
SmartFixer: Fixing Software Configurations based on
Self-adaptive Priorities

Bo Wang
Institute of Software

School of EECS
Peking University

bobowb@gmail.com

Leonardo Passos
Generative Software

Development Lab
University of Waterloo

lpassos@gsd.uwaterloo.ca

Yingfei Xiong
Institute of Software

School of EECS
Peking University

xiongyf@pku.edu.cn
Krzysztof Czarnecki

Generative Software
Development Lab

University of Waterloo
kczarnec@gsd.uwaterloo.ca

Haiyan Zhao
Institute of Software

School of EECS
Peking University

zhhy@sei.pku.edu.cn

Wei Zhang
Institute of Software

School of EECS
Peking University, China

zhangw@sei.pku.edu.cn

ABSTRACT
Large modern software systems are often organized as prod-
uct lines, requiring specialists to configure variability models
before delivering a product. Variability models capture both
the commonality and variability of different products, and
help detect the configurations errors. Existing approaches
can recommend fixes for the errors automatically. However,
the recommended fixes are sometimes large and complex,
and existing approaches lack guidance to help users identify
a desirable fix. This paper proposes an approach to pro-
vide such guidance using self-adaptive priorities. The basic
idea is to first generate one fix, and then gradually reach the
desirable fix based on user feedback. To this end, our ap-
proach (1) automatically translates user feedback into a set
of implicit priority levels on configuration variables, using
five priority assignment and adjustment strategies and (2)
efficiently generates potential desirable fixes by calculating
new values for the variables with low priority. The exper-
iments on real variability models show that we can reduce
up to 89% of the fixes, and up to 98% of the variables shown
to the user, compared to when no priorities are used.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Do-
main engineering

General Terms
Design,Algorithm

Keywords
Adaptive-Priority, Fixing, Configuration Error

SPLC ’13 Tokio, Japan

1. INTRODUCTION
Large modern software systems, such as enterprise resource
planning and operating systems, are often organized as prod-
uct lines, requiring specialists to configure a set of variables
before delivering a product. The configuration usually has
to satisfy various constraints, stemming from the application
domain and the underlying implementation. If a constraint
is not satisfied, the product may fail to compile, or worse,
may misbehave or crash at runtime. Without a proper de-
tection mechanism, satisfying all constraints is hard. On
the one hand, many systems are not well documented, and
thus the stakeholders often do not know all the constraints
existing on the system. On the other hand, the number of
variables and constraints can be very large. For example, op-
erating systems such as eCos and Linux contain thousands
of variables and constraints (Linux with over 6000 variables
and 10000 constraints; eCos with over 1000 variables and
1000 constraints) [15, 11, 2]. In such a setting, it is very
easy to miss some constraints during configuration. From
an analysis of 500 configurations of large scale software, Yin
et al. [19] finds that a significant percentage (27%) of user
reported issues are related to configuration errors.

To solve this problem, configurable software may use vari-
ability modeling languages and configuration tools (called
configurators). A variability modeling language allows de-
velopers to document the variables and constraints in a soft-
ware product line as a variability model, and the correspond-
ing configurator translates the variability model into an in-
teractive configuration interface, where an error will be re-
ported when a constraint is violated. Examples of variability
languages include Linux Kconfig,1 eCos CDL,2 and feature
models [8].

With variability modeling languages and configurators, we
can detect errors early. However, users still have to resolve
the errors, which is also not an easy task. The constraints
in variability models can be very complex and highly inter-

1http://kernel.org/doc/Documentation/kbuild/
kconfig-language.txt
2http://ecos.sourceware.org/docs-2.0/cdl-guide/
cdl-guide.html

connected. Berger et al. [2] report that a variable in the
Linux model can connect up to 56 other variables via its
constraints. Thus, it can be time-consuming and laborious
to analyze the constraints and figure out a solution. Hubaux
et al. [7] report that 20% of the Linux users sometimes need
“a few dozen minutes” to figure out a solution to satisfy
a violated single constraint. Furthermore, even if the user
has figured out a solution, he has to navigate to the corre-
sponding variables and make changes. As variability models
contain up to thousands of options, navigation is not easy.

