
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2010; 40:825–847
Published online 8 July 2010 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.985

Visualizing and exploring profiles with calling context ring charts

Philippe Moret1,∗,†, Walter Binder1, Alex Villazón2, Danilo Ansaloni1

and Abbas Heydarnoori1

1University of Lugano, Lugano, Switzerland
2Centro de Investigaciones de Nuevas Tecnologı́as Informáticas (CINTI), Universidad Privada Boliviana (UPB),

Cochabamba, Bolivia

SUMMARY

Calling context profiling is an important technique for analyzing the performance of object-oriented
software with complex inter-procedural control flow. The Calling Context Tree (CCT) is a common data
structure that stores dynamic metrics, such as CPU time, separately for each calling context. As CCTs
may comprise millions of nodes, there is a need for a condensed visualization that eases the localization
of performance bottlenecks. In this article, we discuss Calling Context Ring Charts (CCRCs), a compact
visualization for CCTs, where callee methods are represented in ring segments surrounding the caller’s
ring segment. In order to reveal hot methods, their callers, and callees, the ring segments can be sized
according to a chosen dynamic metric. We describe two case studies where CCRCs help us to detect and
fix performance problems in applications. A performance evaluation also confirms that our implementation
can efficiently handle large CCTs. Copyright q 2010 John Wiley & Sons, Ltd.

Received 22 October 2009; Revised 21 April 2010; Accepted 22 April 2010

KEY WORDS: calling context profiles; Calling Context Tree (CCT); Calling Context Ring Charts
(CCRCs); visualization; dynamic metrics

1. INTRODUCTION

Currently, software systems have become more and more complex as they may comprise many
different components from various sources. Consequently, understanding the whole software system
has become more challenging for application developers, and pure static program analyzes have
become less effective [1]. As a result, program profiling techniques are widely used by application
developers to collect information about the behaviors of programs at runtime [2]. This information
can be used for instance to identify algorithmic bottlenecks or inefficient code [3]. A large body
of work exists that benefits from profiling techniques in program comprehension tasks such as
debugging [4–6], testing [7, 8], reverse engineering [9, 10], and optimizing software systems [11].

Calling context profiling is a common profiling technique that yields dynamic metrics separately
for each calling context, such as the number of method invocations or the CPU time spent in a
calling context. A calling context is a sequence of methods that were invoked but not yet completed;
that is, a calling context corresponds to the methods represented on the call stack at some moment
during program execution. Calling context profiling is powerful since it helps us to analyze the
dynamic inter-procedural control flow of applications. This technique is particularly important for

∗Correspondence to: Philippe Moret, Faculty of Informatics, University of Lugano, CH-6900 Lugano, Switzerland.
†E-mail: philippe.moret@usi.ch

Copyright q 2010 John Wiley & Sons, Ltd.

826 P. MORET ET AL.

understanding and optimizing modern object-oriented software, where polymorphism, dynamic
binding, and reflection often hinder static analysis approaches.

The Calling Context Tree (CCT), which was first introduced by Ammons et al. [3], is the
prevailing data structure for representing calling context profiles. Each node in the CCT corresponds
to a calling context and stores the measured dynamic metrics for that calling context; it also
refers to a unique identifier of the method in which the metrics were collected. The parent of
a CCT node represents the caller’s context, whereas the children nodes correspond to the callee
methods. If the same method is invoked in distinct calling contexts, the different invocations are
represented by distinct nodes in the CCT. In contrast, if the same method is invoked multiple times
in the same calling context, the dynamic metrics collected during the executions of that method
are stored in the same CCT node. Hence, by distinguishing dynamic metrics for each distinct
calling context, the CCT provides detailed information about the dynamic program behavior which
is required in many software engineering areas including profiling [3], debugging [4], testing
[8] or reverse engineering [9]. There is a large body of work dealing with various techniques
to generate CCTs [2, 3, 12–16], highlighting the importance of the CCTs for calling context
profiling.

The prevailing techniques for generating CCTs typically illustrate them in the form of expandable
rooted trees [17]. However, CCTs can become quite large, sometimes comprising millions of
nodes. Moreover, the depth of CCTs can be high such that CCTs with 50–400 layers are common
in practice. In this situation, navigating and exploring CCTs for a particular dynamic metric of
interest (e.g. locating invocations of a particular method in various calling contexts) can be quite
cumbersome when a simple expandable tree representation is used, and hence, better visualization
techniques are required.

Visualizing hierarchical structures is an important area in the information visualization commu-
nity that aim to provide better representations of hierarchical structures with enhanced navigation
capabilities [18, 19]. One main category of these techniques are radial approaches [18] that illus-
trate hierarchical structures in circular patterns. Previous research has shown that these techniques
are quite effective in aiding the users in exploring hierarchical structures [20, 21]. With respect
to this discussion, this article introduces Calling Context Ring Charts (CCRCs) [22] as a way
of visualizing and exploring CCTs. In a CCRC, the CCT root is represented as a circle in the
center. Callee methods are represented by ring segments surrounding the caller’s ring segment.
With CCRCs, it is possible to display all calling contexts of a CCT in a single chart, preserving
the caller/callee relationships conveyed in the CCT. For a detailed analysis of certain calling
contexts, CCT subtrees can be selected to be visualized separately and the tree depth can be
limited.

Currently, CCRCs support three different kinds of visualizations [22]. First, for each caller,
the ring segments of the callees have the same size and completely surround the caller’s ring
segment. While this representation eases the analysis of caller/callee relationships, it does not
convey any information about dynamic metrics collected within different calling contexts. In the
second visualization, the angle covered by each ring segment is proportional to the contribution
of the corresponding calling context to a chosen dynamic metric, relative to the respective caller’s
contribution. For example, if CPU time is chosen as metric, this representation reveals the invoked
hot methods, for each calling context. While in the first and second visualizations the width of
each layer in the ring chart is the same, the third representation continuously reduces the width of
outer layers such that the area occupied by each ring segment is proportional to the overall metric
contribution of the corresponding calling context.

This article complements the above three visualizations with four tree manipulation operations on
the CCT: subtree selection and depth limitation for handling large CCTs; recursion elimination to
remove CCT nodes representing recursive calls; and, dynamic metric aggregation to determine the
overall metric contribution of each method. We provide three implementations of the above CCRC
visualizations and these tree manipulations based on JavaScript, Java Swing, and Eclipse SWT. We
also report on two case studies where CCRCs have been successfully applied to locate performance
problems in two different applications (a lexical analyzer generator and a cryptography library),

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

VISUALIZING AND EXPLORING PROFILES 827

which were optimized afterwards. These case studies are complemented with a performance
evaluation on visualizing the CCTs resulting from the execution of the DaCapo benchmarks [23]
for Java, confirming that our implementation can efficiently handle large CCTs.

In summary, this article presents (1) an introduction to CCRCs and the use of radial visualization
techniques to represent the hierarchical structures of calling context trees, (2) an introduction to
four tree manipulation operations on CCTs, (3) three implementations of the CCRC visualizations
and tree manipulation operations, (4) two case studies where CCRCs were successfully applied to
find performance issues in two different applications, which were optimized afterwards, and (5) an
evaluation that confirms that our implementation can efficiently handle large CCTs. With respect
to the earlier versions of the work that were presented in [22] and [24], the novel contributions of
the article are in the items (2), (4), and (5).

