
Coevolution of Variability Models and Related Artifacts
A Case Study from the Linux Kernel

Leonardo Passos1 Jianmei Guo1 Leopoldo Teixeira2

Krzysztof Czarnecki1 Andrzej Wąsowski3 Paulo Borba2

1University of Waterloo 2Federal University of Pernambuco 3IT University

17th International Software Product Line Conference

1/32

A concrete change from the Linux
kernel

2/32

Ralink Drivers

RT2860

...

... ...RT3090

2/32

Ralink Drivers

RT2860

...

... ...RT3090

2/32

Ralink Drivers

RT2860

...

... ...

Does it mean that RT3090 is no longer supported?

2/32

Ralink Drivers

RT2860

...

... ...

Does it mean that RT3090 is no longer supported?

2/32

Existing evolution studies tend to focus
on the variability model alone

3/32

That doesn’t tell the whole story. . .

4/32

Ralink Drivers

RT2860... ...RT3090

5/32

Ralink Drivers

RT2860... ...RT3090

Variability model
(Kconfig)

5/32

Ralink Drivers

RT2860... ...RT3090

Mapping
(Makefiles)

5/32

Ralink Drivers

RT2860... ...RT3090

Implementation
(.h and .c files)

5/32

Different artifacts, in different spaces,
are connected. . .

5/32

Ralink Drivers

RT2860... ...RT3090

5/32

Ralink Drivers

RT2860... ...RT3090

5/32

Ralink Drivers

RT2860... ...RT3090

5/32

Ralink Drivers

RT2860... ...RT3090

Implementation file
(.c or .h)

5/32

Ralink Drivers

RT2860... ...RT3090

macro directive
(e.g.:, #ifdef RT2860)

5/32

With the three spaces in mind, the real
picture of . . .

6/32

Ralink Drivers

RT2860

...

... ...RT3090

is

6/32

Ralink Drivers

RT2860... ...RT3090

6/32

Ralink Drivers

RT2860... ...RT3090

copy

copy

copy

Therefore, RT3090 is merged into RT2860

6/32

Ralink Drivers

RT2860... ...RT3090

copy

copy

copy

Therefore, RT3090 is merged into RT2860
6/32

But, what can be said about the few
studies that take coevolution into

account?

7/32

Studies that consider coevolution

• Borba et al., GPCE 2011

◦ Small case study: Mobile Media and TaRGeT ≈ 40 features

◦ Unlikely to capture the complexity typically found in large systems

◦ Case study restricted to refinement changes (guarantee product
compatibility)

• Seidl et al., SPLC 2012

◦ Validated over a small and fictitious example

8/32

Studies that consider coevolution

• Borba et al., GPCE 2011

◦ Small case study: Mobile Media and TaRGeT ≈ 40 features

◦ Unlikely to capture the complexity typically found in large systems

◦ Case study restricted to refinement changes (guarantee product
compatibility)

• Seidl et al., SPLC 2012

◦ Validated over a small and fictitious example

8/32

Studies that consider coevolution

• Borba et al., GPCE 2011

◦ Small case study: Mobile Media and TaRGeT ≈ 40 features

◦ Unlikely to capture the complexity typically found in large systems

◦ Case study restricted to refinement changes (guarantee product
compatibility)

• Seidl et al., SPLC 2012

◦ Validated over a small and fictitious example

8/32

Studies that consider coevolution

• Borba et al., GPCE 2011

◦ Small case study: Mobile Media and TaRGeT ≈ 40 features

◦ Unlikely to capture the complexity typically found in large systems

◦ Case study restricted to refinement changes (guarantee product
compatibility)

• Seidl et al., SPLC 2012

◦ Validated over a small and fictitious example

8/32

Studies that consider coevolution

• Borba et al., GPCE 2011

◦ Small case study: Mobile Media and TaRGeT ≈ 40 features

◦ Unlikely to capture the complexity typically found in large systems

◦ Case study restricted to refinement changes (guarantee product
compatibility)

• Seidl et al., SPLC 2012

◦ Validated over a small and fictitious example

8/32

Studies that consider coevolution

• Borba et al., GPCE 2011

◦ Small case study: Mobile Media and TaRGeT ≈ 40 features

◦ Unlikely to capture the complexity typically found in large systems

◦ Case study restricted to refinement changes (guarantee product
compatibility)

• Seidl et al., SPLC 2012

◦ Validated over a small and fictitious example

8/32

We need practical case studies of
variability coevolution in large complex

variability rich software

9/32

Better understanding

tools mirroring coevolution as it
happens in practice

10/32

Our work

11/32

A catalog of 13 coevolution patterns
from a large and complex system

(Linux kernel)