To assist users in resolving errors, researchers have proposed
automated approaches that suggest a list of fixes for an error
[17, 18]. A fix is a set of changes that, when performed
on the configuration, resolve the current error. However,
the recommended fixes in these approaches are sometimes
large in number and size. Without proper guidance, it is
difficult for users to identify a desirable fix from such an
overwhelming list of fixes. For instance, Xiong et. al. [18]
report that fix lists for eCos configurations contain up to nine
fixes, and some fixes change up to nine variables (when using
the propagation strategy defined in [18]). In total, 17% of all
fix lists contain changes over more than 10 variables, which
can easily overwhelm the user. When faced with these fix
lists, users have to read through potentially large lists and
decide the most desirable fix.

We propose a novel approach to guide users in fixing vari-
ability model configuration errors based on self-adaptive pri-
orities. The basic idea is to first generate one fix, and
then to gradually reach the desirable fix based on user feed-
back. To this end, our approach (1) automatically translates
user feedback into a set of implicit priority levels on vari-
ables, using five priority assignment and adjustment strate-
gies and (2) efficiently identifies potentially desirable fixes
that change only the variables with low priorities. The pri-
orities are not exposed to the users, thus avoiding the poten-
tial burdens to them. The main contributions of the paper
are as follows:

• We introduce priorities to recommend fixes. The pri-
ority of a variable represents the likelihood of its cur-
rent value being desirable to the user. We first rec-
ommend fixes that change variables with less desired
values (variables with low priority). If users are not
satisfied, we update the fixes by including variables
with higher priority.

• We design a mechanism that dynamically adjusts the
priorities of the variables by translating feedback. Users
provide feedback by accepting and rejecting the changes
to individual variables in the fixes. Rejecting a change
to a variable means that the current value of the vari-
able is correct. Therefore, we increase the priority of
the variable. Users can use three rejection duration
scopes (durations, for short) namely, fix , error , and
permanent , to specify if the variables of the rejected
change can be changed in the future. Five strategies
are introduced to automatically translate the rejec-
tions and durations into priorities.

• We have implemented a tool, SmartFixer, and evalu-
ated our approach by fixing errors in configurations of

Figure 1: An error whose fix is an assignment change

five real variability models. For configurations with er-
rors that result in large fixes, on average, our approach
is able to reduce the number of fixes presented to the
user by 22% and reduce the number of variables pre-
sented to the user by 23%. Moreover, we are able to
reduce the number of fixes by a maximum of 89% and
the number of variables by a maximum of 98%.

In our previous work [12], we fix errors in variability mod-
els through manually assigning priorities to the constraints
in the variability models. This paper is inspired by such
work. This paper focuses on fixing configuration errors, and
introduces the self-adaptive mechanism to assign priorities
automatically.

The rest of this paper is organized as follows: Section 2
defines the terminologies used throughout the paper. Sec-
tion 3 gives an overview of our approach and illustrates it
with an eCos example. Section 4 describes how we recom-
mend fixes and assign and adjust priorities automatically.
Section 5 provides an overview of our implemented tool—
SmartFixer. Section 6 evaluates how well our approach
works, when compared with existing proposals. Section 7
discusses the threats to validity of our evaluation. Section 8
describes related work. Section 9 concludes the paper and
highlights future work.

2. BACKGROUND
We use eCos-based projects to illustrate and evaluate our ap-
proach. eCos is a configurable embedded operating system.
To capture the rich variability of the different target hard-
ware to which the operating system can be deployed, eCos
relies on variability models encoded in CDL (Component
Definition Language), a domain-specific language created
as part of the eCos build infrastructure. In projects that
rely on such infrastructure (eCos-based projects), the con-
figuration process is supported by means of a graphical con-
figurator: the eCos configtool. When no confusion arises,
we refer to eCos configtool as eCos for short. In eCos, an
error is reported when the user configuration violates a con-
straint. Figure 1 shows an error reported by eCos, where
the Property column shows the violated constraint.

Existing approaches provide fixes for configuration errors. A
fix consists a set of changes. A change is a re-assignment for
a variable. Executing a fix will set new values to variables,
thus removing errors. For instance, setting PowerPC HAL to
"405" fixes the error shown in Figure 1. eCos has a built-in
fix generator that provides users with at most one fix for a
given error. Xiong et al. [18] report that the generated fixes
are incomplete, and propose a new fix generation algorithm
to overcome the problem.

3. APPROACH OVERVIEW
Our approach relies on assigning priorities to variables. The
priority of a variable represents the likelihood of its current

value being desirable to the user. If a fix tries to change a
variable and the user rejects this change, the current value
of the variable is more likely to be a desirable one. When-
ever the user rejects a change, we adjust the priority of the
variables in that change.