The remainder of this article is organized as follows: Section 2 presents some background
information about the CCT. Section 3 shows the three types of CCT visualizations supported by
CCRC, while Section 4 discusses our various tree manipulation operations. Section 5 describes
our implementations and Section 6 presents the two case studies. Section 7 discusses the results of
our performance evaluation. Section 8 compares CCRCs with related work, and finally, Section 9
concludes.

2. BACKGROUND: THE CALLING CONTEXT TREE (CCT)

The Calling Context Tree (CCT) [3] is a popular data structure for representing calling context
profiles at runtime. Each node in the CCT corresponds to a calling context and stores the measured
dynamic metrics for that particular calling context. The CCT does not restrict which and how
many dynamic metrics are stored in the tree nodes. The common metrics include the number of
method invocations, the CPU time, the number of cache misses, the number of object allocations
or the amount of allocated memory.

For some metrics M , it is useful to consider also the aggregated metrics ag(M) for subtrees of
the CCT, in order to explore the overall costs of method executions, including the costs incurred
by all direct and indirect callees. In other words, for each CCT node n, ag(Mn) is computed as
the sum of the metric values Mx of all nodes x in the CCT subtree rooted at node n. Aggregated
metrics are usually not stored in the CCT nodes, but are computed on demand. For instance,
for a given CCT node n, the metric CPUn shows the CPU time spent executing the instructions
within the body of the method mn represented by the node n, excluding the CPU time spent in
callees of mn . In contrast, the metric ag(CPUn) gives the overall CPU time spent in the calling
context corresponding to node n and in all callees. Common metrics where aggregation for subtrees
helps locate performance problems include the CPU time spent in a calling context or the amount
of memory allocated in a calling context. Some other metrics, such as the number of method
invocations, are rarely aggregated.

The example in Figure 1(b) shows a conceptual representation of the CCT resulting from
executing the Java code sample in Figure 1(a); the colors used differentiate the distinct methods.
The illustrated CCT represents one invocation of method main(String[]). For instance, such
a CCT may be created with the profiler described in [15, 16]. In this example, we assume that two
dynamic metrics are collected for each calling context, the number of method invocations and the
number of executed bytecodes (in a Java Virtual Machine). Regarding the latter metric, which is a
rather platform-independent alternative to the common CPU time metric, we are also computing
the aggregated number of executed bytecodes ag(bytecodes) for subtrees of the CCT.

There are several variations of the CCT. For instance, calls to the same method from different
call sites in a calling method may be represented by the same node or by different nodes in the
CCT, depending on whether or not the user wants to distinguish between these call sites [3].
Furthermore, in the presence of recursions, the depth of the CCT may be unbounded, representing
each recursive call to a method by a separate CCT node. As an alternative, dynamic metrics for
recursive calls may be stored in the same node, effectively limiting the theoretical depth of the

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

828 P. MORET ET AL.

(a) (b)

Figure 1. Sample Java code and the CCT generated for one execution of method main(String[]). As
dynamic metrics, each CCT node stores the number of method invocations and the number of executed
bytecodes in the corresponding calling context. For each CCT node n, the aggregated metric ag(bytecodes)
sums up the executed bytecodes in the whole subtree rooted at node n: (a) example code and (b) generated

CCT (conceptual representation).

CCT (to the number of methods in the profiled program) and introducing back-edges in the CCT
[3] (actually, the resulting CCT has not a tree structure).

3. CCT VISUALIZATION AS CALLING CONTEXT RING CHARTS

This section presents three ways of visualizing CCTs as Calling Context Ring Charts. All three
visualizations use an onion-like structure with circular layers in which each layer corresponds to
a layer in the CCT. Beginning with the root node as the central ring, nodes are illustrated as ring
segments, and children nodes (callees) are represented on the outer ring of their parent (caller).

3.1. Ring segments of equal length

Figure 2 illustrates a ring segment s and its n children nodes c1, . . . ,cn . In this first visualization,
given � as the angle covered by s, the angle �i covered by its i th child ci is computed as follows:

�i =�
1

n
(1)

Figure 3 shows this first visualization for our example code from Figure 1. As a consequence
of Equation (1), the children completely surround their parent. For instance, in the second layer
the ring segments representing the callees of main(String[]) (i.e. f(int), g(int), and
h(int)) have the same length and completely surround the ring segment of main(String[]).
The root node of the CCT is represented by the central circle.

This visualization gives a condensed view of the overall CCT and eases the analysis of
caller/callee relationships. However, the visualization does not convey any dynamic metric stored
in the CCT.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

VISUALIZING AND EXPLORING PROFILES 829

s

c1

cn

Figure 2. Representation of a CCT node as a ring segment s.

Figure 3. First CCT visualization: Callees are represented by ring segments of equal length.

3.2. Ring segment length proportional to a selected aggregated metric

To ease locating performance problems, we support a second visualization in which each ring
segment is sized proportionally to an aggregated metric ag(M) chosen by the user. In this visual-
ization, �i is computed according to the following equation:

�i =�
ag(Mci)

ag(Ms)
(2)

Using Equation (2), the sum of all �i can be less than �; that is, the children ring segments do
not entirely surround the parent ring segment. The remaining portion of the parent ring segment
represents the metrics contribution of the parent excluding its callees.

Figure 4 presents a ring chart where ring segments are sized according to the aggregated metric
ag(bytecodes). In this example, only about 67% of the ring segment of main(String[]) is
surrounded by the callees’ ring segments, and the remaining 33% illustrates the contribution of
method main(String[]) to the overall bytecode execution.

This visualization helps locate hot calling contexts, since the length of ring segments is propor-
tional to an aggregated metric. However, ring segments representing calling contexts with a low
metric contribution can be very small such that the user may not be able to see all the callees of a
method. Hence, our different visualizations are complementary, and the user can switch between
the different views.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

830 P. MORET ET AL.

Figure 4. Second CCT visualization: Ring segment length is propor-
tional to the aggregated bytecode metric.

3.3. Ring segment area proportional to a selected aggregated metric

In the previous visualization, we considered sizing ring segments with respect to the angle, which
can be misleading: A node close to the center (i.e. with a low depth in the CCT) will appear
smaller in terms of area than a node with the same aggregated metric contribution but in a deeper
CCT layer. The third visualization presented below compensates for this bias by reducing the
width of outer layers such that any two nodes with the same aggregated metric contribution will
be represented by ring segments of the same area.

We call ri the radius of the i th concentric circle, r0 being the radius of the central circle. In the
two previous visualizations, we implicitly defined ri =ri−1+c, where c is the constant width of
ring segments. Since the area of a circle sector is �

2r
2 (where r is the radius and � is measured in

radians), the area As of the ring segment s in layer i is given by:

As = �

2
(r2i −r2i−1) (3)

For an area-proportional visualization of a calling context according to its aggregated metric
contribution, but independently of its depth in the CCT, the term (r2i −r2i−1) in Equation (3) must be
constant. This is achieved by redefining ri according to (4) in which K is a constant corresponding
to the desired overall area of a ring (layer) in the chart:

ri =
√
r2i−1+ K

�
(4)

We illustrate this visualization in Figure 5. Whereas this visualization better supports locating
hotspots, in a deep tree outer rings may become too thin to be easily visible. Thus, it is important
to let the user toggle between the different views.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

VISUALIZING AND EXPLORING PROFILES 831

Figure 5. Third CCT visualization: Ring segment area is proportional to the aggregated bytecode metric.

