
Evolution of the Linux Kernel Variability Model

Rafael Lotufo1, Steven She1, Thorsten Berger2,
Krzysztof Czarnecki1, Andrzej Wąsowski3

1 University of Waterloo, Ontario {rlotufo,kczarnec,shshe}@gsd.uwaterloo.ca
2 University of Leipzig, Germany berger@informatik.uni-leipzig.de

3 IT University of Copenhagen, Denmark wasowski@itu.dk

Abstract. Understanding the challenges faced by real projects in evolv-
ing variability models, is a prerequisite for providing adequate support for
such undertakings. We study the evolution of a model describing features
and configurations in a large product line—the Linux kernel variability
model. We analyze this evolution quantitatively and qualitatively.
Our primary finding is that the Linux kernel model appears to evolve
surprisingly smoothly. In the analyzed period, the number of features
had doubled, and still the structural complexity of the model remained
roughly the same. Furthermore, we provide an in-depth look at the ef-
fect of the kernel’s development methodologies on the evolution of its
model. We also include evidence about edit operations applied in prac-
tice, evidence of challenges in maintaining large models, and a range of
recommendations (and open problems) for builders of modeling tools.

1 Introduction

The cost of variability management in software product lines is meant to be offset
by the savings in deployment of product variants over time. Product families with
long lifetime and large number of variants should provide a bigger return over
time. For these reasons a product line architecture is typically implemented in
large projects with a long time horizon. The time horizon and the sheer size of
these projects place coping with scale and evolution as the forefront challenges
in successfully running software product lines.

Variability models evolve and grow together with the evolution and growth
of the product line itself. Thus realistic feature models are large and complex [1],
reflecting the scale of growth and evolution. Nevertheless, evolution of real vari-
ability models has not been studied. Multiple authors have been interested in
reasoning about feature model editing [2, 3], in semantics of feature model refac-
torings [4], or in synchronizing artifacts in product lines [5, 6], which indeed, as
we shall see, is a major challenge in maintaining a variability model. However,
none of these works was driven by documented challenges faced by practitioners.

We set out to study how feature models evolve, and the main challenges
encountered in the process. Do the cross-tree constraints deteriorate or domi-
nate hierarchy over time? Does the number of cross-tree dependencies become
unmanageable? Is the model evolved ahead of the source code, along with the

source code, or following the source code? We address these and similar ques-
tions, hoping to inspire researchers and industries invested in building tools and
analysis techniques for variability modeling.

The subject of our study is the Linux feature model. As argued previously [1],
the model extracted from Linux Kconfig is, so far, the largest feature model pub-
licly known and freely available. We study the evolution of this model over the
last five years, when Linux and the model were already at a mature stage. The
model demonstrates that a lasting evolution of a huge product family is feasible
and does not necessarily deteriorate the quality of the feature model. Despite
the number of features doubling in the studied period, structural and seman-
tic properties of the model have changed only slightly over time, retaining the
desirable aspects, such as balanced composition and limited feature interaction.

The main contributions of this work are the following:

– A study of evolution of a real-world, large and mature variability model;
– Evidence of what operations on feature models are performed in practice;
– Evidence of what refactorings are applied to models in practice;
– Evidence of the difficulty for humans to reason about feature constraints;
– Input for designers of tools and techniques supporting model evolution.

We give background on Linux and its configuration language in Section 2. Sec-
tion 3 justifies the choice of the experiment subject and period, and sketches the
experiment design. Section 4 presents and analyzes the collected data. Remaining
sections summarize threats to validity, related work, and our conclusions.

2 The Linux Kernel and Its Variability Model

Born in 1991, the Linux kernel is one of the most mature open source projects
as of writing, and continues to be rapidly developed. It remains a crucial com-
ponent of numerous open and closed source projects, including distributions of
the GNU/Linux operating system, mobile phones, netbook computers, network
routers, hardware media players and similar appliances. This diversity of ap-
plications and users, enforces a highly configurable architecture on the kernel.
Indeed Linux kernel is among the largest well documented software product lines
studied so far [1, 7].

Linux development community comprises both volunteers and paid devel-
opers recruiting from more than 200 companies including Red Hat, IBM, Intel,
Oracle, Google and Microsoft among others [8]. The maturity of the project man-
ifests in multiple metrics such as the codebase size (exceeding 8 million lines),
the number of active developers (600–1200 per release and growing), and the
level of activity (up to 10000 patches per release).