There are two basic ideas in our approach:

1. Identify fixes that only change variables with less de-
sired values (i.e., variables with low priority).

2. Dynamically adjust the priority of variables through
implicit translation of user feedback.

Adjust Priorities Recommend a Fix Provide Feedback
Input:

An Error

Figure 2: The interactive fixing process for an error

These two basic ideas are reflected in the fixing process, as
shown in Figure 2. Users first choose an error to fix. Our
approach recommends a potentially desirable fix for that
error, according to variables’ current priority. Users exam-
ine the recommended fix and provide feedback by accepting
and rejecting changes. We translate such feedback into pri-
orities, adjust them accordingly and identify an improved
fix for users. This interactive fixing process continues until
users accept the recommended fix. Next, we illustrate this
iterative fixing process with a concrete example taken from
ReconOS,3 an open source eCos-based project.4

Example.
Our example is based on an error in a real world configura-
tion. Xiong et al.’s approach [18] generates five fixes: four
of the fixes contain four changes; one fix contains two. Here
is one of the fixes, containing four changes:
1. POSIX timers = false;

2. POSIX message queues = false;

3. POSIX signal configuration = false

4. Allow empty queue notification = false

Recommend a potential desirable fix.

When generating potential desirable fixes, we set a threshold
to confine the fix generation scope. Only the variables whose
priorities are under the threshold can be changed to fix the
error. Our approach identifies a fix for these changeable
variables. If no fixes can be found under the current thresh-
old, we increase the threshold and identify a new fix. For
each error, we initially set the threshold to 0. The threshold
realizes the first basic idea, and it decreases the number of
variables in the fixes.

For example, suppose the priority of “POSIX timers” is 2.
If the threshold is 1, this variable is unchangeable under
the current threshold. Hence, our identified fixes do not
propose changes for this variable, i.e., the example fix would

3http://reconos.de/
4Due to space limit, we pick an error that only needs
Boolean assignment changes. Our approach also supports
errors that need non-Boolean changes.

not be generated. If the priority of all the variables in the
five changes is 2, and the threshold is 1, no fixes can be
generated. In this case, we increase the threshold by 1 (i.e.,
to 2), and generate another fix.

Provide feedback and adjust priorities.

After a fix is recommended, the users provides feedback to
each change in the fix.

When users are satisfied with a change in the proposed fix,
they can accept the change.

When the user is not satisfied with a change, they can reject
the change with three different durations:

• fix . The fix duration means that the current change
proposed by the fix should be rejected, but future fixes
can still propose changes for the related variable. For
example, suppose that there exists an integer variable
whose current value is 1, and a fix proposes to change
its value to 10. If the user does not want to change the
variable to 10 but considers it changeable to a smaller
value, he should choose fix duration. As another ex-
ample, in our example fix, if the user believes that
selecting “POSIX message queues” is correct, but still
wants to allow the option of assigning “false” in the
future, he can reject the second change with fix dura-
tion.

• error . The error duration means that the current
value of the variable is correct and should not be mod-
ified until the error is fixed. For example, if the user
thinks the “POSIX signal configuration =true” is cor-
rect, and does not want any fix to change its value
while fixing the current error, he can reject the fifth
change with error duration.

• permanent . The permanent confirmation means that
the current value of the variable is always correct and
should not be modified during the whole configuration
process. For instance, if users believe “POSIX signal
configuration” should always be true, they can reject
the third change with permanent duration.

We automatically assign and adjust the priorities of the re-
jected and accepted variables, according to five strategies
(see section 4.2). When the error is not fixed, we generate
another potential fix based on the new priority.

Constructing priority hierarchy.

When an error is fixed, the dynamically adjusted priorities
are stored for future fix generation. These priorities serve as
the basis for generating potentially desirable fixes.

For instance, suppose that during the process of fixing the er-
ror in our example, the priority of variable “POSIX message
queues”, “POSIX signal configuration” and “POSIX signal
configuration” is increased. When we need to fix another er-
ror, which could be achieved by changing the value of these
three variables, we do not include these three variables if
their priorities is greater than the current threshold.

Handling no fix.

When some of the variables are rejected with error and per-
manent duration, they cannot be included in any fix during
the fixing process for the current error. This may lead to
the situation where no fix is generated. If this happens,
we provide the user with a list of variables with error and
permanent duration, and ask him to change the values, du-
rations or both. After users have changed the durations, we
identify a new fix for them.