4. CCT MANIPULATION OPERATIONS

In this section, we discuss four tree manipulation operations on the CCT which complement our
visualizations and help in exploring calling context profiles. The first two CCT manipulations [22],
subtree selection and depth limitation, are essential for handling large CCTs. The third manip-
ulation, recursion elimination, removes CCT nodes representing recursive calls. This operation
can significantly reduce the CCT size in the presence of recursions. Finally, the fourth operation,
dynamic metric aggregation, aggregates metrics for each method, completely discarding calling
context information.

4.1. Subtree selection

This manipulation allows the selection of any CCT node as the root, hence resulting in the
visualization of a subtree as a CCRC. In this way, the user can focus on a particular calling context
of interest, together with the direct and indirect callees.

Our implementation supports interactive subtree selection by clicking on the ring segment to
become the new root. The history of selected subtrees is preserved, allowing the user to revert
to previous views of the CCT. Clicking on the central circle representing the root node of the
currently visualized CCT subtree, the previously displayed subtree is restored. Clicking on the root
of the overall CCT has no effect.

Figure 6(a) shows an example of the subtree selection operation, where the ring segment
corresponding to f(int) is selected as the new root (cp. the original CCT in Figure 1). In this
example, we use our second visualization where the length of ring segments is proportional to the
metric ag(bytecodes).

4.2. Depth limitation

The second CCT manipulation, limiting the depth of the visualized CCT, also helps to analyze
large CCTs with deep calling contexts. By reducing the CCT depth, the remaining layers in the
CCT can be visualized with wider rings.

As in the case of subtree selection, also depth limitation can be applied interactively, either by
entering a new maximum depth value or by using the scroll wheel on the mouse. In particular, the
latter possibility gives the user an easy way of (un)zooming the center of the displayed CCT. By
successively applying subtree selection and adapting the depth limit, the user can navigate faster

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

832 P. MORET ET AL.

(a)

(b)

Figure 6. Subtree selection and depth limitation operations (the original CCT is depicted in Figure 1): (a)
subtree selection: the ring segment of method f(int) has been selected as root and (b) depth limitation:

the CCT depth has been limited to 3 layers.

in the CCT. With the aid of subtree selection, the interesting part of program execution can be
chosen, and depth limitation allows the user to adjust the details of the CCT to be visualized.
Figure 6(b) illustrates the effect of limiting the CCT depth to 3, i.e. displaying only 3 layers of the
CCT. Note that the aggregated metrics ag(M) (for any metric M) are not recomputed. Aggregated
metrics are initially computed on the complete CCT.

4.3. Recursion elimination

In Section 2 we discussed different variations of the CCT in which recursive calls may be repre-
sented either by the same CCT node or by different CCT nodes. In the former case, back-edges
are introduced in the CCTs [3]. Nevertheless, the CCTs can become very deep in the latter case
when representing executions of recursive programs. To address this issue, this section provides
a CCT transformation that takes a (potentially very deep) CCT where recursive calls are repre-
sented by separate nodes and produces a corresponding (more compact) CCT where the metrics
collected in recursive method executions are stored within the same node. Figure 7(a) illustrates
this transformation with an example.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

VISUALIZING AND EXPLORING PROFILES 833

(a)

(b)

Figure 7. Recursion elimination and metrics aggregation operations (the original CCT is depicted in
Figure 1): (a) recursion elimination: CCT nodes representing recursive calls have been removed (back-edges
are not shown) and (b) metrics aggregation by method: calling context information has been discarded.

The transformation is specified using Java-style pseudocode in Figure 8. The
eliminateRecursions(...) method takes the root node of a CCT and returns the
root of a new CCT (not sharing any nodes with the input CCT) without any recursive struc-
tures. To this end, eliminateRec(...) traverses the input CCT in pre-order (depth-first)
and builds the corresponding output CCT. Before creating a new node in the output CCT,
eliminateRec(...) checks whether a matching node is on the current path to the root
(findMatchingAncestor(...)). In that case, no new node is created in the output CCT.
As back-edges cannot be visualized, they are not created in the output CCT.

The pseudocode assumes that CCT nodes are represented by the type Node, which supports the
operations methodID() (returning a string uniquely identifying the method for which the node
stores dynamic metrics), parent() (returning the parent node in the CCT or null for the
root node), children() (returning the set of children nodes), and metrics() (returning the
dynamic metrics for the node). The getOrCreateChild(String calleeName) method
returns the Node instance representing the callee with the given method name. If a child node for
the given callee name does not yet exist, a new node is created. The dynamic metrics collected

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

834 P. MORET ET AL.

Node e l i m i n a t e R e c u r s i o n s (Node r o o t I n) {
Node r o o t O u t = new Node () ;
e l i m i n a t e R e c (r o o t I n , r o o t O u t) ;
c o m p u t e A g g r ega t e d M e t r i c s (r o o t O u t) ;
re turn r o o t O u t ;

}

void e l i m i n a t e R e c (Node in , Node o u t) {
f o r (Node nIn : i n . c h i l d r e n ()) {

Node nOut = f i n d M a t c h i n g A n c e s t o r (out , n In . methodID ()) ;
i f (nOut == n u l l)

nOut = o u t . g e t O r C r e a t e C h i l d (n In . methodID ()) ;
nOut . m e t r i c s () . add (nIn . m e t r i c s ()) ;
e l i m i n a t e R e c (nIn , nOut) ;

}
}

Node f i n d M a t c h i n g A n c e s t o r (Node n , S t r i n g i d) {
i f (n == n u l l) re turn n u l l ;
e l s e i f (n . methodID () . e q u a l s (i d)) re turn n ;
e l s e re turn f i n d M a t c h i n g A n c e s t o r (n . p a r e n t () , i d) ;

}

Figure 8. Pseudocode for eliminating recursive structures in a CCT.

for a node are represented by the type Metrics, which supports, among others, the operation
add(Metrics from), incrementing the metric values by the values from the argument Metrics
instance. Finally, computeAggregatedMetrics(Node root) computes all desired aggre-
gated metrics in a CCT.

4.4. Dynamic metrics aggregation for each method

While the CCT gives detailed information about each calling context, it is difficult to estimate
the overall metric contribution of a method if it is used in many different calling contexts. In
our example (see Figure 1), i(int) appears in six CCT nodes, which makes it difficult to
evaluate the total metric contribution of that method in comparison to other methods. Hence, we
provide a transformation that discards all calling context information. Each method occurring in
the original CCT is represented by a single node that stores the summed up metrics for that method
(disregarding any callees).

Figure 7(b) illustrates an example of this operation. Since all calling context information is
discarded, the resulting tree has a depth of one and can be represented as a conventional pie
chart. Whereas such pie charts are not unique to our approach (many prevailing profilers provide
similar views), they provide a useful, complementary means for the performance analysis. The
transformation is also applicable for CCT subtrees (in conjunction with subtree selection).

5. IMPLEMENTATION

We implemented three versions of our CCRC visualization tool. The first version is based on
JavaScript and on the standard XML-based Scalable Vector Graphics (SVG‡) format, whereas the
second version is a Java application using the Swing toolkit. The third version is also implemented
in Java by using the Eclipse’s Standard Widget Toolkit (SWT)§ .