Kernel versions numbers are triples: triple 2.6.12 represents a kernel from the
2.6 branch at minor revision number 12. A new minor revision is released every
3 months. All revisions studied in this paper belong to the 2.6 branch, and thus
we will only use minor revision numbers when referring to them (so 12 denotes
2.6.12). We shall use the terms revision, release and version interchangeably.

2

menu "Power management and ACPI options"1

depends on !X86_VOYAGER2

config PM3

bool "Power Management support"4

depends on !IA64_HP_SIM5

config PM_DEBUG6

bool "Power Management Debug Support"7

depends on PM8

config PM_SLEEP9

bool10

depends on SUSPEND ||HIBERNATION11

||XEN_SAVE_RESTORE12

default y13

endmenu14

PM_SLEEP

PM_DEBUG

PM

Power Management and

ACPI Options [PM_MENU]

PM_MENU → ¬ X86_VOYAGER
PM → ¬ IA64_HP_SIM
PM_SLEEP ↔

SUSPEND || HIBERNATION ||
XEN_SAVE_RESTORE

Fig. 1. A simple Kconfig model (left) and the corresponding feature model (right)

The Linux kernel contains an explicit feature model (the Linux kernel feature
model) expressed in the domain specific language called Kconfig. The Kconfig
language was officially merged into revision 2.5.45 in October 2002 [9]. It has
been the language for the Linux kernel feature model ever since. Thus, the Linux
kernel feature model is a mature model with as much as 8 years of history in its
current form (and a good prehistory in predecessor specification languages). We
shall analyze the last five years of this history, which span the mature stage of
the model evolution, still characterized by an unprecedented growth.

We now present the Kconfig language. Configuration options are known as configs
in Kconfig. They can be nested under other configs and grouped under menus,
menuconfigs and choice groups. The kernel configurator renders the model as a
tree of options, which users select to specify the configuration to be built.

Figure 1 shows a fragment of the Linux variability model, containing a menu
(line 1) with two Boolean configs as children: PM (lines 3–5) and PM_SLEEP
(lines 9–13). Configs are named parameters with a specified type. A boolean
config is a choice between presence and absence. All configs in Figure 1 are bool
(e.g. line 4). Integer configs specify options such as buffer sizes. String configs
specify names of, for example, files or disk partitions. Integer and string configs
are entry-field configs—shown as editable fields in the configuration tool.

A depends-on clause introduces a hard dependency. For example, PM can
only be selected if IA64_HP_SIM is not (line 5). Conversely, a select clause (not
shown) enforces immediate selection of another config when this config is selected
by the user. Nesting is inferred by feature ordering and dependency: for example
PM_DEBUG is nested under PM (line 8). A default clause sets an initial value,
which can be overridden by the user. For example, PM_SLEEP defaults to y.

Menus are not optional and are used for grouping, like mandatory non-leaf
features in feature models. Choices (not shown) group configs, which we call
choice configs, into alternatives—effectively allowing modeling of xor and or

3

groups. Menuconfigs are menus that can be selected, typically used to enable
and disable all descendant configs.

As in [1, 9], we interpret the hierarchy of configs, menuconfigs, menus, and
choices as the Linux feature model. The right part of Figure 1 shows the feature
model for the Kconfig example in the left part of the figure. Table 1 maps basic
Kconfig concepts to feature modeling concepts. An entry-field config maps to a
mandatory feature with an attribute of an appropriate type, integer or string.
Conditional menus map to optional features; unconditional menus to mandatory
features. We map a choice to a feature with a group containing the choice configs.
A mandatory (optional) choice maps to a mandatory (optional) feature with an
xor-group. More details on Kconfig and its interpretation as a feature model
are available in [1].

3 The Experiment

3.1 Linux Feature Model as A Subject

Before we proceed to our experiment, let us address the basic relevance: are the
Linux variability model and the selected period of evolution relevant to study?

We analyze the evolution of the Linux kernel feature model between revisions
12 and 32—a period extending over almost 5 years, in which the Linux code base
was already large and well established, while still growing rapidly. Meanwhile,
the size of the kernel, measured as the number of lines, has doubled. It was
also a period of intensive changes to the Kconfig model, since maintenance and
evolution of this model follows the source code closely in size and in time.