Provides a concrete set of coevolution
operations performed in practice

12/32

A set of findings from the analyses of
the catalog and its instances

Presented as take home lessons

13/32

Linux as a subject of study

• Mature: over 20 years of development

• Complex (in v3.3), with over

◦ 12, 000 features

◦ 80, 000 compile-time variation points

◦ 16, 000 Makefiles

◦ 30, 000 header and C files

14/32

Linux as a subject of study

• Mature: over 20 years of development

• Complex (in v3.3), with over

◦ 12, 000 features

◦ 80, 000 compile-time variation points

◦ 16, 000 Makefiles

◦ 30, 000 header and C files

14/32

Linux as a subject of study

• Mature: over 20 years of development

• Complex (in v3.3), with over

◦ 12, 000 features

◦ 80, 000 compile-time variation points

◦ 16, 000 Makefiles

◦ 30, 000 header and C files

14/32

Linux as a subject of study

• Mature: over 20 years of development

• Complex (in v3.3), with over

◦ 12, 000 features

◦ 80, 000 compile-time variation points

◦ 16, 000 Makefiles

◦ 30, 000 header and C files

14/32

Linux as a subject of study

• Mature: over 20 years of development

• Complex (in v3.3), with over

◦ 12, 000 features

◦ 80, 000 compile-time variation points

◦ 16, 000 Makefiles

◦ 30, 000 header and C files

14/32

Linux as a subject of study

• Mature: over 20 years of development

• Complex (in v3.3), with over

◦ 12, 000 features

◦ 80, 000 compile-time variation points

◦ 16, 000 Makefiles

◦ 30, 000 header and C files

14/32

Linux as a subject of study

• Changes are kept in a publicly available SCM Repository (git)

• Continuous development

• Variability spreads different artifacts (spaces):

◦ Variability model: Kconfig

◦ Mapping: Makefile

◦ Implementation: annotated C code (CPP directives: #ifdefs)

14/32

Linux as a subject of study

• Changes are kept in a publicly available SCM Repository (git)

• Continuous development

• Variability spreads different artifacts (spaces):

◦ Variability model: Kconfig

◦ Mapping: Makefile

◦ Implementation: annotated C code (CPP directives: #ifdefs)

14/32

Linux as a subject of study

• Changes are kept in a publicly available SCM Repository (git)

• Continuous development

• Variability spreads different artifacts (spaces):

◦ Variability model: Kconfig

◦ Mapping: Makefile

◦ Implementation: annotated C code (CPP directives: #ifdefs)

14/32

Linux as a subject of study

• Changes are kept in a publicly available SCM Repository (git)

• Continuous development

• Variability spreads different artifacts (spaces):

◦ Variability model: Kconfig

◦ Mapping: Makefile

◦ Implementation: annotated C code (CPP directives: #ifdefs)

14/32

Linux as a subject of study

• Changes are kept in a publicly available SCM Repository (git)

• Continuous development

• Variability spreads different artifacts (spaces):

◦ Variability model: Kconfig

◦ Mapping: Makefile

◦ Implementation: annotated C code (CPP directives: #ifdefs)

14/32

Linux as a subject of study

• Changes are kept in a publicly available SCM Repository (git)

• Continuous development

• Variability spreads different artifacts (spaces):

◦ Variability model: Kconfig

◦ Mapping: Makefile

◦ Implementation: annotated C code (CPP directives: #ifdefs)

14/32

Catalog of evolution patterns

15/32

Methodology for extracting patterns

2.6
.2

6

2.6
.2

7

3.1 3.2

. . .

added feature names

removed feature names

time

feature name f
primary commit

commit window (cw)

1. Sample Collection

Added feature names: 206 (5%)

Sample of removed feature names: 101 (10%)

2. Commit retrieval

(adds/removes f from
the variability model)

complements the primary commit
(changes of f are in other spaces)

3. Analysis & Clustering 4. Pattern extraction

almost 4 years of development

(Additions sample)

(Removals sample)

16/32

Catalog of evolution patterns

(additions sample)

17/32

Pattern catalog (additions sample)

Rename

(Sample size = 206, Population size = 4,112)

Additions sample

18/32

Pattern catalog (additions sample)

Creation of
feature from

existing
code

(Sample size = 206, Population size = 4,112)

Additions sample

18/32

Pattern catalog (additions sample)

Creation of
feature from

new
elements

(Sample size = 206, Population size = 4,112)

Additions sample

18/32

Pattern catalog (additions sample)

Not patterns

(Sample size = 206, Population size = 4,112)

Additions sample

18/32

Pattern catalog (additions sample)

Two most frequent patterns:

Add Visible Optional Modular Feature
(AVOMF)

Add Visible
Optional

Non-Modular
Feature

(AVONMF)

18/32

Add Visible Optional
Modular Feature

(Example)

19/32

Add Visible Optional Modular Feature

Example: CAPTURE_DAVINCI_DM646_EVM

CAPTURE_DAVINCI_DM646_EVM

VIDEO_DEV

... ...