Our first implementation uses JavaScript to create and dynamically transform the CCT, which
is represented as an XML structure. This implementation allows us to visualize CCRCs directly

‡http://www.w3.org/Graphics/SVG/.
§http://www.eclipse.org/swt/.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

VISUALIZING AND EXPLORING PROFILES 835

in standard web browsers. The rendered page consists of two parts, one part is showing the ring
chart, whereas the other part presents the detailed calling context information of the currently
selected CCT node (a node is automatically selected when it is pointed to by the mouse), such as
the complete call stack and collected dynamic metrics. The navigation in the CCT representation
is implemented using events which are handled by the browser and trigger calls to JavaScript
routines that update the displayed information. On one hand, this implementation is well suited for
integration into web-based collaboration tools. On the other hand, JavaScript execution engines
embedded in currently available browsers are often unable to handle very large structures as those
required for representing CCTs. Moreover, the limited performance of Javascript for complex tree
manipulations can result in poor user experience.

In our second Java-based implementation, the GUI has the same structure and similar behavior
as in the first implementation. However, in contrast to the first implementation, it has been designed
to handle very large CCTs. Additional features were added, such as an advanced search tool to
find and highlight CCT nodes with certain properties. For instance, the user can search for calling
contexts representing execution in a particular package, class, or method. It is also possible to
quickly locate CCT nodes where the collected metrics meet given constraints (e.g. exceeding some
thresholds).

Our third implementation, which is based on Eclipse SWT, has the same advanced features as
the Swing-based version. In addition, it can be used in the Eclipse IDE. We integrated our CCRC
visualization in the Senseo Eclipse plugin [25], which enriches Eclipse’s static source view with
dynamic metrics from a running application. Senseo provides the developer with various dynamic
metrics, such as runtime receiver, argument, and return types of invoked methods, the number
of allocated objects, and an estimation of total memory consumption. The integration of CCRC
enhances Senseo with complete calling context information. It also supports interactions between
the CCRC and the corresponding methods in the source code, such as highlighting the calling
contexts in the CCRC corresponding to a chosen method, or showing the method source code of
a selected calling context in the CCRC.

6. CASE STUDIES

This section presents two case studies where CCRCs have been successfully applied to locate
performance problems in applications, which were optimized afterwards. In both case studies,
the calling context profiles are collected with the profiler described in [15, 16], which collects
the number of executed bytecodes in each calling context (in addition to other dynamic
metrics); this metric is largely platform-independent. This profiler has the advantage of profiling
overall application execution, including the execution of methods in the Java class library.
Recursions are fully represented in the generated profiles, that is, the CCTs do not have any
back-edges.

For CCRC visualization, we use our Java Swing-based implementation. We do not remove any
recursions in the presented CCRCs. For the CCRCs in this case study, we use our second kind of
visualizations, where the ring segment length is proportional to the aggregated bytecode metric (see
Section 3.2). The CCRCs show the main(String[]) method as root in the center, that is, we
use subtree selection in order to concentrate on application execution, disregarding the execution
of system threads, which is also conveyed in the profiles generated by our profiler. For all shown
CCRCs, we limit the depth to 10 layers.

The primary contribution of these case studies is to show that CCRCs help to quickly
locate hotspots in calling context profiles. As secondary contribution, the case studies also
demonstrate that profiling using a platform-independent metric (i.e. the number of executed
bytecodes)—instead of the common CPU time metric—is a useful technique for detecting
hotspots and for optimizing applications. The resulting optimized applications not only
execute less bytecodes, but they also perform significantly better in terms of execution
time.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

836 P. MORET ET AL.

6.1. Case study 1: JLex
Our first case study is inspired by a paper describing the profiler generator ProfBuilder [26]. The
authors of ProfBuilder analyzed and detected a hotspot in the lexical analyzer generator JLex [27].
In this case study, we show that CCRCs ease locating such a hotspot. We generated the CCT for
the execution of a sample grammar included in the JLex distribution.

Figure 9 (top) shows a CCRC representing the execution of the original, unmodified JLex.
Looking at the aggregated bytecodes, we were able to locate a hot calling context, an invocation
of the sortStates(...) method. This method is executed in two different calling contexts; in
one of them, it executes a high number of bytecodes, contributing 23.6% of the overall executed
bytecodes. The large ring segment corresponding to this calling context is highlighted (both in
color and in bold) in Figure 9 (top). The corresponding call stack (together with the aggregated
bytecode metric) is also shown in Figure 9. The other calling context, where sortStates(...)
is executed, is marked in color (but not in bold); its contribution to the overall executed bytecodes
is relatively insignificant.

The sortStates(...) method uses a primitive selection sort algorithm of complexity
O(n2). In order to optimize the code, we replace it with the merge sort algorithm of complexity
O(n log n). Figure 9 (bottom) shows the resulting CCRC after the optimization. The number of
executed bytecodes in the previously hot calling context representing the sortStates(...)
method is reduced to 10.86% of the overall executed bytecodes.

In order to confirm that our optimization based on the bytecode metric also results in a speedup
in the execution time, we run both versions of JLex (original and optimized) on an Intel Core 2
Duo 2.33GHz computer with 2GB RAM (Linux Fedora 10), using Sun JDK 1.6.0 12. Regarding
the execution time, we present the median of 15 runs. The original JLex executes 20 393 685
bytecodes in 37.04ms (including the profiled bytecodes executed by system threads, which are
not shown in Figure 9), whereas the optimized JLex executes 16 955 185 bytecodes in 27.7ms. In
the number of executed bytecodes metric, the optimized version is 20.3% ‘faster’, whereas in the
CPU time metric, the optimized version is 33.7% faster¶ .

6.2. Case study 2: Shamir’s secret sharing (SSS)

Our second case study analyzes an implementation of the Shamir’s Secret Sharing (SSS) cryptog-
raphy algorithm [28] done by Ricardo Padilha at the University of Lugano. We asked the developer
to analyze his implementation with CCRCs in order to validate his design choices and to optimize
his code.

Figure 10 illustrates a CCRC corresponding to one hundred thousand put and get operations.
It also represents the bytecode distribution of different computations. In this implementation of
the SSS algorithm, a secret is divided into parts (by using the split operation) and the parts are
distributed among the participants (by using the hash(put) operation). Then, all the parts or some
of them are fetched (by using the hash(get) operation) in order to reconstruct the secret (by using
the join(get) operation). The join(put) operation is also needed because of the API which was used
in programming the putting of shares. According to this API, when replacing a stored value, the
old value must be returned, forcing the join to be calculated also upon putting the shares. In this
figure, a symmetry between the calculations of putting the shares and getting them back can be
seen as well.