Figure 2 plots the size of the Linux source code against the size of the Kconfig
files (a), and against the number of features declared in Kconfig (b). Since all
these measures are growing monotonically with time, the progression of samples
from the origin towards the right top corner is ordered by revision numbers. Each
point represents one of the 21 revisions between 12 and 32. We observe that in

Table 1. A simplified mapping of Kconfig models to feature models [1]

Kconfig concepts Feature modeling concepts

Boolean config

➟

Optional feature
Entry-field config Mandatory feature
Conditional menu Optional feature
Unconditional menu Mandatory feature
Mandatory Choice Mandatory feature + (xor,or)-group
Optional Choice Optional feature + (xor,or)-group

Config, menu or choice nesting ➟ Sub-feature relation

Visibility conditions, Selects,

➟ Cross-tree constraintConstraining defaults

4

Kconfig kLOC

Li
nu

x
kL

O
C

4000

5000

6000

7000

8000

45 50 55 60 65 70 75 80

(a) Total kLOC for Linux against
kLOC of Kconfig files

Number of features

Li
nu

x
kL

O
C

4000

5000

6000

7000

8000

6000 7000 8000 9000 10000

(b) Total kLOC for Linux against the
number of features in Kconfig files

Fig. 2. Evolution of number of features and lines of code from revisions 12 to 32

Date

N
um

be
r

of
 c

om
m

its

0
50

100
150
200
250

0

1000

2000

3000

4000

2006 2007 2008 2009 2010

K
config

N
ot K

config

Fig. 3. Number of commits per week that touch Kconfig files compared to number of
commits that do not. Each spike matches one of the 21 revisions analyzed.

the given period the feature model grows almost linearly with the amount of
source code, and its textual representation (Kconfig files).

Figure 3 shows the number of patches added weekly to the Linux source code
that modify, and also that do not modify, Kconfig files. Both numbers exhibit
almost identical ‘heart-beat’ patterns, suggesting a causal dependency between
changes to the model and to the code.

All three diagrams are strong quantitative indications that the development
of the Linux kernel is feature-driven, since the source code is modified and grows
along with the modifications to and growth of the feature model. This feature-
oriented development on large scale makes the Linux model an interesting and
relevant subject of investigation. We can expect that challenges faced by Linux
maintainers can be exemplary also for other projects of similar maturity.

To scope our investigation, we focus on the model for the x86 architecture,
extracted from the main line of development4. This scoping does not significantly
skew our results, since x86 is the longest supported, the largest and the most
widespread architecture of the kernel. We have verified that the x86 feature

4 git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

5

Revision

To
ta

l

4000

5000

6000

7000

8000

9000

10000

15 20 25 30

X86 features
X86 features

All features

(a) Total number of features in Linux Kcon-
fig and x86 architecture.

Revision

N
um

be
r

of
 c

on
st

ra
in

ts

0

2000

4000

6000

8000

10000

15 20 25 30

(b) # of constraints per revision

Fig. 4. Growth in number of features and number of constraints

model exhibits the same pattern of growth as the entire model. For example,
see the growth of the number of features in Figure 4a plotted for the entire
kernel, and for the x86 architecture. Note that the x86 architecture was created
in release 24 by merging the 32-bit i386 and the 64-bit x86_64 architectures.5

From releases 12 to 23 we consider the i386 architecture as the x86 architecture.

3.2 Data Acquisition

Since release 2.6.12 the Linux kernel uses Git (http://git.or.cz) as its version control
system. The Git commit history is a series of atomic patches extending over
multiple files, each of which contains the commit log, and a detailed explanation
of the patch. In the Linux project each patch is reviewed and signed-off by
several experts. Since Git allows history rewriting [10], only few patches contain
incorrect or misleading information. Thus we consider the Linux Git repository
a trustworthy source of information and we limit our attention span to releases
in which Git was used. Although historical revisions predating 2.6.12 have been
converted to the Git format, one has to keep in mind that they were created
using different tools, and thus in different circumstances. To assure quality and
consistency of our mining, we chose not to extend our investigation before 2.6.12.

We use a parser [1] extracted from the Linux xconfig configurator to build
the feature hierarchy tree. This ensures reliable and consistent interpretation
of syntax. We use CLOC (http://cloc.sourceforge.net) to measure code size. Blank
lines, comments, and files not recognized as code by CLOC are ignored.

