
Tool Demonstration: Effective Runtime Exploration of
the Inter-Procedural Control Flow in Java Applications

Philippe Moret Walter Binder Abbas Heydarnoori Danilo Ansaloni

Faculty of Informatics, University of Lugano, CH–6904 Lugano, Switzerland

firstname.lastname@usi.ch

Abstract

Statically exploring the inter-procedural control flow of object-
oriented applications is often difficult because of the use of abstrac-
tion, polymorphism, and dynamic binding. To ease this problem,
in this tool demonstration, we present a new profiler that dynam-
ically explores the inter-procedural control flow of Java applica-
tions while they are executing. Our profiler visualizes the complete
Calling Context Tree (CCT) with various dynamic metrics, such as
method invocations, executed bytecodes, or allocated objects, and
enables efficient navigation in large CCTs comprising up to several
millions of nodes. We show that our tool can render data quite fast
with response times in the range of 14–204ms upon user interac-
tions. Thanks to a carefully tuned incremental data representation,
the profiling data produced by a running application can be updated
several times per second on a standard laptop. The visualization can
also show recently active parts of the application. The collection of
profiling data uses an aspect-based dynamic program analysis tech-
nique that simplifies extension and customization of the tool.

Categories and Subject Descriptors C.4 [Computer Systems Or-
ganization]: Performance of Systems–Measurement Techniques;
I.3.8 [Computing Methodologies]: Computer Graphics–Applications

General Terms Measurement, Performance, Experimentation

Keywords Calling context profiling, Calling Context Tree (CCT),
calling context ring chart, visualization, aspect-oriented program-
ming

1. Introduction

Program profiling techniques are widely used by application de-
velopers to collect information about the runtime behavior of pro-
grams. Calling context profiling is a common technique that yields
dynamic metrics separately for each calling context, such as the
number of method invocations or the number of object allocations
in a calling context. A calling context is a sequence of methods
that were invoked but have not yet completed; that is, a calling
context corresponds to the methods represented on the call stack
at some moment during program execution. Calling context pro-
filing is powerful since it helps in analyzing the dynamic inter-
procedural control flow of applications. This technique is particu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPPJ ’10, September 15–17, 2010, Vienna, Austria.
Copyright c© 2010 ACM 978-1-4503-0269-2. . . $10.00

larly important for comprehending and optimizing modern object-
oriented software, where polymorphism, dynamic binding, and re-
flection often hinder static analysis approaches.

The Calling Context Tree (CCT) [1] is the most commonly used
data structure for representing calling context profiles. Each node in
the CCT corresponds to a calling context and stores the measured
dynamic metrics for that calling context. Moreover, the parent of
a node represents the caller’s context, while the children nodes
correspond to the callee methods.

Most of the existing techniques for generating CCTs illustrate
them in the form of expandable trees. However, CCTs can become
quite large, sometimes comprising millions of nodes. Furthermore,
the depth of CCTs can be large so that CCTs with 50–400 layers
are common in practice. In this situation, navigating and explor-
ing CCTs for a particular dynamic metric of interest (e.g., locat-
ing invocations of a particular method in various calling contexts)
can be quite challenging when a simple expandable tree representa-
tion is used, and hence, better visualization techniques are required.
We tackled this problem by using Calling Context Ring Charts

(CCRCs) [5, 7, 8] for visualizing and exploring CCTs. In a CCRC,
the CCT root is represented as a circle in the center. Callee meth-
ods are represented by ring segments surrounding the caller’s ring
segment. With CCRCs, it is possible to display all calling contexts
of a CCT in a single chart, preserving the caller/callee relationships
conveyed in the CCT. For a detailed analysis of certain calling con-
texts, they can be selected to be visualized separately and the tree
depth can be limited.

In our earlier work [5–8], we employed our CCRC visualiza-
tions to explore the profiles offline after program termination. How-
ever, offline exploration of profiles has the disadvantage that it may
be impossible for the user to visualize and explore the profiles
while the program is running. This is not specially suitable for long-
running programs. To address this issue, in this tool demonstration
we present a novel profiler that employs our CCRC visualizations
to ease the exploration of the inter-procedural control flow of appli-
cations while they are running. In this profiler, the application is be-
ing executed on a Java Virtual Machine (JVM), and using an aspect
written in AspectJ, its corresponding CCT is built at the same time.
To reduce the overheads of profiling and visualizing, the updates to
this CCT during the application execution are incrementally trans-
mitted to a second JVM process that runs our CCRC visualization.
Thanks to this incremental transmission of data, the profiler can
highlight the recently active parts of the application during its ex-
ecution. The user can also interactively play with the visualization
tool and navigate the profiles.