After analyzing the CCRC in Figure 10, the developer first observed that the execution of
the split operation was dominated by the use of the java.security.SecureRandom class.
As an optimization, he decided to use the non-secure class java.util.Random instead since
the security of his implementation was not dependent on the randomly generated coefficients
[29, 30]. Figure 11 represents the CCRCs before and after the change. The highlighted segments
in Figure 11 (top and bottom) correspond to the BigInteger.randomBits() method, which

¶Whereas the number of executed bytecodes is exactly reproducible in each run, the measured execution time varies
considerably, but the optimized version is consistently faster.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

VISUALIZING AND EXPLORING PROFILES 837

JLex.Main.main 19,898,560 97.57%
JLex.CLexGen.generate 19,898,200 97.53%
JLex.CLexGen.userRules 19,084,734 93.58%
JLex.CNfa2Dfa.make dfa 15,475,299 75.88%
JLex.CNfa2Dfa.make dtrans 15,457,240 75.88%
JLex.CNfa2Dfa.e closure 13,197,769 64.71%
JLex.CNfa2Dfa.sortStates 4,813,648 23.60%

JLex.Main.main 16,572,245 97.74%
JLex.CLexGen.generate 16,562,941 97.69%
JLex.CLexGen.userRules 15,758,116 92.94%
JLex.CNfa2Dfa.make dfa 12,188,083 71.88%
JLex.CNfa2Dfa.make dtrans 12,188,024 71.88%
JLex.CNfa2Dfa.e closure 10,106,654 59.61%
JLex.CNfa2Dfa.sortStates 1,841,091 10.86 %

Figure 9. CCRCs for JLex with the original (top) and optimized (bottom) sort algorithms.

is the common code executed when using the SecureRandom and Random classes. Thanks to
this optimization, the calculation of the random coefficients in the SSS formula [28] was reduced
from 5.96 to 0.43% of the overall executed bytecodes.

Second, the developer noticed that a high percentage of executed bytecodes was used to calculate
the hash function (see Figure 10). He decided to revise his implementation of the SSS algorithm
and remove the use of hash function. Figure 12 shows the CCRC for the final SSS implementation.
Compared to the original implementation (see Figure 10), the total number of executed bytecodes
has been reduced from 29 568 435 996 to 15 129 000 509.

In order to confirm that the optimizations based on profiles with bytecode metrics also result
in a speedup, we measured the execution times of the three different versions (initial version,
version without secure random, and final version with neither secure random nor hash), using
the same settings as in the previous case study. The original implementation took 9150ms

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

838 P. MORET ET AL.

Total number of executed bytecodes: 29,568,435.996

Figure 10. CCRC for the initial implementation of SSS algorithm.

Figure 11. SSS implementation using java.security.SecureRandom (top) versus SSS
implementation using java.util.Random (bottom).

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

VISUALIZING AND EXPLORING PROFILES 839

Figure 12. CCRC of the final implementation of SSS (without hashing and without secure random).

The implementation without secure random took 7579ms (speedup of 20.7%). Finally, the imple-
mentation with neither secure random nor hash took 5557ms (speedup of 64.7%).

In summary, our case studies demonstrate that CCRCs are useful in optimizing real-world
applications.

7. EVALUATION

To validate our implementation of CCRC visualizations with very large profiles, we generated and
visualized the CCTs for the standard DaCapo benchmark suite [23]. In the following, Section 7.1
presents some statistics on the generated CCTs that correspond to the execution of one run of
each benchmark with its default settings. Then, these CCTs were rendered and visualized using
our Java Swing-based implementation, with different tree depth settings. Section 7.2 discusses the
results of measuring these renderings and shows the relationship between the number of visualized
tree layers with the rendering time and the number of rendered segments. All measurements were
collected with Sun JDK 1.6 18 running on a laptop with an Intel Core 2 Duo 2.33GHz processor,
3GB of memory, and the Linux Fedora 12 operating system.

7.1. Statistics of generated CCTs

This section presents some statistics of the CCTs generated for the standard DaCapo benchmark
suite. To generate these CCTs, we benefitted from the same calling context profiler [15, 16] as was
used in our two case studies in Section 6. We also transformed the CCTs by removing recursive
structures to explore how much recursion is used in the benchmarks and to see to which extent
the algorithm presented in Figure 8 is able to reduce the size of the CCTs.

Table I indicates the statistics computed for the original CCTs and the transformed CCTs. In
this table, column ‘#Method Calls’ indicates the total number of method invocations (in all CCT
nodes), which can be very high (e.g. over 1 billion for the ‘bloat’ benchmark). Column ‘#Unique
Methods’ illustrates the number of unique methods that were invoked at least once. These two
statistics are not affected by the transformation that removes recursions.

The columns ‘Original CCTs’ and ‘Transformed CCTs’ respectively illustrate the number of
nodes (column ‘#Nodes’) and the maximum depth of trees (column ‘Max Depth’) for the originally
generated CCTs and for the transformed ones after removing all recursions. The two statistics in
the column ‘Original CCTs’, i.e. ‘#Nodes” and ‘Max Depth’, give an idea of the sizes of the CCTs

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

840 P. MORET ET AL.

Table I. Statistics of original CCTs and the transformed ones after removing all recursions.

Original CCTs Transformed CCTs

DaCapo Benchmark #Method Calls #Unique Methods #Nodes Max Depth #Nodes Max Depth

Antlr 165 465 913 2498 627577 164 254289 39
Bloat 1 055 927 864 3033 645316 128 212927 48
Chart 404 140 995 4554 92272 65 75266 55
Eclipse 941 528 217 11555 2166169 131 977531 56
Fop 43 143 714 4013 149492 76 100590 55
Hsqldb 214 764 027 2507 66391 62 60533 60
Jython 945 580 102 4574 1941246 223 553124 76
Luindex 443 252 127 1969 58834 52 46155 38
Lusearch 502 521 414 1768 33189 63 28414 35
Pmd 462 558 862 3663 800071 416 106841 79
Xalan 636 834 930 3679 211213 79 97547 56

to be visualized. For instance, for the ‘eclipse’ benchmark, the original CCT consists of more than
2 million nodes, and for the ‘pmd’ benchmark, the CCT depth exceeds 400 layers.

Considering the statistics for the transformed CCTs indicates a significant reduction in the sizes
of the CCTs compared to the original ones. In particular, the transformed CCTs have less than 1
million nodes and the maximum depth of the trees do not exceed 80 layers. These data show that
recursive algorithms play an important role in typical Java workloads. It is worth mentioning that
recursive algorithms are not only found in the DaCapo benchmark suite, but also in the standard
Java class library. Prominent examples include classloading (classloaders use a delegation model
by default) and balanced tree algorithms in the java.util package.

7.2. CCT visualization performance

We visualized the original CCTs generated in the previous subsection using our Java Swing-based
implementation and our second type of visualization (see Section 3.2) on a screen resolution of
1440×900 pixels. Then, we varied the number of displayed tree layers from 2 to 150 using the
tree depth limitation operation, and measured the relationship between the number of visualized
tree layers in the CCRC with rendering time and the number of visualized ring segments. For each
setting, we took the median of 15 runs, so as to avoid perturbations such as garbage collection
that may be triggered during the renderings.

Figures 13–16 illustrate the results of our measurements. In these diagrams, the number of
displayed segments in the CCRCs ranges from 2 to 4206, and the rendering time is between 14 and
204ms for varying number of displayed tree layers. As experimented in [31], users will not notice
delays in their mouse interactions when the response time is up to 195ms. So, these diagrams
support our claim that rapid navigation of CCRCs is easily possible, allowing us to explore large
calling context profiles smoothly.

The above interesting results are achieved by some optimizations in the rendering engine in
which the segments that get too small to be visualized (e.g. their sizes would be less than a pixel)
are replaced by a line. If the user is interested in this subtree, he can select a parent node as the new
root and specify a desired tree depth accordingly for further visualization. These optimizations are
also the reason for the diagrams are not continuous lines, and the number of displayed segments
decrease after a while as the number of layers increase (i.e. the subtrees that would not be visible
anyway are not rendered). In the case of ‘jython’ and ‘pmd’, a different pattern is seen in their
corresponding diagrams: the number of rendered segments increases as the number of displayed
tree layers increases (we go deeper into their CCTs). The reason for this situation in these two
particular diagrams is that some branches appear only when more tree layers are visualized.

