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ABSTRACT
Variability-aware systems are subject to the coevolution of
variability models and related artifacts. Surprisingly, little
knowledge exists to understand such coevolution in practice.
This shortage is directly reflected in existing approaches and
tools for variability management, as they fail to provide ef-
fective support for such a coevolution. To understand how
variability models and related artifacts coevolve in a large
and complex real-world variability-aware system, we inspect
over 500 Linux kernel commits spanning almost four years of
development. We collect a catalog of evolution patterns, cap-
turing the coevolution of the Linux kernel variability model,
Makefiles, and C source code. Further, we extract general
findings to guide further research and tool development.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]:
Restructuring, reverse engineering, and reengineering; D.2.13
[Reusable Software]: Domain engineering

General Terms
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1. INTRODUCTION
Many real-world software systems, such as the Linux ker-

nel, the embedded operating system eCos, and various soft-
ware product lines (SPLs),1 leverage variability modeling
to achieve systematical reuse and mass customization [21].
These variability-aware systems often specify configurable
system options relevant to users as feature declarations, or
features for short, and provide variability models to manage
all features and their relationships. Such features may then
be referred in related artifacts (e.g., Makefiles and C source
code) by means of explicit variation points (e.g., ifdefs).

Large variability-aware systems contain complicated vari-
abilities. Along with the complexity of their variability mod-
els [23, 19], these systems have hundreds of variation points
spread across many files. For instance, the Linux kernel
(release 3.3) contains over 12, 000 features and above 80, 000
compile-time variation points, distributed in more than 1, 600
Makefiles and 30, 000 C implementation and header files. As
Nadi and Holt show [16], only 16% of the features in the
Linux kernel are exclusive to the variability model; 49% are
used in Makefiles, 17% control variability in source code,
and 18% are used in compile-time variation points in both
Makefiles and source code.

In such settings, the coevolution of variability models and
different artifacts is inevitable. The interrelation of different
sources of variability makes variability evolution intricate. A
thorough analysis of a specific Linux kernel release shows
that 35% of the features removed from the variability model
continue to exist elsewhere, being merged with other features,
renamed or becoming an integral part of the code base [18].

Until now, little is known about the coevolution of vari-
ability models and related artifacts [22], a pre-requisite for
providing better tools and practices. Existing research mostly
focuses on techniques and case studies regarding the evolu-
tion of variability models alone [1, 26, 20, 10, 15]. These
techniques are evaluated in terms of fictitious evolution sce-
narios or randomly generated models. Unlike these, Neves et
al. [17] perform a comprehensive study of the coevolution of
variability models and related artifacts in real SPLs. Their
investigation, however, is restricted to small systems (at most
40 features), which may not be representative of the com-

1http://tinyurl.com/sei-casestudies
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plexity typically found in large variability-aware systems [25,
2]. Moreover, the authors only cover operations that conform
to the theory of SPL refinement [4], i.e., operations that pre-
serve the behavior of existing products and guarantee that
every product prior to such operations can still be mapped to
a corresponding product in the resulting SPL. Such situation,
however, is too restrictive in practical settings, where feature
retirement often arises [18].

To better understand how variability models and related
artifacts coevolve, we study the evolution history of a large
and complex real-world variability-aware system: the Linux
kernel. We inspect over 500 commits relative to the addition
and removal of features, spanning almost four years of Linux
kernel development. We collect a catalog of high-level evolu-
tion patterns capturing the coevolution of the Linux kernel
variability model, Makefiles, and C source code. For each
pattern, we crosscheck specific properties of its instances
against evidence from existing literature, and report a set of
findings to guide further research and tool development for
the coevolution of variability models and related artifacts in
variability-aware systems. We claim the extracted catalog
and the reported findings as the two main contributions of
this paper. We hope that these results will help improve
future methods and tools for engineering variability-aware
systems.

2. BACKGROUND
This section explains how variability spreads across dif-

ferent artifacts of the Linux kernel. We also introduce a
notation for reporting the patterns in the catalog.

2.1 The Three Spaces of the Linux Kernel
Variability in the Linux kernel is present in three spaces:

variability model, mapping, and implementation. Following
the steps in Fig. 1, we describe how each of these spaces
works and how they are connected.

Variability Model. The Linux kernel variability model
comprises a set of files written in the Kconfig language.2 A
configurator renders (step 1) a tree of features from Kconfig
files that are available for the user’s platform (i.e., processor
family). From it, users select features that should be present
in the resulting kernel (step 2).

As shown in the file fragment from the variability model in
Fig. 1, features in Kconfig are represented mostly by configs
(lines vm3 and vm5). In our example, FB (the parent of
all frame-buffer-related features)3 and FB UVESA (a generic
frame-buffer driver) are tristate features (lines vm2 and vm4).
They can be absent (n) or present either as dynamically load-
able kernel modules (m) or by being statically compiled into
the resulting kernel (y). Boolean features are also possible
(line vm6), assuming either y or n as value. Other types
include integer and strings (not shown).