4 Evolution of the Linux Kernel Variability Model

We shall now present and analyze the collected data, dividing it into two parts:
Section 4.1 on the macro-scale, and Section 4.2 on the micro-scale.

5 More details at http://kernelnewbies.org/Linux_2_6_24

6

4.1 Evolution of Model Characteristics

In [1] we have identified and described a number of characteristics of the Linux
kernel feature model. We will now analyze how they change over time.

Model Size. As previously said (see Figure 4a), the number of features of the
x86 feature model has almost doubled during the studied period, growing from
3284 in release 12 to 6319 in 32. The growth is steady and uniformly distributed,
indicating a regular development pace, and a repetitive development cycle. Also,
as seen in Figure 2 this growth is paralleled by the code growth, with a roughly
constant feature granularity (measured as average SLOC per feature).

Depth of Leaves. As the hierarchy is the only structuring construct in feature
models (and in Kconfig), the growth of the model must necessarily influence
either depth or breadth of the hierarchy.

In revision 12 the deepest leaf is at depth 9, and most leaves are at depth 5.
Somewhat counter-intuitively, both maximum depth and dominant depth have
decreased over time: maximum depth in revision 32 is 8 and most leafs are now
at a depth of 4—see Figure 5a. The dominant depth has decreased, even as the
number of features at depth 5 continued to increase. So this feature model has
been growing in width, not in height.

As reported in [1], the Linux kernel feature model is shallow and has been
so at least since revision 12. The Linux project evolves the model in such a way
that the basic structure of the hierarchy remains stable over considerable periods
of time, despite massive changes to features themselves.

Constraints. In [1] we report that the Linux kernel feature model constraints
are mostly of type ‘requires’. However we did find considerably many constraints
involving more than one feature, with extreme cases of constraints containing
up to 22 features. We now examine how these properties change over time.

Figure 4b shows that the number of constraints has increased over time: the
amount of constraints in revision 32 is almost double that of revision 12. It
is interesting to note that contrary to the belief that the number of constraints
grows quadratically with the number of features, the two numbers have grown in
the same proportion in the given period. Again, the Linux kernel model demon-
strates that it is feasible to construct software architectures and models that
only induce constant number of dependencies per feature. In this sense it proves
that feature models are a feasible modeling language for large projects.

Branching Factor. We also measured the branching factor for each of the revi-
sions, in the same manner as in [1] (see Fig. 5b). We found that there was no
significant change in the shape of the histogram of children per feature, except
that the number of features for each branching factor have increased. For exam-
ple, there were approximately 300 features with one child, and outliers with 120
children in revision 12. In revision 32 these numbers are 400 and 160.

7

Depth

R
ev

is
io

n

15

20

25

30

1 2 3 4 5 6 7 8 9

Number of
leafs

100
500
750

1000
1250
1500

(a) Depth per leaf per revision

Number of parents (log2)

N
um

be
r

of
 c

hi
ld

re
n

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0 2 4 6 8

12
14

16
18

20
22

24
26

28
30

32

(b) Branching factor, per revision

Fig. 5. Basic characteristics of hierarchy and branching factor across revisions 12–32

4.2 Summary of Model Content Changes

We have seen that the feature model has undergone many changes between revi-
sion 12 and 32. In particular, the size, average depth and number of constraints
were affected. We shall now look deeper into these changes. We will characterize
the edits that affected these characteristics, their overall motivation, and the
implications for tool developers. For the purpose of this investigation, we define
an edit to a feature model as a series of changes committed in the same patch.

In order to analyze motivation for individual edits to the model, we have
selected a set of 200 uniformly random patches from the Git log, out of 8726, that
in the given period touch Kconfig files. We have used this sample for training,
to identify six categories of reasons for changes in the Linux model:

New functionality: model modifications when adding new configurable function-
ality;

Retiring obsolete features: modifications removing functionality from the project.
Clean-up/maintainability: modifications that aim at improving usability and

maintenance of the feature model;
Adherence to changes in C code: model modifications reflecting changes made

to dependencies in C code in the same patch;
Build fix: reactive modifications that adjust the feature model to reflect changed

dependencies in C code in prior patches;
Change variability: adjustments to the set of legal configurations of the feature

model without adding code for new functionality.

