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A concrete change from the Linux
kernel
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Existing evolution studies tend to focus
on the variability model alone

3/32



That doesn’t tell the whole story. . .
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Ralink Drivers

RT2860... ...RT3090

Variability model
(Kconfig)
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Ralink Drivers

RT2860... ...RT3090

Mapping
(Makefiles)
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Ralink Drivers

RT2860... ...RT3090

Implementation
(.h and .c files)
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Different artifacts, in different spaces,
are connected. . .
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Ralink Drivers

RT2860... ...RT3090

Implementation file
(.c or .h)
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Ralink Drivers

RT2860... ...RT3090

macro directive
(e.g.:, #ifdef RT2860)
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With the three spaces in mind, the real
picture of . . .
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Ralink Drivers

RT2860... ...RT3090

copy

copy

copy

Therefore, RT3090 is merged into RT2860

6/32



Ralink Drivers

RT2860... ...RT3090

copy

copy

copy

Therefore, RT3090 is merged into RT2860
6/32



But, what can be said about the few
studies that take coevolution into

account?
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Studies that consider coevolution

• Borba et al., GPCE 2011

◦ Small case study: Mobile Media and TaRGeT ≈ 40 features

◦ Unlikely to capture the complexity typically found in large systems

◦ Case study restricted to refinement changes (guarantee product
compatibility)

• Seidl et al., SPLC 2012

◦ Validated over a small and fictitious example
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We need practical case studies of
variability coevolution in large complex

variability rich software
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Better understanding

tools mirroring coevolution as it
happens in practice
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Our work
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A catalog of 13 coevolution patterns
from a large and complex system

(Linux kernel)

Provides a concrete set of coevolution
operations performed in practice
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A set of findings from the analyses of
the catalog and its instances

Presented as take home lessons
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Linux as a subject of study

• Mature: over 20 years of development

• Complex (in v3.3), with over

◦ 12, 000 features

◦ 80, 000 compile-time variation points

◦ 16, 000 Makefiles

◦ 30, 000 header and C files
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Linux as a subject of study

• Changes are kept in a publicly available SCM Repository (git)

• Continuous development

• Variability spreads different artifacts (spaces):

◦ Variability model: Kconfig

◦ Mapping: Makefile

◦ Implementation: annotated C code (CPP directives: #ifdefs)
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Catalog of evolution patterns
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Methodology for extracting patterns

2.6
.2

6

2.6
.2

7

3.1 3.2

. . .

added feature names 

removed feature names

time

feature name f
primary commit

                                              

commit window (cw)

1. Sample Collection

Added feature names: 206 (5%) 

Sample of removed feature names: 101 (10%)

2. Commit retrieval

(adds/removes f from
the variability model)

complements the primary commit
(changes of f are in other spaces)

3. Analysis & Clustering 4. Pattern extraction

almost 4 years of development

(Additions sample)

(Removals sample)
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Catalog of evolution patterns

(additions sample)
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Pattern catalog (additions sample)

Rename

(Sample size = 206, Population size = 4,112)

Additions sample
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Pattern catalog (additions sample)

Creation of
feature from

existing 
code

(Sample size = 206, Population size = 4,112)

Additions sample
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Pattern catalog (additions sample)

Creation of
feature from

new
elements

(Sample size = 206, Population size = 4,112)

Additions sample
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Pattern catalog (additions sample)

Not patterns

(Sample size = 206, Population size = 4,112)

Additions sample
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Pattern catalog (additions sample)

Two most frequent patterns:

Add Visible Optional Modular Feature
(AVOMF)

Add Visible 
Optional 

Non-Modular 
Feature

(AVONMF)
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Add Visible Optional
Modular Feature

(Example)
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Add Visible Optional Modular Feature

Example: CAPTURE_DAVINCI_DM646_EVM

CAPTURE_DAVINCI_DM646_EVM

VIDEO_DEV

... ...

...

CTC' = CTC + (CAPTURE_DAVINCI_DM646_EVM requires MACH_EVM)

M' = M + new compilation rule:  

if CAPTURE_DAVINCI_DM646_EVM is set
   compile vpfi_capture.c

I'= I +  vpfi_capture.c

CTC: set of cross tree constraints

M: Mapping

I: Implementation 

(Before state) (After state)

[visible]

VIDEO_DEV

... ...

...
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Add Visible Optional
Non-Modular Feature

(Example)
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Add Visible Optional Non-Modular Feature

Example: SQUASHFS_4K_DEVBLK_SIZE

SQUASHFS_4K_DEVBLK_SIZE

SQUASHFS

... ...

...

CTC' = CTC + constraints of SQUASHFS_4K_DEVBLK_SIZE

I'= I + <
               #ifdef SQUASHFS_4K_DEVBLK_SIZE
                  #define SQUASHFS_DEVBLK_SIZE 4096
               #else 
                  #define SQUASHFS_DEVBLK_SIZE 1024
                #endif
            >

CTC: set of cross tree constraints

M: Mapping

I: Implementation 

(Before state) (After state)

[visible]

SQUASHFS

... ...

...

M: Mapping
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Findings
(additions sample)
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Findings (additions sample)

• AVOMF:

◦ Most features in Linux are modular

◦ Modular features in AVOMF cause little scattering outside their
module

• AVONMF:

◦ ifdefs of non-modular features are coarse-grained, appearing mostly in
the global (e.g., a conditional data structure) or function level (e.g.,
conditional statements)
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Take home lesson #1
(practical)

Disciplined use of annotation-based techniques such as
#ifdefs do not hinder evolution (hypothesis)
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Catalog of evolution patterns
(removals sample)
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Pattern catalog (removals sample)

(Sample size = 101, Population size = 1,002)

Removals sample

Remove Visible
Optional Modular 

Feature 
(RVOMF)
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Removals sample

Remove Visible
Optional 

Non-Modular 
Feature 

(RVONMF)
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Pattern catalog (removals sample)

(Sample size = 101, Population size = 1,002)

Removals sample

Inverse 
removals of

patterns in the 
additions sample
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Pattern catalog (removals sample)

(Sample size = 101, Population size = 1,002)

Removals sample

Merges: feature name is removed from the variability model, 
but feature continues to be supported elsewhere 

Merge Visible 
Optional 
Feature  

into 
Sibling

(MVOFS)

Merge of 
RT3090

into 
RT2860
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Pattern catalog (removals sample)

(Sample size = 101, Population size = 1,002)

Removals sample

Rename
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Pattern catalog (removals sample)

(Sample size = 101, Population size = 1,002)

Removals sample

Not 
patterns
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Findings (removals sample)

• Merges:

◦ Evolution requires a holistic view

◦ Merges can only be identified by retrieving coevolving artifacts

• Complete feature removal (e.g., RVOMF = AVOMF−1)

◦ Affect the set of supported products; thus not a refinement

◦ Refinement changes are too restrictive in practice, as complete feature
removals are often frequent (43% of all removals)
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Take home lesson #2
(methodological)

Effective understanding of variability evolution requires
looking at the coevolution of different artifacts
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Take home lesson #3
(requirements for tool implementors)

The set of patterns provide concrete operations on how
artifacts coevolve

Catalog provides evidence on which operations are
important (e.g., we did not find split operations)
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Conclusion

• We sumarized a catalog of 13 patterns that include coevolution of:

◦ Variability model

◦ Mapping

◦ Implementation

• Subject of analysis: a large and complex software system – the
Linux kernel

• Presented three take home lessons (full list of findings in the paper)
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Thanks for listening!
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