4. RECOMMENDING FIXES BASED ON SELF-
ADAPTIVE PRIORITIES

4.1 Fix recommendation
Our fix recommendation approach requires integrating with
an existing fix generator. For integration purposes, we only
require the fixer to take an error, a set of constraints, a set
of variables, and a set of assignments to those variables, and
produce a set of fixes as output.

In our approach, when there is a variable v whose prior-
ity is higher than the current threshold, we create a new
constraint v = x, where x is the current value of v. These
created constraints, together with the original constraints in
the variability model, are given to the fix generator. In this
way we ensure that the variables with a higher priorities are
not changed by the generated fixes.

From the set of returned fixes, we randomly select one and
present it to the user; as our evaluation shows, randomizing
the fix selection already gives satisfactory results. In future,
we aim to study alternative selection strategies such as se-
lecting the one changing the smallest number of variables.

4.2 Automatic priority assignment and adjust-
ment

In our approach, we provide five strategies to assign and
adjust priorities:

Strategy 1: The priorities of the variables with newly
assigned values are set to 0.

If a variable is assigned with a new value, no change has
been rejected since the variable was given its new value.
Therefore, we set the priority to 0. In that case, we also
reset the threshold to be 0, since we should re-attempt to
find fixes involving only variables with priority zero. From
this, the whole fixing process restarts, and other variables
with priorities greater than 0 will appear as the threshold
increases along the way. In our approach, before any error
fixing process begins, the priority of all the variables are set
to 0.

Strategy 2: When a variable is rejected with fix duration,
add 1 to its current priority.

If a variable is rejected with fix duration, we increase its pri-
ority by 1. When the threshold increases and is higher than
the variable’s priority, future fixes can include this variable.

Strategy 3: When a variable is rejected with error dura-
tion, set its priority to (threshold+1).

If a variable is rejected with duration error , it should not be
included in any fixes during the fixing process of the current
error. Therefore, we set its priority to (threshold+1). If the
threshold increases, we also update priority of the variables
with error duration.

Strategy 4: When a variable is rejected with perma-
nent duration, set its priority to <MAX>.

If a variable is rejected with duration permanent , it should
not be included in any fixes during the configuration process.
Therefore, we set its priority to <MAX>. <MAX> represents
the highest priority. Therefore, no fixes can include such
variables.

Strategy 5: If the duration of a variable is reset from
error or permanent duration to fix duration, set its priority
to 0.

Variables with error and permanent durations may cause
no fixes. Users change their durations to fix to allow these
variables back to future fixes, regardless of the threshold
value. In this case, we set their new priority as 0.

To better explain how we adjust priority and identify the
desirable fix, we give the pseudo code to explain the main
points in our approach.5

5. IMPLEMENTATION
We have implemented the proposed self-adapted priorities
strategy as an extension to the eCos configurator.6 In par-
ticular, our implementation replaces eCos built-in conflict
support, which might provide users with incomplete fixes.
The process described in Section 3 is realized in the follow-
ing GUIs (see Figure 3a): users are first presented with a
list of errors (GUI-1), from which they can select one to
solve. Based on priorities and on the results returned by
the underlying fixer, we produce a potentially desirable fix,
which is then presented to the user (GUI-2). Users might
then accept the fix, or provide the tool with some feedback
on the proposed changes. By expanding a conflict, users
have a fine-grained control of which changes should be ac-
cepted or rejected. It is also possible that a user fully rejects
all changes, or chooses a certain rejection duration. In all
cases, priorities are updated properly. In case no fix exists
and the error persists, we ask the user to review past re-
jections. In Figure 3b, the user has changed the value of a
variable, which automatically sets the duration to be empty
(N/A), since the new value has never been rejected before.
In addition, the user has also changed a duration from error
to fix.

In our current implementation, we rely on eccFixer7 as the
backend fixer. eccFixer can generate complete sets of fixes
for errors that may occur in the configuration of CDL vari-
ability models [18]. Since we validate our approach over such
models, eccFixer is a suitable fixer for integration. Moreover,
eccFixer supports non-Boolean constraints, which often ap-
pear in CDL models [11].