...

CTC' = CTC + (CAPTURE_DAVINCI_DM646_EVM requires MACH_EVM)

M' = M + new compilation rule:

if CAPTURE_DAVINCI_DM646_EVM is set
 compile vpfi_capture.c

I'= I + vpfi_capture.c

CTC: set of cross tree constraints

M: Mapping

I: Implementation

(Before state) (After state)

[visible]

VIDEO_DEV

... ...

...

20/32

Add Visible Optional
Non-Modular Feature

(Example)

21/32

Add Visible Optional Non-Modular Feature

Example: SQUASHFS_4K_DEVBLK_SIZE

SQUASHFS_4K_DEVBLK_SIZE

SQUASHFS

... ...

...

CTC' = CTC + constraints of SQUASHFS_4K_DEVBLK_SIZE

I'= I + <
 #ifdef SQUASHFS_4K_DEVBLK_SIZE
 #define SQUASHFS_DEVBLK_SIZE 4096
 #else
 #define SQUASHFS_DEVBLK_SIZE 1024
 #endif
 >

CTC: set of cross tree constraints

M: Mapping

I: Implementation

(Before state) (After state)

[visible]

SQUASHFS

... ...

...

M: Mapping

22/32

Findings
(additions sample)

23/32

Findings (additions sample)

• AVOMF:

◦ Most features in Linux are modular

◦ Modular features in AVOMF cause little scattering outside their
module

• AVONMF:

◦ ifdefs of non-modular features are coarse-grained, appearing mostly in
the global (e.g., a conditional data structure) or function level (e.g.,
conditional statements)

24/32

Take home lesson #1
(practical)

Disciplined use of annotation-based techniques such as
#ifdefs do not hinder evolution (hypothesis)

25/32

Catalog of evolution patterns
(removals sample)

26/32

Pattern catalog (removals sample)

(Sample size = 101, Population size = 1,002)

Removals sample

Remove Visible
Optional Modular

Feature
(RVOMF)

27/32

Pattern catalog (removals sample)

(Sample size = 101, Population size = 1,002)

Removals sample

Remove Visible
Optional

Non-Modular
Feature

(RVONMF)

27/32

Pattern catalog (removals sample)

(Sample size = 101, Population size = 1,002)

Removals sample

Inverse
removals of

patterns in the
additions sample

27/32

Pattern catalog (removals sample)

(Sample size = 101, Population size = 1,002)

Removals sample

Merges: feature name is removed from the variability model,
but feature continues to be supported elsewhere

Merge Visible
Optional
Feature

into
Sibling

(MVOFS)

Merge of
RT3090

into
RT2860

27/32

Pattern catalog (removals sample)

(Sample size = 101, Population size = 1,002)

Removals sample

Rename

27/32

Pattern catalog (removals sample)

(Sample size = 101, Population size = 1,002)

Removals sample

Not
patterns

27/32

Findings (removals sample)

• Merges:

◦ Evolution requires a holistic view

◦ Merges can only be identified by retrieving coevolving artifacts

• Complete feature removal (e.g., RVOMF = AVOMF−1)

◦ Affect the set of supported products; thus not a refinement

◦ Refinement changes are too restrictive in practice, as complete feature
removals are often frequent (43% of all removals)

28/32

Take home lesson #2
(methodological)

Effective understanding of variability evolution requires
looking at the coevolution of different artifacts

29/32

Take home lesson #3
(requirements for tool implementors)

The set of patterns provide concrete operations on how
artifacts coevolve

Catalog provides evidence on which operations are
important (e.g., we did not find split operations)

30/32

Conclusion

• We sumarized a catalog of 13 patterns that include coevolution of:

◦ Variability model

◦ Mapping

◦ Implementation

• Subject of analysis: a large and complex software system – the
Linux kernel

• Presented three take home lessons (full list of findings in the paper)

31/32

Thanks for listening!

32/32

	Catalog of evolution patterns