After defining the above categories, we have independently selected another
200 patches, but this time out of 7384 of those touching Kconfig files used in the
x86 architecture model. We classified this sample manually and interpreted the
results. We have restricted ourselves to the x86 features, in order to be able to
relate the results of this study to characteristics computed for x86 in Section 4.1.

Figure 6 shows the results. In the following paragraphs we discuss each of the
categories in detail, outlining its typical edit patterns, the effects it has on the
feature model, and the tooling that would be desirable for the given scenario.

8

Reasons

N
um

be
r

of
 p

at
ch

es

0

20

40

60

80

New
functionality

Build fix Clean−up/
maintainability

Adherence to
changes in

C code

Change
variability

Retiring
obsolete
feature

Fig. 6. Reason for edits (sample)

New functionality. Close to half of the patches in our sample were related to
functionality changes—either adding to, or removing from the kernel. Each of
these predominantly simple patches comprises of adding functional C code, up-
dating a Makefile to specify how the new code will be compiled into the kernel,
and typically adding one new config with simple constraints and a documenting
help text. When more than one feature is added, they are typically siblings. Most
often these operations do not add further constraints to the model.

Feature additions rarely make intrusive changes to the feature model hierar-
chy, as almost 87% of all new features are added at leaves. Details are available
in Figure 7a, which also shows that more than 50% of new features are added
as leaves at levels 3, 4 and 5. Our hypothesis is that this is because the x86
architecture is very mature, and developers add features to existing elements
(“slots”) of the architecture, without extending the architecture itself.

Figure 7b shows the number of features added and removed in consecutive
releases. As expected, the number of feature additions in total and per release
exceeds that of feature removals. Figure 7b also shows that the number of fea-
tures added between releases 12 to 23 is much smaller than the additions from
release 24 to 32, and correlates well with Figure 3, where we see much higher
numbers of commits per week after revision 24 (January 2008).

Thus, most edits to the Linux kernel between revision 12 and 32 add new
functionality, new drivers and features, as opposed to performing code and model
refactorings. This is consistent with our findings (Figure 6) that almost half of the
sampled patches are motivated by inclusion of new functionality and features.
This also correlates to the findings of [11] which found that the super-linear
growth of the Linux kernel from 1994 to 2001 was due to the growth of driver
code, where drivers are typically added as new features.

Retiring obsolete features. As previously shown (Figures 4a, 6 and 7b), removing
features is a rare motive for edits. We have found that this mostly happens when
features are no longer supported by any developer, or when the feature has been
replaced by another, making the former feature obsolete. These operations are

9

Depth

N
um

be
r

of
 fe

at
ur

es

0

200

400

600

800

1000

2 4 6 8 10 12

Non leaf
Leaf

(a) Depth of added features

Change

N
um

be
r

of
 fe

at
ur

es

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

added removed

12−13

13−14

14−15

15−16

16−17

17−18

18−19

19−20

20−21

21−22

22−23

23−24

24−25

25−26

26−27

27−28

28−29

29−30

30−31

31−32

(b) # of added, removed and moved features

Fig. 7. Added and removed features for releases 12–32

the inverse of the operations shown in the previous section, and mostly consist
of removing C code, build instructions and the related config from the model.

Notably, the kernel project maintains a formal schedule of retiring features
and code, which can be found in the project tree.6 Every entry in this file de-
scribes what exactly is removed, why it is happening, and who is performing the
removal. This was the first time when the authors of this paper experienced such
a formalized and feature-driven (!) process for phasing out code.

Retiring features is not well supported by existing tools and model manip-
ulation techniques. It would be desirable to provide tools that: (a) eliminate
features from the model (including from the cross-tree constraints, without af-
fecting the configuration space of the other features, and possibly performing
diagnosis about the impact of removal), and (b) use traceability links to find
code related to the feature to verify correctness of code retiring.

Clean-up/maintainability. As seen in Fig. 6, developers frequently edit the model
to improve its maintenance and usability. These edits typically focus on the
end users by improving help text and feature descriptions or by refactoring
the hierarchy. Constraint refactorings are a common consequence of hierarchy
refactoring in the Kconfig syntax.