5http://gsd.uwaterloo.ca/node/382
6https://code.google.com/p/smart-fixer/
7http://gsd.uwaterloo.ca/eccfixer

1

2 3

(a) SmartFixer: Interactive process GUI for fix resolution

(b) SmartFixer: Review of previously assigned values and durations

Figure 3: SmartFixer GUI

6. EVALUATION
We present our evaluation using data from four open source
projects whose variability models are encoded in CDL. In
our evaluation, we compare our results with those obtained
from eccFixer. The characteristics of each variability model
are shown in Table 1.

In CDL, two types of constraints might cause errors: re-
quires and legal-values. Requires constraints impose con-
ditions among variables that depend on each other. Legal
value constraints restrict valid values a variable may assume,
as determined by its specified domain. eCos allows incorrect
values to be assigned to variables, but it warns users that
such values violate the domain of the given variable. Our
analysis concerns only requires constraints, as users are un-
likely to provide values that do not conform to a variable’s
domain.

We rely on these projects as evaluation subjects for two rea-
sons. First, they contain real-world variability models tar-
geting different requirements. For instance, Talktic8 is a
tiny virtual machine for Atmel Micro Computer; ReconOS9

is an operating system for reconfigurable hardware; red-
boot4lpc10 is a port of the Redboot11 system boot monitor
to ea2468 architecture; and gps4020 is the target architec-
ture for the GPS system developed as part of the Portland
State Aerospatial Society12. All these projects are based on
eCos as their operating system. Second, these projects were

8http://code.google.com/p/talktic/
9http://reconos.de/

10http://github.com/laltrasponda/redboot4lpc
11http://sourceware.org/redboot/
12http://psas.pdx.edu/

used in the evaluation of eccFixer, thus allowing a direct
comparison of results.

The evaluation simulates the configuration process from an
initial configuration, which already contains errors (Table 1),
to a final consistent configuration of each project. The ini-
tial configurations were obtained in each project repository.
The final configurations were obtained from the experimen-
tal data that the creators of the eccFixer made publicly avail-
able.13 Figure 4 presents the intuition behind our evaluation
procedure. The top timeline concerns results generated by
eccFixer; the bottom one represents the application of our
approach.

The procedure starts by randomly choosing an error to solve,
given the initial configuration. Next, we request eccFixer to
calculate a fix list FL1, from which we randomly choose a
fix. We then simulate the decisions users are likely to make
in the interactive process. One interactive process concerns
only one error. While in the interactive process, several
iterations may occur, each concerning a single fix. In each
iteration, users provide feedback for the proposed changes of
a fix. In each iteration of an interactive process in Figure 4,
we simulate the user decisions that provide feedback for one
specific fix. In case the selected error is not removed after
an iteration, we call eccFixer to generate a new fix list ac-
cording to the current priorities of variables and associated
values. From it, we randomly choose a fix, and a new itera-
tion starts. For each interactive process in our timeline, we
keep track of how many variables each randomly proposed
fix contained (nvars), along with the number of fixes (fls)
users have been exposed to. Since in each iteration we only

13http://gsd.uwaterloo.ca/eccfixer

Project Architecture Variables Constraints Errors (initial conf.)
ReconOS virtex4 933 330 56

xilinx 765 272 48
redboot4lpc ea2468 658 96 8
Talktic aki3068net 817 195 26
PSAS gps4020 535 85 12

Table 1: Characteristics of variability models of each project

t1 t(2+n1)

. . .

tf

consistent

interactive
process 1

(n1 iterations)

FL1 FL(2+n1)

. . .
FLf

eccFixer

SmartFixer

interactive
process k

(nk iterations)

<nvars1, fls1>

f = k+n1+...+n(k-1)

<nvarsf, flsf>

t1 t(2+n1) tf

Figure 4: Evaluation procedure

propose one fix, fls is equal to the number of iterations used
in resolving the error.

After n1 iterations, the error is resolved, and our timeline
reaches time t2+n1. In that case, we compare the final val-
ues of fls1 and nvars1 with the fix list size of FL1 and the
number of variables it contains. If there are others errors,
the whole process is repeated until the configuration reaches
a consistent state at time tf .

Before describing the simulation process, we define range
fixes. Range fixes are a generalization of concrete fixes,
which eCos and some other fix generation algorithms use.
A range fix is a set of changes (called fix units in [18]) that
remove an error. A fix change can be of two types: an as-
signment or a range change [18]. An assignment change
a := c contains only one variable and c is a constant, such
as "405" in the previous example. A range change vars : exp
may change a set of variables vars, and exp is a logic expres-
sion defining the ranges of the variables. For instance, the
violated constraint shown in Figure 5 can be fixed by this
range change: Node pool size : Node pool size ≥ 18.
Range changes are important in the context of eCos, be-
cause CDL has support for numeric variables and a rich set
of arithmetic operators [11]. In the rest of the paper, we will
refer to a range fix as a fix for short.