In summary, our performance evaluation confirms that CCRC rendering is perceived almost
instantaneously by the users, even for very large CCTs.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

VISUALIZING AND EXPLORING PROFILES 841

#R
en

de
re

d
se

gm
en

ts

R
en

de
rin

g
tim

e
[m

s]

#Displayed tree layers

#Rendered segments
Rendering time

#R
en

de
re

d
se

gm
en

ts

R
en

de
rin

g
tim

e
[m

s]

#Displayed tree layers

#Rendered segments
Rendering time

#R
en

de
re

d
se

gm
en

ts

R
en

de
rin

g
tim

e
[m

s]

#Displayed tree layers

#Rendered segments
Rendering time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

100

200

300

400

500

600

20 40 60 80 100 120 140

20 40 60 80 100 120 140

20 40 60 80 100 120 140

antlr

bloat

chart

Figure 13. Relationship between the number of visualized tree layers in the CCRC and the rendering time
and the number of visualized ring segments for the benchmarks ‘antlr’, ‘bloat’, and ‘chart’.

8. RELATED WORK

This section considers the related work in the areas of visualizing hierarchical structures and
visualizing profiling data as follows.

8.1. Visualizing hierarchical structures

As CCTs have hierarchical structures, different techniques for visualizing hierarchical structures are
of interest in this article. A large body of work exists for visualizing hierarchical structures, most

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

842 P. MORET ET AL.

#R
en

de
re

d
se

gm
en

ts

R
en

de
rin

g
tim

e
[m

s]

#Displayed tree layers

#Rendered segments
Rendering time

#R
en

de
re

d
se

gm
en

ts

R
en

de
rin

g
tim

e
[m

s]

#Displayed tree layers

#Rendered segments
Rendering time

#R
en

de
re

d
se

gm
en

ts

R
en

de
rin

g
tim

e
[m

s]

#Displayed tree layers

#Rendered segments
Rendering time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

100

200

300

400

500

600

20 40 60 80 100 120 140

20 40 60 80 100 120 140

20 40 60 80 100 120 140

eclipse

fop

hsqldb

Figure 14. Relationship between the number of visualized tree layers in the CCRC and the rendering time
and the number of visualized ring segments for the benchmarks ‘eclipse’, ‘fop’, and ‘hsqldb’.

of which focus on the challenge to display large hierarchies in a comprehensible form [32]. One
can refer to [19] for a detailed survey of the different techniques. Examples include SunBurst views
[21, 33], tree-maps [34], rooted trees [17], cone trees [35], radial trees [19, 17], reconfigurable
disk trees [36], botanical trees [37], collapsible cylindrical trees [32], hyperbolic layouts [38, 39],
and SHriMP views [40]. One main category of these approaches is space-filling techniques that
aim to utilize the display space very efficiently.

One of the most well-known space-filling techniques is the tree-map approach [34] and its
variations [41–43]. In tree-maps, nodes are represented as rectangular areas sized proportionally
to a metric. Although tree-maps cover 100% of the display space, only leaf nodes are clearly

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

VISUALIZING AND EXPLORING PROFILES 843

jython

#R
en

de
re

d
se

gm
en

ts

R
en

de
rin

g
tim

e
[m

s]

#Displayed tree layers

#Rendered segments
Rendering time

luindex

#R
en

de
re

d
se

gm
en

ts

R
en

de
rin

g
tim

e
[m

s]

#Displayed tree layers

#Rendered segments
Rendering time

lusearch

#R
en

de
re

d
se

gm
en

ts

R
en

de
rin

g
tim

e
[m

s]

#Displayed tree layers

#Rendered segments
Rendering time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

100

200

300

400

500

600

20 40 60 80 100 120 140

20 40 60 80 100 120 140

20 40 60 80 100 120 140

Figure 15. Relationship between the number of visualized tree layers in the CCRC and the rendering time
and the number of visualized ring segments for the benchmarks ‘jython’, ‘luindex’, and ‘lusearch’.

identifiable, which complicates understanding of the hierarchical structure. Moreover, the original
layout, called the slice and dice, tends to create outstretched rectangles which are difficult to see, as
pointed out in [41, 42]. Several improvements to the original tree-maps have been proposed, such
as changing the layout policy [42] to obtain better proportioned rectangle nodes while keeping
ordering information, such that a slight change in the tree does not cause a major change in the
tree-map. In [41] polygons are used instead of rectangles so as to provide a way to distinguish
different branches. Whereas CCRCs do not cover the entire display space due to their circular
shape, they offer a convenient way to view the hierarchical structure of a CCT, to navigate in the
tree, and to identify calling contexts with a significant contribution to a selected dynamic metric.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

844 P. MORET ET AL.

pmd

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

20 40 60 80 100 120 140
0

100

200

300

400

500

600

#R
en

de
re

d
se

gm
en

ts

R
en

de
rin

g
tim

e
[m

s]

#Displayed tree layers

#Rendered segments
Rendering time

xalan

20 40 60 80 100 120 140
0

100

200

300

400

500

600

#R
en

de
re

d
se

gm
en

ts

R
en

de
rin

g
tim

e
[m

s]

#Displayed tree layers

#Rendered segments
Rendering time

Figure 16. Relationship between the number of visualized tree layers in the CCRC and the rendering time
and the number of visualized ring segments for the benchmarks ‘pmd’ and ‘xalan’.

Another category of space-filling techniques are radial methods [18]. An example of radial
methods are SunBurst views [21, 33] which highly resemble CCRCs. In SunBurst views, the items
in a hierarchy are laid out radially, with the top of the hierarchy at the center and the deeper layers
further away from the center. The sweep angle of an item is proportional to a desired metric and its
color may correspond to some desired attributes. Previous empirical studies, such as [20, 21], have
illustrated that radial visualization techniques work better for navigating and exploring hierarchical
structures compared to rectangular space filling techniques such as tree-maps. However, they suffer
from the inherent difficulty that slices may become too small to distinguish. This issue is addressed
by context+focus techniques, such as the ones in [33] or information slices [44] in which two
semi-circular areas are used as a form of two-level overview and detail. While CCRCs deal with
hierarchies that may include millions of elements, the paper on SunBurst views [33] considers a
hierarchy that comprises only 500 elements. The large size of CCTs requires specific navigation
techniques. To address this requirement, CCRCs support zooming by depth limitation as well
as subtree selection for exploring different parts of a CCT, whereas SunBurst navigation offers
different zooming features that show the whole hierarchy and a zoomed part within the same view.

