM

The sample probabilistic feature model (PFM) in Fig-
ure 4a denotes a set of joint probability distributions (JPDs),
which are defined in a closed form in Figure 4c. This defi-
nition can be derived as follows.

First, p1, . . . p8, Figure 4c, need to satisfy the axioms:

0 ≤ pi ≤ 1 for i = 1 . . . 8 (7)

X
i=1...8

pi = 1 (8)

Furthermore, each formula in Figure 4b places a con-
straint on some of the probabilities pi. In our case, we only
have to consider a and (c|b)[0.8, 0.8] since b→ a and c→ a
are logically entailed by the first formula. The probabilistic
meaning of the propositional formula a is

P (a) = 1 (9)

By decomposing a into atomic events, we obtain

P (a) = P (abc ∨ abc̄ ∨ ab̄c ∨ ab̄c̄)

= P (abc) + P (abc̄) + PP (ab̄c) + P (ab̄c̄)

= p1 + p2 + p3 + p4

(10)

From 9 and 10 we obtain

p1 + p2 + p3 + p4 = 1 (11)

From 8 and 11 immediately follows:

pi = 0 for i = 5 . . . 8 (12)

The meaning of the probabilistic formula (c|b)[0.8, 0.8] is

0.8 ≤ P (c|b) ≤ 0.8 (13)

By definition of conditional probability and 13 we have
P (cb) = 0.8P (b) which, by decomposing cb and b, gives

p1 + p5 = 0.8(p1 + p2 + p5 + p6) (14)

From 14 and 12 we obtain

p2 = 0.25p1 (15)

From 11 and 15 we obtain p4 = 1 − 1.25p1 − p3. Finally,
since p4 ≥ 0 (from 7), we also have 1.25p1 + p3 ≤ 1.

References

[1] R. Agrawal, T. Imieliński, and A. Swami. Mining associa-
tion rules between sets of items in large databases. In SIG-
MOD ’93. ACM, 1993.

[2] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and
C. Lucena. Refactoring product lines. In GPCE’06. ACM,
2006.

[3] K. A. Anderson and J. N. Hooker. A linear programming
framework for logics of uncertainty. Decis. Support Syst.,
1996.

[4] P. S. S. Andrade, J. Rocha, D. P. Couto, A. da Costa Teves,
and F. Cozmans. A toolset for propositional probabilistic
logic. In BCSC ’07. BCS, 2007.

[5] M. Antkiewicz and K. Czarnecki. Framework-specific mod-
eling languages with round-trip engineering. In MoDELS
’06. Springer, 2006.

[6] D. S. Batory. Feature models, grammars, and propositional
formulas. In SPLC ’05. Springer, 2005.

[7] D. S. Batory, D. Benavides, and A. R. Cortés. Automated
analysis of feature models: challenges ahead. Commun.
ACM, 2006.

[8] M. Bruch, T. Schäfer, and M. Mezini. FrUiT: IDE support
for framework understanding. In eclipse ’06. ACM, 2006.

[9] V. Chandru and J. N. Hooker. Optimization Methods for
Logical Inference. Wiley-Interscience, 1999.

[10] M. Chavira and A. Darwiche. Compiling Bayesian networks
using variable elimination. In IJCAI ’07, 2007.

[11] M. Chavira, A. Darwiche, and M. Jaeger. Compiling rela-
tional Bayesian networks for exact inference. Int. J. Approx.
Reasoning, 2006.

[12] K. Czarnecki and U. W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley,
Boston, MA, 2000.

[13] K. Czarnecki and C. H. P. Kim. Cardinality-based feature
modeling and constraints: a progress report. In International
Workshop on Software Factories, 2005.

[14] K. Czarnecki and A. Wąsowski. Feature models and logics:
There and back again. In SPLC ’07. IEEE, 2007.

[15] R. Dechter. Constraint Processing. Morgan Kaufmann,
2003.

[16] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebas-
tiani. Reasoning with goal models. In ER’02, 2002.

[17] T. Hadzic, S. Subbarayan, R. M. Jensen, H. R. Andersen,
J. Møller, and H. Hulgaard. Fast backtrack-free product
configuration using a precompiled solution space represen-
tation. In PETO ’04. DTU-tryk, 2004.

[18] J. Han and M. Kamber. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann, 2000.

[19] J. N. Hooker. Mathematical programming models for rea-
soning under uncertainty (plenary address). In Operations
Research Proceedings ’91. Springer-Verlag, 1992.

[20] C. Huang and A. Darwiche. Inference in belief networks: A
procedural guide. Int. J. Approx. Reasoning, 1996.

[21] E. T. Jaynes. Probability Theory: The Logic of Science.
Cambridge University, 2003.

[22] F. V. Jensen and T. D. Nielsen. Bayesian Networks and De-
cision Graphs. Springer, 2007.

[23] H. P. Jepsen, J. G. Dall, and D. Beuche. Minimally inva-
sive migration to software product lines. In SPLC ’07. IEEE
Computer Society, 2007.

[24] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study.
Technical Report CMU/SEI-90-TR-21, 1990.

[25] S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, and S. East-
erbrook. Configuring common personal software: a
requirements-driven approach. In RE’05, 2005.

[26] F. Loesch and E. Ploedereder. Optimization of variability
in software product lines. In SPLC ’07. IEEE Computer
Society, 2007.

[27] T. Lukasiewicz and G. Kern-Isberner. Probabilistic logic
programming under maximum entropy. Symbolic and Quan-
titative Approaches to Reasoning and Uncertainty, 1999.

[28] A. L. Madsen, F. Jensen, U. Kjærulff, and M. Lang. The
Hugin tool for probabilistic graphical models. International
Journal on Artificial Intelligence Tools, 2005.

[29] A. Michail. Data mining library reuse patterns using gener-
alized association rules. In ICSE ’00. ACM, 2000.

[30] J. Møller, H. R. Andersen, and H. Hulgaard. Product con-
figuration over the Internet. In INFORMS ’01, 2001.

[31] N. Nilsson. Probabilistic logic. Artificial Intelligence, 1986.
[32] J. Pearl. Probabilistic reasoning in intelligent systems: net-

works of plausible inference. Morgan Kaufmann, 1988.
[33] S. Robak and A. Pieczyński. Employment of fuzzy logic in

feature diagrams to model variability in software families. J.
Integr. Des. Process Sci., 2003.

[34] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. Feature
diagrams: A survey and a formal semantics. In RE’06, 2006.

[35] Sun Microsystems. Java tutorials, lesson: Applets. http:
//java.sun.com/docs/books/tutorial/deployment/applet/.

[36] Sun Microsystems. Taking advantage of the Ap-
plet API. Available from http://java.sun.com/docs/books/
tutorial/deployment/applet/appletsonlyindex.html.

[37] T. Uno, M. Kiyomi, and H. Arimura. Lcm ver. 2: Efficient
mining algorithms for frequent/closed/maximal itemsets. In
FIMI, 2004.

[38] M. Valtorta, J. Byrnes, and M. Huhns. Logical and proba-
bilistic reasoning to support information analysis in uncer-
tain domains. In Progic ’07, 2007. To appear.

[39] H. Wada, J. Suzuki, and K. Oba. A feature modeling sup-
port for non-functional constraints in service oriented archi-
tecture. In IEEE Computer Society, 2007.

[40] L. Zhao, M. J. Zaki, and N. Ramakrishnan. BLOSOM: A
framework for mining arbitrary boolean expressions over at-
tribute sets. Technical Report 06-05, 2006. Available from
http://www.cs.rpi.edu/research/pdf/06-05.pdf.