The simulation of user decisions in the interactive process is
performed by first handling fix changes with a single vari-
able, only then inspecting fix changes with two or more vari-
ables. In fix changes with a single variable, two situations
may occur:

1. if there exists an assignment change of the form a :=

Figure 5: An error whose fix is a range change

vfix, and a is currently set to vc, and the variable has
value vf in the final configuration, three situations
might occur: (a) vfix = vf and vc 6= vf : we accept the
change; (b) vfix 6= vf and vc = vf : we reject the fix and
set its duration to error, thus capturing a possible un-
certainty of users not being totally confident whether
the current value should stand throughout the configu-
ration process; (c) vfix 6= vf and vc 6= vf : we reject the
fix and set its duration to fix. Since the value of the
feature still has not yet converged to its final value, a
fix duration guarantees that new fixes for that variable
will continue to be proposed.

2. As in the previous situation, we also have three cases
to cover range changes with one variable. The only
difference is checking whether the final value vc is in
the proposed range change.

After all changes with one variable have been processed, we
inspect the ones with two or more variables. In these cases,
the type of change can only be range change. We check
whether the values in the final configuration are within the
range of the change. For example, given a change (a; b) : a
> b + 2, we replace a and b with their associated values in
the final configuration, and then check if a > b+2 holds. If
the final values are within the range, we accept the change,
and all variables receive their associated values in the final
configuration. Otherwise, the change is rejected, and the
duration is set to fix.

Note that in all situations we set the durations in a conser-
vative way, which do not favor our algorithm.

The two metrics we used in our experiment, namely fix list
size and the total number of variables in all proposed fixes,
allow us to assess how much cognitive effort is required from
users: if more fixes are presented, users have to inspect each
of them to make a sound decision; having more variables to
inspect in any given fix also increases such effort. Figure 6a
constrasts the size of proposed fix lists (y-axis) obtained for
each error (x-axis) in the virtex4 configuration. Note that
the fix list size for SmartFixer is the fls value which we have
defined, showing how many fixes the user has been exposed
in all iterations resolving an error, equal to the number of
iterations used in resolving an error. The number of fixes
is decreased in ≈ 31% of the errors. In average, there is a
reduction of ≈ 22%, with a maximum reduction of 89% in
the number of fixes (see errors 16, 19, 25 and 29). Each
decrease in the fix list size is accompanied by a reduction on
the number of variables to inspect, as shown in Figure 6b. In
average, the total number of variables is decreased by ≈ 23%
in average, with a maximum reduction of ≈ 98% (see error
25). For xilinx, the number of fixes is decreased in ≈ 28% of
the errors. In average, there is a reduction of ≈ 16%, with a

maximum reduction of 2/3 in the number of fixes (see errors
10, 13, 14, 30, 33 and 37). The total number of variables is
decreased by ≈ 18% in average, with a maximum reduction
of ≈ 86% (see errors 30, 33 and 37).

For the other three architectures, the fix lists generated by
eccFixer are already short. Our approach further reduces
these fix lists. However, we do not notice significant reduc-
tion. For the complete results, refer to our project web page
14.

These results suggest that the proposed self-adaptive prior-
ities perform better than eccFixer when there is a fix list
with more than one variable and previous fixes were already
proposed and contained such variables, for which the user
provided some feedback. Saving such feedback in the form
of priorities and associating them with these variables allows
us to effectively eliminate the shortcomings of fixers gener-
ating complete sets of fixes by reducing the number of fixes
and related variables presented to the user.

7. THREATS TO VALIDITY
Our first threat is that we restricted our analysis to projects
whose variability models are encoded in CDL. We claim,
however, that CDL is one of the richest languages for vari-
ability modeling currently available, supporting a rich set
of operators and constraints [11]. Existing research already
confirms this: in a comparison of CDL, Linux Config Lan-
guage, and feature models, Berger et. al. shows that CDL
specifications are more complex in the type of constraints
and operators involved [2]. We therefore believe that this
is a minor threat and should not prevent the generalization
of our approach to other variability modeling languages and
their configurators.