8.2. Visualizing profiling data

Tree-maps have been used to visualize profiling data. For instance, in [45] the authors present
KCacheGrind, a front end to a simulator-based cache profiling tool, using a combination of tree-
maps and call graphs to visualize the data. In contrast, CCRCs use a specialized representation
that is suited both for understanding caller/callee relationships and for locating hotspots by sizing
ring segments proportionally to a chosen metric.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

VISUALIZING AND EXPLORING PROFILES 845

Execution traces may be used for analyzing the dynamic program behavior. Execution traces are
logged events, such as method entry and exit, or object allocation. However, the resulting amount
of data can be excessive. In [46] execution traces are visualized with nodes representing classes
and edges representing method calls. Node size and edge thickness are mapped to properties (e.g.
number of method invocations). A time range can be selected to limit the data to be visualized.
Another approach to visualizing execution traces has been introduced in [47]. It uses the concept
of hierarchical edge bundles [48], where similar edges are put together to improve the visualization
of larger traces. Execution traces allow us to keep calls in sequences and to select a precise time
interval to be visualized, which helps us to understand a particular phase in the execution of a
program. In our approach, the profiling data is stored in a CCT, a more compact structure that
does not keep calls in sequences, but gives a view of the overall program execution, which is more
suitable for locating hotspots.

Several profilers, such as JProfiler [49] or NetBeans Profiler [50], generate calling context
profiles, but are usually visualized as expandable trees. In such a representation, calling contexts are
sorted by their contribution to an aggregated metric (usually execution time) and can be expanded
or collapsed to show or hide callees. Although such a view is simple and straightforward to use,
CCRCs convey more profiling information in a single view and give a better understanding of
caller/callee relationships. Thanks to subtree selection and depth limitation, CCRCs efficiently
support navigation in any interesting part of the CCT.

9. CONCLUSION

Calling context profiling is an important technique for exploring the dynamic behavior of programs.
However, the resulting profiles, usually represented as CCTs, can be huge, comprising up to millions
of calling contexts and typically reaching tree depths of 50–400 layers. Such large profiles can
hardly be analyzed in a textual representation, and prevailing visualizations, such as expandable
trees used in several profiling tools, are too verbose and do not make good use of space.

To ease handling large calling context profiles, this article presented Calling Context Ring
Charts (CCRCs). A CCRC visualizes a CCT in a compact way while representing all caller/callee
relationships. Each calling context is displayed as a ring segment, surrounded by the ring segments
representing the callees. Ring segments can be sized according to a chosen dynamic metric to
ease the localization of hotspots. Several CCT tree manipulation operations, such as selecting
subtrees or limiting the tree depth, complement CCRC visualizations. We presented two case studies
where CCRCs were successfully applied to locate and fix performance problems in applications.
A performance evaluation confirms that our CCRC implementation easily handles very large calling
context profiles, and that the rendering time is quite fast.

Regarding ongoing research, we are working on representing two different metrics within the
same CCRC using a coloring scheme. We are also conducting a study on the productivity increase
thanks to CCRC visualizations when profiling complex applications. To this end, collaboration
partners have started using our tools. Furthermore, we are working on an advanced set of tree
manipulation and metrics aggregation operations that are exposed to the user through a domain-
specific, declarative language.

ACKNOWLEDGEMENTS

We thank Ricardo Padilha and Fernando Pedone for using our platform-independent calling context profiler
and CCRC visualization tool, in order to optimize their Java implementation of Shamir’s Secret Sharing
algorithm, and for providing us the results of their analysis and optimizations.

The work presented in this article has been supported by the Swiss National Science Foundation.
Part of the work presented in this article was conducted while A. Villazón was with the University of

Lugano, Switzerland.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

846 P. MORET ET AL.

REFERENCES

1. Bond MD, McKinley KS. Probabilistic calling context. OOPSLA ’07: Proceedings of the 22nd Annual ACM
SIGPLAN Conference on Object Oriented Programming, Systems and Applications. ACM: New York, NY, U.S.A.,
2007; 97–112.

2. Spivey JM. Fast, accurate call graph profiling. Software Practice and Experience 2004; 34(3):249–264.
3. Ammons G, Ball T, Larus JR. Exploiting hardware performance counters with flow and context sensitive

profiling. PLDI ’97: Proceedings of the ACM SIGPLAN 1997 Conference on Programming Language Design
and Implementation. ACM Press: New York, 1997; 85–96.

4. Artzi S, Kim S, Ernst MD. ReCrash: Making software failures reproducible by preserving object states. ECOOP
’08: Proceedings of the 22th European Conference on Object-Oriented Programming (Lecture Notes in Computer
Science, vol. 5142), Vitek J (ed.). Springer: Paphos, Cyprus, 2008; 542–565.

5. Ha J, Rossbach CJ, Davis JV, Roy I, Ramadan HE, Porter DE, Chen DL, Witchel E. Improved error reporting
for software that uses black-box components. PLDI ’07: Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM: New York, NY, U.S.A., 2007; 101–111.

6. Nethercote N, Seward J. Valgrind: A framework for heavyweight dynamic binary instrumentation. PLDI 2007:
Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation.
ACM Press: New York, 2007; 89–100.

7. Chakrabarti A, Godefroid P. Software partitioning for effective automated unit testing. EMSOFT ’06: Proceedings
of the 6th ACM IEEE International Conference on Embedded Software. ACM: New York, NY, U.S.A., 2006;
262–271.

8. Rountev A, Kagan S, Sawin J. Coverage criteria for testing of object interactions in sequence diagrams. FASE
’05: Fundamental Approaches to Software Engineering (Lecture Notes in Computer Science, vol. 3442). Springer:
Berlin, April 2005; 282–297.

9. Lin Z, Jiang X, Xu D, Zhang X. Automatic protocol format reverse engineering through context-aware monitored
execution. Proceedings of the 15th Annual Network and Distributed System Security Symposium, San Diego, CA,
February 2008.

10. Heydarnoori A, Czarnecki K, Bartolomei TT. Supporting framework use via automatically extracted concept-
implementation templates. ECOOP ’09: Proceedings of the 23rd European Conference on Object-Oriented
Programming (Lecture Notes in Computer Science, vol. 5653), Genova, Italy, Drossopoulou S (ed.). Springer:
Berlin, July 2009; 344–368.

11. Chang PP, Mahlke SA, Mei W, Hwu W. Using profile information to assist classic code optimizations. Software:
Practice and Experience 1991; 21(12):1301–1321.

12. Arnold M, Sweeney PF. Approximating the calling context tree via sampling. Research Report RC21789, IBM
T. J. Watson Research Center, July 2000.

13. Whaley J. A portable sampling-based profiler for java virtual machines. Proceedings of the ACM 2000 Conference
on Java Grande. ACM Press: New York, 2000; 78–87.

14. Zhuang X, Serrano MJ, Cain HW, Choi J-D. Accurate, efficient, and adaptive calling context profiling. PLDI ’06:
Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM: New York, NY, U.S.A., 2006; 263–271.

15. Binder W, Hulaas J, Moret P, Villazón A. Platform-independent profiling in a virtual execution environment.
Software: Practice and Experience 2009; 39(1):47–79.

16. Moret P, Binder W, Villazón A. CCCP: Complete calling context profiling in virtual execution environments.
PEPM ’09: Proceedings of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation.
ACM: Savannah, GA, U.S.A., 2009; 151–160.

17. Tollis IG, Battista GD, Eades P, Tamassia R. Graph Drawing: Algorithms for the Visualization of Graphs.
Prentice-Hall: Englewood Cliffs, NJ, 1998.

18. Draper GM, Livnat Y, Riesenfeld RF. A survey of radial methods for information visualization. IEEE Transactions
on Visualization and Computer Graphics 2009; 15:759–776.