The novel contributions of this tool demonstration include
(i) CCRC visualization of an application while it is running, (ii) in-
cremental transmission of updated CCT fragments and incremen-
tally building the complete CCT from these fragments, and (iii) vi-
sualization of recently active parts of the application.

public aspect CCTProf {

public static final CCTNode root = new CCTNode();

public static final ThreadLocal<CCTNode> currentNode =
new ThreadLocal<CCTNode>() {

protected CCTNode initialValue() { return root; }
};

pointcut execs() : execution(* *.*(..)) &&

!within(CCTProf) && !within(CCTNode);

before() : execs() {

CCTNode caller = currentNode.get();
CCTNode callee =

caller.profileCall(thisJoinPointStaticPart);
currentNode.set(callee);

}

after() : execs() {

CCTNode caller = currentNode.get().getParent();
currentNode.set(caller);

}

...

}

Figure 1. Simplified aspect for building CCTs

public aspect AllocCCTProf {

... // Same code as in Figure 1

pointcut allocs() : call(*.new(..)) &&

!within(AllocCCTProf) && !within(CCTNode);

after() returning(Object o) : allocs() {

currentNode.get().profileAllocation(o);
}

}

Figure 2. Extended aspect to collect also object allocation metrics

This paper is organized as follows. Section 2 presents the as-
pects that were used to build the CCT during the application ex-
ecution. Section 3 provides an overview of CCRC visualizations.
Section 4 describes the architecture of our profiler. Section 5 dis-
cusses the results of empirical evaluations. Section 6 overviews re-
lated work and Section 7 concludes.

2. Dynamic Analysis Aspects for Building CCTs

Figure 1 illustrates a simplified version of an aspect used in
building CCTs [2]. This aspect keeps the root of the shared CCT
in a static field and defines the thread-local variable currentNode
to keep the current position in the CCT for each thread. The two
advices in Figure 1 build the CCT. The before() advice is woven
in method entries. It loads the caller’s CCTNode instance from the
thread-local variable currentNode, looks up the callee’s CCTNode
(profileCall(...)), and stores it back into the thread-local vari-
able currentNode. The static join point representing the woven
method (i.e., the method identifier of the callee) is accessed through
the AspectJ pseudo-variable thisJoinPointStaticPart.

In the after() advice, which is woven right before returning
from the method or throwing an exception, the callee’s CCTNode
is loaded from the thread-local variable currentNode in order to
access its parent node (assuming that each CCTNode instance keeps
a reference to the parent node in the tree).

To highlight the flexibility of our AOP-based approach to pro-
filer development, Figure 2 illustrates an extension of the CCTProf
aspect (Figure 1), called AllocCCTProf, in order to collect also
object allocation metrics for each calling context. The additional

after() advice is woven after constructor invocations, and the
newly created object is passed to the advice as an argument. We
assume that the method profileAllocation(...) updates ob-
ject allocation metrics, such as the number of allocated instances
and an estimate of the total allocated bytes in a calling context.

3. Visualizing CCTs as Calling Context Ring

Charts (CCRCs)

To visualize CCTs in a more condensed way and to offer advanced
exploration capabilities, CCRCs use an onion-like structure with
circular layers in which each layer corresponds to a layer in the
CCT (Figure 3 (left)). Beginning with the root node as the central
ring, nodes are illustrated as ring segments, and children nodes
(callees) are represented on the outer ring of their parent (caller).

Currently, CCRCs support three different kinds of visualiza-
tions [5, 7, 8]. First, for each caller, the ring segments of the callees
have the same size and completely surround the caller’s ring seg-
ment. While this representation eases the analysis of caller/callee
relationships, it does not convey any information on dynamic met-
rics collected within different calling contexts. In the second visu-
alization, the angle covered by each ring segment is proportional
to the contribution of the corresponding calling context to a chosen
dynamic metric, relative to the respective caller’s contribution. For
example, if object allocation is chosen as the desired metric, this
representation reveals the methods that instantiate the most objects
in each calling context. While in the first and second visualizations
the width of each layer in the ring chart is the same, the third repre-
sentation continuously reduces the width of outer layers such that
the area occupied by each ring segment is proportional to the over-
all metric contribution of the corresponding calling context.

The above three visualizations are complemented with four tree
manipulation operations on the CCT that help exploring large call-
ing context profiles. The first operation, subtree selection, allows
the selection of any CCT node as root, while the second opera-
tion, depth limitation, limits the depth of the visualized CCT. The
third operation, recursion elimination, merges CCT nodes repre-
senting recursive calls. This operation can significantly reduce the
CCT size in the presence of recursions. Finally, the fourth oper-
ation, dynamic metric aggregation, determines the overall metric
contribution of each method, completely discarding calling context
information.