We assume that a feature f was subject to hierarchy refactoring if its parent
has changed between releases. Let f be a feature that moved from parent p1 to
p2 between revisions m1 and m2. We distinguish seven cases of parent change:

1. Parent introduction (PI): p2 introduced between p1 and f and p2 not in m1;
2. Parent moved in (PMI): p2 introduced between p1 and f and p2 exists in m1;

6 The file is Documentation/feature-removal-schedule.txt

10

Revision

N
um

be
r

of
 fe

at
ur

es

0

200

400

600

800

1000

1200

1400

12
−

13
13

−
14

14
−

15
15

−
16

16
−

17
17

−
18

18
−

19
19

−
20

20
−

21
21

−
22

22
−

23
23

−
24

24
−

25
25

−
26

26
−

27
27

−
28

28
−

29
29

−
30

30
−

31
31

−
32

Status
FM

M
PI

PMI
PMO

PR
PRN

(a) Cases of hierarchy per revision

Change type

N
um

be
r

of
 fe

at
ur

es

0

500

1000

1500

FM M PI PMI PMO PR PRN

(b) Hierarchy refactorings aggregated

Fig. 8. Causes of hierarchy refactoring

3. Parent removal (PR): p1 is removed from the feature model (p1 not in m2);
4. Parent move out (PMO): p1 is moved (found both in m1 and m2);
5. Parent rename (PRN): p1 is renamed: p1 not in m2 and p2 not in m1;
6. Feature move (FM): f is moved from p1 to p2 and both exist in m1 and m2;
7. Multiple (M): a combination of at least two of the above.

Figure 8a shows that there has been significant hierarchy refactoring per-
formed to features during the period, specially in releases 22–23. Curiously, re-
lease 22 is considered by the Linux kernel community as a bug-fix release.7

Figure 8b reveals that changes of parent are mostly caused by operations on
the parent itself, rather than by the explicit moving of a feature. When features
are moved, they are moved together with their siblings from a common origin
parent to a common destination parent. In fact, for all moves in the period,
we found that out of 65 origins, only 4 split its children into more than one
destination; and out of 68 destinations, only one came from more than one
origin. This suggests that feature model editors, should support moving groups
of siblings within a hierarchy (as opposed to only allowing moving subtrees rooted
in a single feature to a new place in the hierarchy). Another frequent operation
is splicing out features from the hierarchy (to remove them or to move them into
another position), without affecting the ancestors and the subtree. To the best
of our knowledge neither of operations is directly supported by existing editors.

After further investigation, we found that the underlying reasons for a high
level of hierarchy refactoring in releases 22–23 was a consistent replacement
of a menu and a config with a menuconfig, consequently eliminating one level
of the hierarchy and moving more than 500 features up in the hierarchy. The
replacement of menu with menuconfig is made to remove unnecessary mandatory
features and replace them with an optional feature capable of enabling/disabling
an entire tree hierarchy. This explains the decrease in the average depth over the
period, mentioned in Section 4.1.

Adherence to changes in C code. Our sample shows that approximately 15% of
edits to the feature model are made together with changes in dependencies in

7 http://www.linux-watch.com/news/NS8173766270.html, seen 2010/02-28.

11

C code. These changes in code are typically code refactoring or bug fixes. The
edits to the feature model in 90% of these patches are changes to constraints,
following the changes in dependencies in C code.

Build fix. When dependencies in code change and are not immediately reflected
in the feature model, developers and users may be unable to successfully compile
the kernel, and therefore significant development time and user satisfaction is
lost. We define a build fix to be a delayed adaptation of the model to a change
to the source code that appeared in another, earlier patch.

Edits to the feature model in these cases resemble those described in Ad-
herence to changes in C code. It is striking that build-fixes are so frequently
occurring—clearly indicating need for further research on tools that synchronize
the constraints in the model and dependencies in the build system.

Commit logs for changes in constraints indicate that developers do not have
enough support for reasoning. Comments range from : “After carefully examining
the code...”, “As far as I can tell, selecting ... is redundant” to “we do a select
of SPARSEMEM_VMEMMAP ... because ... without SPARSEMEM_VMEMMAP gives
us a hell of broken dependencies that I don’t want of fix ” and “it’s a nightmare
working out why CONFIG_PM keeps getting set” (emphasis added). They indicate
need for debugging tools for feature models that could demonstrate the impact
of edits on the model and on the build system.