19. Herman I, Melançon G, Marshall MS. Graph visualization and navigation in information visualization: A survey.
IEEE Transactions on Visualization and Computer Graphics 2000; 6:24–43.

20. Barlow T, Neville P. A comparison of 2-D visualizations of hierarchies. INFOVIS ’01: Proceedings of the IEEE
Symposium on Information Visualization 2001. IEEE Computer Society: Washington, DC, U.S.A., 2001; 131.

21. Stasko J, Catrambone R, Guzdial M, McDonald K. An evaluation of space-filling information visualizations for
depicting hierarchical structures. International Journal of Human–Computer Studies 2000; 53(5):663–694.

22. Moret P, Binder W, Ansaloni D, Villazón A. Visualizing calling context profiles with ring charts. VISSOFT
2009: 5th IEEE International Workshop on Visualizing Software for Understanding and Analysis. IEEE Computer
Society: Edmonton, Alberta, Canada, 2009; 33–36.

23. Blackburn SM, Garner R, Hoffman C, Khan AM, McKinley KS, Bentzur R, Diwan A, Feinberg D, Frampton D,
Guyer SZ, Hirzel M, Hosking A, Jump M, Lee H, Moss JEB, Phansalkar A, Stefanović D, VanDrunen T, von
Dincklage D, Wiedermann B. The DaCapo benchmarks: Java benchmarking development and analysis. OOPSLA
’06: Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programing, Systems,
Languages, and Applications. ACM Press: New York, NY, U.S.A., 2006; 169–190.

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

VISUALIZING AND EXPLORING PROFILES 847

24. Moret P, Binder W, Ansaloni D, Villazón A. Exploring large profiles with calling context ring charts.WOSP/SIPEW
2010: Proceedings of the First Joint International Conference on Performance Engineering. ACM Press:
New York, 2010; 63–68.

25. Röthlisberger D, Härry M, Villazón A, Ansaloni D, Binder W, Nierstrasz O, Moret P. Augmenting static source
views in IDEs with dynamic metrics. ICSM ’09: Proceedings of the 2009 IEEE International Conference on
Software Maintenance. IEEE Computer Society: Edmonton, Alberta, Canada, 2009; 253–262.

26. Cooper BF, Lee HB, Zorn BG. ProfBuilder: A package for rapidly building Java execution profilers. Technical
Report CU-CS-853-98, Department of Computer Science, University of Colorado at Boulder, April. 1998.

27. Berk E. JLex: A lexical analyzer generator for java. Available at: http://www.cs.princeton.edu/∼appel/modern/java/
JLex/, 2003 [21 April 2010].

28. Shamir A. How to share a secret. Communications of the ACM 1979; 22(11):612–613.
29. Poettering B. SSSS: Shamir’s Secret Sharing Scheme. Available at: http://point-at-infinity.org/ssss/ [21 April

2010].
30. JSharing. Shamir’s secret sharing scheme library in Java. Available at: http://code.google.com/p/jsharing/ [21

April 2010].
31. Dabrowski JR, Munson EV. CHI ’01: CHI ’01 Extended Abstracts on Human Factors in Computing Systems.

ACM: New York, NY, U.S.A., 2001; 317–318.
32. Dachselt R, Ebert J. Collapsible cylindrical trees: A fast hierarchical navigation technique. IEEE Symposium on

Information Visualization. IEEE Computer Society: Los Alamitos, CA, U.S.A., 2001; 79.
33. Stasko J, Zhang E. Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy

visualizations. INFOVIS ’00: Proceedings of the IEEE Symposium on Information Vizualization 2000. IEEE
Computer Society: Washington, DC, U.S.A., 2000; 57.

34. Johnson B, Shneiderman B. Tree-maps: A space-filling approach to the visualization of hierarchical information
structures. VIS ’91: Proceedings of the 2nd Conference on Visualization ’91. IEEE Computer Society Press,
1991; 284–291.

35. Robertson GG, Mackinlay JD, Card SK. Cone trees: Animated 3D visualizations of hierarchical information.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, New York, NY, U.S.A. ACM,
1991; 189–194.

36. Jeong C-S, Pang A. Reconfigurable disc trees for visualizing large hierarchical information space. INFOVIS ’98:
Proceedings of the 1998 IEEE Symposium on Information Visualization. IEEE Computer Society: Washington, DC,
U.S.A., 1998; 19–25.

37. Kleiberg E, van de Wetering H, Wijk JJV. Botanical visualization of huge hierarchies. INFOVIS ’01: Proceedings
of the IEEE Symposium on Information Visualization 2001. IEEE Computer Society Press: Washington, DC,
U.S.A., 2001; 87.

38. Lamping J, Rao R. The hyperbolic browser: A focus+context technique for visualizing large hierarchies. Journal
of Visual Languages and Computing 1996; 7(1):33–55.

39. Munzner T. Drawing large graphs with h3viewer and site manager. GD ’98: Proceedings of the 6th International
Symposium on Graph Drawing. Springer: London, U.K., 1998; 384–393.

40. Storey M-AD, Müller HA. Manipulating and documenting software structures using SHriMP views. ICSM ’95:
Proceedings of the International Conference on Software Maintenance. IEEE Computer Society: Washington, DC,
U.S.A., 1995; 275.

41. Balzer M, Deussen O, Lewerentz C. Voronoi treemaps for the visualization of software metrics. SoftVis ’05:
Proceedings of the 2005 ACM Symposium on Software Visualization. ACM: New York, 2005; 165–172.

42. Shneiderman B, Wattenberg M. Ordered treemap layouts. INFOVIS ’01: Proceedings of the IEEE Symposium on
Information Visualization 2001 (INFOVIS ’01), Washington, DC, U.S.A. IEEE Computer Society, 2001; 73.

43. Vliegen R, van Wijk JJ, van der Linden E-J. Visualizing business data with generalized treemaps. IEEE
Transactions on Visualization and Computer Graphics 2006; 12(5):789–796.

44. Andrews K, Heidegger H. Information slices: Visualising and exploring large hierarchies using cascading, semi-
circular discs. InfoVis’98: IEEE Symposium on Information Visualization. IEEE Computer Society: Silver Spring,
MD, 1998.

45. Weidendorfer J, Kowarschik M, Trinitis C. A tool suite for simulation based analysis of memory access behavior.
ICCS 2004: 4th International Conference on Computational Science (Lecture Notes in Computer Science,
vol. 3038). Springer: Berlin, 2004; 440–447.

46. Deelen P, van Ham F, Huizing C, van de Watering H. Visualization of dynamic program aspects. VISSOFT ’07:
4th IEEE International Workshop on Visualizing Software for Understanding and Analysis, Los Alamitos, CA,
U.S.A. IEEE Computer Society, June 2007; 39–46.

47. Holten D, Cornelissen B, van Wijk J. Trace visualization using hierarchical edge bundles and massive sequence
views. VISSOFT 2007: 4th IEEE International Workshop on Visualizing Software for Understanding and Analysis,
Los Alamitos, CA, U.S.A. IEEE Computer Society, June 2007; 47–54.

48. Holten D. Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Transactions
on Visualization and Computer Graphics 2006; 12(5):741–748.

49. ProSyst. JProfiler. Available at: http://www.prosyst.com/ [21 April 2010].
50. NetBeans. The NetBeans Profiler Project. Available at: http://profiler.netbeans.org/ [21 April 2010].

Copyright q 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:825–847
DOI: 10.1002/spe