4. Profiler Architecture

Figure 3 illustrates a screenshot of our profiler and Figure 4 depicts
its architecture. In this tool, the Java application being profiled is
executed on a JVM and at the same time, the CCT profiling as-
pects build its corresponding CCT. This CCT is being continuously
updated during the application execution. Since the standard As-
pectJ weaver cannot weave aspects into the Java class library, the
MAJOR [13] aspect weaver is used instead in order to have full
method coverage.

While the application is being executed on the first JVM, a
thread periodically transmits the updated CCT fragments through a
socket to a second JVM that runs the CCRC visualization tool. The
corresponding CCRC visualization is then automatically updated
with the newly arriving data. In this way, our profiler supports
incremental transmission of data in which, at the beginning, the
complete CCT structure is transmitted from the first JVM to the
second one. Afterwards, only new or updated CCT nodes are being
sent. A CCT node is considered updated, if it has one or several
new children, or if some of the dynamic metrics corresponding to
that node have been updated (since the last transmission).

The incremental transmission of data not only decreases the
amount of data communicated between the two JVMs, but also

Figure 3. Profiler screenshot

CCT'
Incremental

Transmission

JVM

Figure 4. Profiler architecture

allows the profiler to highlight the recently active parts of the
application.

5. Evaluation

This section presents the results of the evaluations performed to val-
idate whether our tool can be used to profile real-world applications
such as Eclipse. These evaluations were done with the DaCapo
benchmark suite1 with its default workload size running on a laptop
with Sun JDK 1.6 18, Intel Core 2 Duo 2.33Ghz processor, 3GB of
memory, and the Linux Fedora 12 operating system.

Size of Transmitted Packets. This evaluation was done to show
that the sizes of the packets transferred from the first JVM to the
second one is much smaller than the size of the whole CCT data.
Figure 5 presents the sizes of successively transmitted data packets
for a single run of DaCapo’s “eclipse” benchmark with a transmis-
sion rate of 1.25 packets per second. For each packet, this figure
also differentiates between the size of the transmitted CCT nodes
and the size of the sent dynamic information. This information in-

1 http://www.dacapobench.org/

cludes different dynamic metrics such as the number of method
invocations, the number of executed bytecodes, the number of allo-
cated objects, and the total size of allocated objects. A transmission
rate of 1.25 packets per second confirms that the developer always
observes up-to-date dynamic information in the visualization tool,
refreshed more than once per second, while the application is run-
ning on the first JVM.

In total, 370 packets were sent in a total runtime of 296 sec-
onds. Although most packets were relatively small, below 1MB,
some packets were considerably larger, reaching up to 9MB. For
instance, packets 60–79 appear as a major peak in the figure. We
found that these packets were conveying dynamic information col-
lected while the “eclipse” benchmark was compiling some projects.
On the other hand, the minor peak in Figure 5, i.e., packets 227–
232, corresponds to some XML data processing. The initial pack-
ets, collected during the startup phase of “eclipse”, were very small.
This can be described by the fact that the startup phase was IO-
intensive and involved much class-loading and just-in-time compi-
lation by the JVM, which were mostly implemented in native code
and consequently, were not amenable to MAJOR’s instrumentation.

With respect to the above discussion, we conclude that due to
the incremental data transmission feature of our profiler, typically
only a subset of the CCT nodes is transmitted. This makes it
possible to frequently transmit the collected dynamic information
to the visualization tool, and to continuously provide up-to-date
data to the user.

CCRC Rendering Performance. The goal of this evaluation is
to illustrate that our CCRC visualization can render large CCTs
in a small amount of time, which makes it practical in exploring
large CCTs. To this end, first we generated CCTs for the DaCapo
benchmarks. The size of these CCTs was huge comprising up
to 2,166,169 nodes for the “eclipse” benchmark. Afterwards, we
visualized the generated CCTs by using our second type of CCRC
visualizations (see Section 3). The rendering time was between
14ms and 204ms for a varying number of displayed tree layers.
As experimentally established in [3], users will not notice delays
in their mouse interactions when the response time is up to 195ms.

Figure 5. Sizes of transmitted data packets for the “eclipse”
benchmark. Transmission rate: 1.25 packets per second

With respect to this, we conclude that CCRC rendering is perceived
as being almost instantaneous by users, allowing them to explore
very large calling context profiles smoothly. Interested readers are
referred to [8] for a detailed description of results.

Instrumentation Considerations. As described in Section 4, in
order to have full method coverage including the Java class library,
we use MAJOR for instrumenting the code. MAJOR offers a mech-
anism that allows the inserted code to be skipped [13]. We use
this feature to avoid perturbations (e.g., method calls for network
communication) and to prevent infinite regression when the profiler
calls back in the Java class library.

Regarding the instrumentation overhead, it was evaluated with
a similar setting to this paper in [11]. The overhead of running the
instrumented program is typically a factor of 3 to 10.