Another threat is that other domains may have variability
models with other characteristics. One such characteristic
is the cross-tree constraint ratio (CTRC), which is the per-
centage of variables of a model that participate in its cross-
hierarchy constraints. The CRTC is a key characteristic de-
termining the hardness of finding a configuration satisfying
the model constraints [10]. Berger at al. [2] have shown that
the eCos model has higher CTCR than the feature models
collected in the popular SPLOT 15 repository. Thus, we be-
lieve that the approach will work for a wide range of models.

The third threat regards our experimental procedure. At
each time a decision has to be made, we use the values from
the final configuration to guide our decision. It is not clear,
however, to which extent users know what the final con-
figuration should be. We also made conservative choices
regarding durations. It is not clear which durations users
would choose. However, our choices do not favor our algo-
rithm. We aim to address these issues in the near future
by conducting studies with experienced users in industrial
settings.

8. RELATED WORK
Several approaches have been proposed to generate fixes for
configuration errors. In the eCos configurator [16], an inter-

14https://code.google.com/p/smart-fixer/
15http://www.splot-research.org/

nal fix generator recommends a fix online when a configura-
tion error is detected. However, no completeness property is
guaranteed for the generated fixes. White et al. [17] adopt
constraint solvers for fix generation, enabling the generation
of minimal or cost-optimal fixes. However, this approach
still generates only one fix per configuration. Xiong et al.
[18] propose the concept of range fix, and further incorpo-
rate Reiter’s theory of diagnosis to generate a complete set
of fixes rather than one fix. Our approach builds on top of
the fix generation approaches, but we further introduce pri-
orities to break large fix lists into small, guided steps so as
not to overwhelm users.

Priorities have been previously used to resolve errors. The
constraint hierarchy theory [3] and the SkyBlue algorithm
[13] assign fixed priorities to constraints, and automatically
resolve any error by disabling constraints with low priori-
ties. Based on SkyBlue, Wang et al. [12] propose an ap-
proach to automatic resolution of errors in feature model
construction. In [12], the priorities of constraints are as-
signed manually by users. Our approach focuses on the
varibility model configurations, and the priorities of vari-
ables are assigned through automatically interpreting the
feedback from users. Another similar approach is Junker’s
QuickXplain algorithm [14]. This algorithm assumes a total
order over constraints, and disables the smaller constraints
to resolve errors. Felfernig et al. [5] applies QuickXplain to
configuration knowledge bases so as to explain and resolve
configuration errors. A common characteristics of all these
approaches is that the priorities are static; no change to the
priority will occur once assigned. On the other hand, the
priorities in our approach are dynamic and automatically
adjusted based on user feedback. Thus, our approach allows
us to incorporate user feedback adaptively.

Apart from error resolution, another direction is to avoid
errors. Czarnecki et al. [4] propose staged feature model
configuration. A staged configuration divides the configura-
tion process into several steps, and in each step only a small
portion of variability model is exposed to the user. As the
user is not exposed to a large model, the possibility of in-
troducing error is reduced. Another branch of approaches
is valid domain computation [6, 1, 9]. These approaches as-
sume that all variables start with an unknown state. When
the value of a variable is determined by other variables dur-
ing the configuration, the configurator automatically sets
these variables. In this way, no error can be introduced in
configuration. Different from these approach, our approach
assumes that errors can be introduced, and focuses on how
to resolve errors. This setting has practical value as many
real world configurators rely on the reconfiguration scenario,
where users freely modify a complete initial configuration,
either default one or one loaded form disk [2].

9. CONCLUSION AND FUTURE WORK
We have proposed a self-adaptive priority based approach
to help users identify their desirable fixes efficiently. We de-
fine the priority and assign it based on the user feedback.
For every error, we identify a potential desirable fix from
the variables lower than the threshold. Then users provide
feedback through three types of durations. This feedback
is translated into priorities. If no more fixes can be found
under the current threshold, we increase the threshold to

(a) Fix list size
(the fix list size (fls) of SmartFixer is all fixes exposed to the user in resolving an error, equal to the number of
iterations used in resolving the error)

(b) Number of variables

Figure 6: Experimental results for virtex4

generate new fixes. When no fixes are generated, caused
by having variables with error and permanent durations,
we ask users to change durations or values or both. With
errors fixed, we construct a priority hierarchy, which will de-
crease the size of the fixes for the following errors. We also
successfully implemented our idea on the eCos configurator,
extending it with SmartFixer. We have evaluated our ap-
proach on real variability models and configurations. The

results show that we can reduce up to 89% of the fixes, and
up to 98% of the variables presented to the user, compared
to when no priorities are used. Our idea is not bound to any
existing fix generator. In future work, we plan to evaluate
this approach in user experiments; currently we don’t know
whether a user typically has the idea of priority or not, nor
do we know if the invisibility of priorities causes problem to
the user.