Change variability. We have found that there are cases where edits change the
configurations with the purpose of adding (or removing) an existing functionality
to the feature model, allowing users more configuration options. These operations
do not add functional C code; they typically add new configs, make changes to
constraints, and add variability to C code by editing #ifdefs.

These edits, although few, can be highly complex. Depending on the cross-
cutting characteristics of the functionality in question, they may require changes
to several different files and locations. For example, commit 9361401 named
‘[BLOCK] Make it possible to disable the block layer [try #6]’ required
changes to 44 different files and more than 200 constraints.

5 Threats to Validity

External. Our study is based on a single system (Linux). However, we know that
this is a mature real world system. As the variability model is an integral part of
the Linux kernel, we believe that it should reflect properties of many other long
lived models that are successfully evolved, such as operating systems, and control
software for embedded systems. We have made initial explorations into the Ecos
operating system, which seems to confirm our expectations. Nevertheless, one
should not consider our recommendations as representative, since we make them
by studying this particular project and not by studying a wide sample of projects.

The Linux development process requires adding features in a way that makes
them immediately configurable. As a consequence, it not only enables immedi-
ate configurability, but also makes the entire code evolution feature-oriented.

12

Arguably, such a process requires a significant amount of discipline and commit-
ment that may be hard to find in other industrial projects.

Not all projects assume closed and controlled variability model. Many projects
are organized in plugin architectures, where variability is managed dynamically
using extensions (for example Mozilla Firefox or Eclipse IDE). Our study does
not provide any insight into evolution of variability in such projects.

We only look at a fragment of the Linux evolution. We consider this fragment
to be relevant since it covers roughly 25% of 20 years long history of Linux. It
clearly gives us a glimpse into the evolution of a mature and stable product line.

Internal Validity. Extracting statistical data can introduce errors. We are relying
on our own infrastructure for automatic analysis of the Kconfig models. This
infrastructure uses the parser extracted from Linux tools, for improved reliability.
Also, we are reasonably confident about the quality of the infrastructure, given
that we have used it before in another study.

Extracting statistics based on release points may ignore essential information.
However we consider any serious fluctuations of our data rather unlikely, should
the experiments be carried out at the level of individual patches (partly because
our statistics are consistent with each other).

Git allows rewriting histories in order to amend existing commits, for example
to add forgotten files and improve comments. Since we study the final version of
the history, we might miss some aspects of the evolution that has been rewritten
using this capability. However, we believe that this is not a major threat, as
the final version is what best reflects the intention of developers. Still, we may
be missing some errors and problems appearing in the evolution, if they were
corrected using history rewriting. This does not invalidate any of our findings,
but may mean that more problems exist in practice.

We use an approximation in interpreting parent change operations above.
Manual classification of edits was feasible and reliable due to excellent com-

ments in Git logs for most of the patches. We increased the robustness of the
manual analysis by first running a study on 200 features to identify categories,
and then analyzing another set of 200 features selected with uniform probability.
An improved study would involve independent cross checking of results.

6 Related Work

The evolution of the Linux kernel between 1994 and 2000 was studied by God-
frey [11], which also found that the Linux architecture is mature and had been
growing in a super linear rate, due to growth of driver code. We have found
that 3578 patches that modify Kconfig files are driver related. Similarly, Israeli
[12] collected several software metrics of the Linux kernel source code from 1994
and 2008, and also observed the functional growth by counting features. Adams
studies the evolution of the Linux kernel build system [13] and finds that consid-
erable maintenance to the system is performed to reduce the build complexity,
that grows, partly due to the increase in number of features.

13

Svahnberg and Bosch [14] have studied the evolution of two real software
product lines, giving details on the evolution of the architecture and features,
closely related to implementation. They also found that the most common type
of changes to the product line is to add, improve or update functionality. Our
work, however focuses on the evolution of the model supporting the product line.

Extensive work [2, 7, 4] addresses issues relevant for detecting edits that break
existing configurations and product builds. In [2] an infrastructure is proposed
to determine if feature model edits increase, decrease or maintain existing con-
figurations. In [4] a catalog of feature model edits that do not remove existing
configurations is presented. Tartler et al. study the Linux kernel [7] and pro-
pose an approach to maintain consistency between dependencies in C code and
Kconfig.