6. Related Work

There is a large body of related work on visualizing large hier-
archies in a comprehensible form. Interested readers are referred
to [4] for a detailed survey of these techniques. One main category
of these approaches is radial techniques that represent hierarchi-
cal structures in a circular layout, similarly to CCRCs. Previous
research has indicated that these techniques are highly effective in
supporting the users in exploring hierarchical structures [12]. Con-
sequently, this observation backs the claim that CCRCs are useful
in practice for exploring large CCTs.

In contrast to our profiler that uses CCRCs to visualize profiling
data, many existing profilers, such as JProfiler [10] and NetBeans
Profiler [9], visualize calling context profiles in the form of expand-
able trees. In these profilers, calling contexts are sorted by their
contribution to an aggregated metric (typically execution time) and
can be expanded or collapsed in order to show or hide callees.
While such a view is simple and straightforward to use, CCRCs
convey more profiling information in a single view and give a bet-
ter understanding of caller/callee relationships. Moreover, by using
the subtree selection and depth limitation operations, CCRCs effi-
ciently support exploring parts of the CCT which are of interest.

7. Conclusion

In this tool demonstration, we presented a profiler that employs
Calling Context Ring Charts (CCRCs) visualization to enable ef-
ficient construction and navigation of large CCTs while the pro-
gram is running. By running the application and the visualization
on two different JVMs, and by incrementally transmitting only the

updated fragments of the CCT from the first JVM to the second
one, our profiler also helps the user focus on the recently active
parts of the running application. Our evaluations confirm that ren-
dering CCRCs is perceived almost instantaneously (in the range of
14–204ms). Additionally, thanks to incremental data transmission,
the profiling data produced by a running application can be up-
dated several times per second on a standard laptop. Finally, due to
an aspect-based dynamic program analysis technique which is used
in the collection of profiling data, it is easily possible to extend and
customize the tool.

Acknowledgments

The work presented in this paper has been supported by the Swiss
National Science Foundation.

References

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware perfor-
mance counters with flow and context sensitive profiling. In Proceed-

ings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 85–96. ACM Press, 1997.

[2] D. Ansaloni, W. Binder, A. Villazón, and P. Moret. Rapid develop-
ment of extensible profilers for the Java virtual machine with aspect-
oriented programming. In Proceedings of the 1st Joint International

Conference on Performance Engineering, pages 57–62. ACM Press,
2010.

[3] J. R. Dabrowski and E. V. Munson. Is 100 milliseconds too fast? In
Extended Abstracts on Human Factors in Computing Systems, pages
317–318. ACM Press, 2001.

[4] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and
navigation in information visualization: A survey. IEEE Transactions
on Visualization and Computer Graphics, 6:24–43, 2000.

[5] P. Moret, W. Binder, D. Ansaloni, and A. Villazón. Visualizing Calling
Context Profiles with Ring Charts. In Proceedings of the 5th IEEE

International Workshop on Visualizing Software for Understanding
and Analysis, pages 33–36. IEEE Computer Society, 2009.

[6] P. Moret, W. Binder, M. Schoeberl, A. Villazón, and D. Ansaloni. Ana-
lyzing performance and dynamic behavior of embedded Java software
with calling-context cross-profiling. In Proceedings of the 7th Inter-

national Conference on Principles and Practice of Programming in

Java, pages 121–124. ACM Press, 2009.

[7] P. Moret, W. Binder, D. Ansaloni, and A. Villazón. Exploring large
profiles with calling context ring charts. In Proceedings of the First

Joint International Conference on Performance Engineering, pages
63–68. ACM Press, 2010.

[8] P. Moret, W. Binder, A. Villazón, D. Ansaloni, and A. Heydarnoori.
Visualizing and exploring profiles with calling context ring charts.
Software: Practice and Experience, 2010.

[9] NetBeans. The netbeans profiler project. Web pages at http://
profiler.netbeans.org/.

[10] ProSyst. ProSyst JProfiler. Web pages at http://www.prosyst.
com/.

[11] D. Röthlisberger, M. Härry, A. Villazón, D. Ansaloni, W. Binder,
O. Nierstrasz, and P. Moret. Augmenting static source views in IDEs
with dynamic metrics. In Proceedings of the 25th IEEE International

Conference on Software Maintenance, pages 253–262. IEEE Com-
puter Society, 2009.

[12] J. Stasko, R. Catrambone, M. Guzdial, and K. McDonald. An evalua-
tion of space-filling information visualizations for depicting hierarchi-
cal structures. International Journal of Human-Computer Studies, 53
(5):663–694, 2000.

[13] A. Villazón, W. Binder, and P. Moret. Aspect Weaving in Standard
Java Class Libraries. In Proceedings of the 6th International Sym-

posium on Principles and Practice of Programming in Java, pages
159–167. ACM Press, 2008.