(a) Fix list size

(b) Number of variables

Figure 7: Experimental results for xilinx

10. REFERENCES
[1] D. S. Batory. Feature models, grammars, and

propositional formulas. In J. H. Obbink and K. Pohl,
editors, SPLC, volume 3714 of Lecture Notes in
Computer Science, pages 7–20. Springer, 2005.

[2] T. Berger, S. She, R. Lotufo, A. Wasowski, and
K. Czarnecki. Variability modeling in the real: a
perspective from the operating systems domain. In
C. Pecheur, J. Andrews, and E. D. Nitto, editors,
ASE, pages 73–82. ACM, 2010.

[3] A. Borning, B. N. Freeman-Benson, and M. Wilson.
Constraint hierarchies. Lisp and Symbolic
Computation, 5(3):223–270, 1992.

[4] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged
configuration through specialization and multilevel
configuration of feature models. Software Process:
Improvement and Practice, 10(2):143–169, 2005.

[5] A. Felfernig, G. E. Friedrich, D. Jannach, and
M. Stumptner. Consistency-based diagnosis of
configuration knowledge bases. pages 146–150, 2000.

[6] T. Hadzic, S. Subbarayan, R. M. Jensen, H. R.
Andersen, J. Møller, and H. Hulgaard. Fast
backtrack-free product configuration using a
precompiled solution space representation. In PETO,
pages 131–138. DTU-tryk, 2004.

[7] A. Hubaux, Y. Xiong, and K. Czarnecki. A user
survey of configuration challenges in linux and ecos. In
VaMoS, 2012.

[8] K. Kang, S. Cohen, J. Hess, W. Novak, and
S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, Nov. 1990.

[9] M. Mendonca. Efficient Reasoning Techniques for

Large Scale Feature Models. PhD thesis, University of
Waterloo, 2009.

[10] M. Mendonça, A. Wasowski, and K. Czarnecki.
Sat-based analysis of feature models is easy. In 13th
International Conference on Software Product Lines
(SPLC 2009), San Francisco, CA, USA, 2009.

[11] L. T. Passos, T. Berger, M. Novakovic, K. Czarnecki,
Y. Xiong, and A. Wasowski. A study of non-boolean
constraints in variability models of an embedded
operating system. In I. Schaefer, I. John, and
K. Schmid, editors, SPLC Workshops, page 2. ACM,
2011.

[12] D. C. Petriu, N. Rouquette, and Ø. Haugen, editors.
A Dynamic-Priority Based Approach to Fixing
Inconsistent Feature Models, volume 6394 of Lecture
Notes in Computer Science. Springer, 2010.

[13] M. Sannella. SkyBlue: A multi-way local propagation
constraint solver for user interface construction. In
ACM Symposium on User Interface Software and
Technology, pages 137–146, 1994.

[14] M. Schubert, A. Felfernig, and M. Mandl. Fastxplain:
Conflict detection for constraint-based
recommendation problems. In N. Garćıa-Pedrajas,
F. Herrera, C. Fyfe, J. M. Beńıtez, and M. Ali,
editors, IEA/AIE (1), volume 6096 of Lecture Notes in
Computer Science, pages 621–630. Springer, 2010.

[15] S. She, R. Lotufo, T. Berger, A. Wasowski, and
K. Czarnecki. The variability model of the Linux
kernel. In VaMoS, pages 45–51, 2010.

[16] B. Veer and J. Dallaway. The eCos Component
Writer’s Guide. ecos.sourceware.org/docs-2.0/cdl-
guide/cdl-guide.html,
2001.

[17] J. White, D. C. Schmidt, D. Benavides, P. Trinidad,

and A. R. Cortés. Automated diagnosis of
product-line configuration errors in feature models. In
SPLC, pages 225–234. IEEE Computer Society, 2008.

[18] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki.
Generating range fixes for software configuration. In
ICSE, 2012.

[19] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N.
Bairavasundaram, and S. Pasupathy. An empirical
study on configuration errors in commercial and open
source systems. In proceedings of the 23rd ACM
Symposium on Operating Systems Principles
(SOSP’11), 2011.