Work on real case studies on moving to a software product line approach can
be found in [15–17]. They discuss techniques, processes and tool support needed
to make the transition. These works, like [14], focus on product line evolution,
not the model, but also suggest that tool support is essential.

7 Conclusion

To the best of our knowledge, this paper is the first to provide empirical evidence
of how a large, real world variability model evolves. We have presented the study
using the Linux kernel model as our case, collecting quantitative and qualitative
data. The following list summarizes the major findings of our work:

– The entire development process is feature driven. In particular the feature
model grows together with the code and it is being continuously synchronized
with the code. Also the code is systematically retired by eliminating features
(and the related implementation). Thus, Linux kernel is a prime example of
a mature large scale system managing variability using feature models.

– The model experiences significant growth, in number of features and size.
Nevertheless, the dependencies between features only grows linearly with
size: the number of features have doubled, but the structural complexity of
the model remained roughly the same, indicating a careful software architec-
ture which models features and their dependencies in a sustainable fashion.

– The purpose of most evolution activity is adding new features. The model
grows in the process, but only in the width dimension (as opposed to depth).
The second largest class of model manipulations are caused by the need to
reflect changes in dependencies in source code, in most cases, reactively. Most
of the changes at the macro-level are caused by hierarchy refactoring. Con-
straint refactoring is done for maintenance purposes and is also significant.

– To support evolution, tools should support use cases such as: eliminating fea-
tures with minimal impact on configuration space, refactoring constraints,
propagating dependencies from code to the feature model and tools that al-
low to manipulate hierarchy easily, while automatically adjusting constraints.

14

Finally, our investigation proves that maintaining large variability models is
feasible and does not necessarily deteriorate the quality of the model. In future
work we intend to work on some of the support tools mentioned above.

References

1. She, S., Lotufo, R., Berger, T., Wąsowski, A., Czarnecki, K.: The variability model
of the linux kernel. In: VaMoS, Linz, Austria (2010)

2. Thüm, T., Batory, D.S., Kästner, C.: Reasoning about edits to feature models. In:
ICSE. (2009) 254–264

3. Janota, M., Kuzina, V., Wąsowski, A.: Model construction with external con-
straints: An interactive journey from semantics to syntax. In: MoDELS. (2008)
431–445

4. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., de Lucena, C.J.P.: Refac-
toring product lines. In: GPCE. (2006) 201–210

5. Kästner, C., Apel, S.: Type-checking software product lines - a formal approach.
(2008) 258–267

6. Janota, M., Botterweck, G.: Formal approach to integrating feature and architec-
ture models. In: FASE. (2008) 31–45

7. Tartler, R., Sincero, J., Schröder-Preikschat, W., Lohmann, D.: Dead or alive:
finding zombie features in the linux kernel. In: FOSD. (2009) 81–86

8. Kroah-Hartman, G., Inc., S.L., Corbet, J., LWN.net, McPherson, A.: Linux kernel
development: How fast it is going, who is doing it, what they are doing, and who
is sponsoring it (2009)

9. Sincero, J., Schröder-Preikschat, W.: The linux kernel configurator as a feature
modeling tool. In: ASPL. (2008) 257–260

10. Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., German, D.M., Devanbu, P.:
The promises and perils of mining git. In: Mining Software Repositories. (2009)

11. Godfrey, M.W., Tu, Q.: Evolution in open source software: A case study. In: ICSM.
(2000) 131–142

12. Israeli, A., Feitelson, D.G.: The Linux kernel as a case study in software evolution.
Journal of Systems and Software (2010) 485–501

13. Adams, B., De Schutter, K., Tromp, H., De Meuter, W.: The evolution of the
Linux build system. ECEASST (2007)

14. Svahnberg, M., Bosch, J.: Evolution in software product lines: two cases. Journal
of Software Maintenance: Research and Practice (1999) 391–422

15. Dhungana, D., Neumayer, T., Grunbacher, P., Rabiser, R.: Supporting evolution
in Model-Based product line engineering. In: SPLC. (2008) 319–328

16. Hubaux, A., Heymans, P., Benavides, D.: Variability modeling challenges from the
trenches of an open source product line re-engineering project. In: SPLC. (2008)

17. Jepsen, H.P., Beuche, D.: Running a software product line - standing still is going
backwards. In: SPLC. (2009)

15