In Kconfig, features may contain attributes. The prompt
attribute is a short text describing the feature (lines vm2,
vm4 and vm6), and the configurator uses it to render feature
nodes in the hierarchy (the absence of a prompt makes a
feature invisible to users). A default attribute (not shown)
provides an initial value of the enclosing feature, which can be
later changed during configuration. Two specific attributes
define cross-tree constraints: depends on and selects. The

2https://www.kernel.org/doc/Documentation/kbuild/
3http://tinyurl.com/framebuffer-txt

depends on attribute (line vm7) allows writing a dependency
stated as a condition that must be satisfied to allow users
to select the enclosing feature. A select attribute is a re-
verse dependency that enforces immediate selection of target
features. For example, selecting FB IMAC causes the immedi-
ate selection of FB CFB FILLRECT, FB CFB COPYAREA, and
FB CFB IMAGEBLIT (lines vm8–vm10).

Once users finish their selection, they save their configu-
ration. The configurator then writes a .config file (step 3),
containing a sequence of feature-name=value lines. Note that
in this file, feature names are prefixed with CONFIG .

Mapping. In the Linux kernel, the mapping between fea-
tures and compilation units occurs mostly inside Makefiles.
Kbuild, the kernel build infrastructure, controls the whole
compilation process of the kernel. To build a kernel image
realizing a given configuration, users invoke make (step 4),
which triggers the execution of the top Makefile in the root of
the Linux kernel source code tree (step 5). The top Makefile
then invokes config, which in turn reads the configuration
file (step 5.1) and translates it to two other files (step 5.2):
auto.conf, later used by make, and autoconf.h, later used by
the C pre-processor (cpp).

The top Makefile controls vmlinux (the resident kernel im-
age) and the kernel loadable modules. To make vmlinux,
Kbuild first builds all the object files stored in core-y, libs-y,
drivers-y, and net-y variables, as stated in the top Makefile:
1 vmlinux := $(core-y) $(libs-y) $(drivers-y) $(net-y) ...

2 ...

3 drivers-y += drivers/ main/

These variables denote lists of object files to which other
elements can be appended to. When appending directories
(line 3 above), Kbuild recursively runs the Makefile in each
such directory and generates all objects of a special list: obj-y

(similarly, a list obj-m is kept for dynamic loadable modules).
Objects are conditionally added to such a list by replacing y

with a feature name. As shown in the Makefile fragment of
Fig. 1 (line m7), imacfb.o is added to obj-y if FB IMAC is set
to be y in the auto.conf file (the same applies to FB EFI and
FB UVESA, lines m8–m9). Kbuild attempts to compile object
files by locating a corresponding C file matching the same
name. However, that is not always the case. For fb.o, there is
no fb.c file in the Makefile’s directory, so Kbuild relies on the
presence of a list named after the object file and suffixed with
either -y or -objs. In our example, the FB feature is associated
with the set of objects in the fb-objs list (lines m2–m5).

Implementation. Variability in the source code base is ex-
pressed in terms of conditional compilation macro directives
(ifdefs), whose conditions are essentially Boolean expressions
over feature names. These directives guard whether certain
source code fragments should be compiled.

Prior to compilation, Kbuild assures that the C compiler
(cc) appends an inclusion directive of autoconf.h in the corre-
sponding target source file (step 5.3) prior to calling cpp. This
header contains macro definitions for the features selected
during configuration and it is encoded as follows: all features
in the .config file result in pre-processor symbols with the
same name; tristate features selected as modules are suffixed
with MODULE; macros of selected Boolean/tristate features
are set to 1; integer/string features, if present, lead to macros
whose values match those given at configuration.

Given the macro definitions in autoconf.h, cpp then evaluates
all code guards directives, effectively deciding code blocks to
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1. rendered by
(configurator)

Mapping

(Makefiles)

Implementation

(C source code files)

(.config file)
2. makes a feature selection

3. writes

(config)

Variability Model

vm1. menuconfig FB
vm2.    tristate "Support form frame buffer devices"
vm3. config  FB_UVESA
vm4.    tristate "Userspace VESA VGA graphics"
vm5. config FB_IMAC
vm6.    bool "Intel-based Macintosh Framebuffer
                      Support"
vm7.    depends on (FB = y) && X86 && EFI
vm8.    select FB_CFB_FILLRECT
vm9.    select FB_CFB_COPYAREA
vm10.  select FB_CFB_IMAGEBLIT
...

(Kconfig files)

m1.  obj-$ (CONFIG_FB)  += fb.o
m2.  fb-objs := fbmem.o \
m3.                  fbmon.o \
m4.                  fbcmap.o \ 
m5.                  fbsysfs.o modedb.o fbcvt.o
m6.
m7.  obj-$ (CONFIG_FB_IMAC) += imacfb.o
m8.  obj-$ (CONFIG_FB_EFI) += efifb.o
m9.  obj-$ (CONFIG_FB_UVESA)+= uvesa.o
...

efibf.c

fmem.c

uvesafb.c

...

...
CONFIG_FB=y
CONFIG_FB_IMAC=y
# CONFIG_FB_EFI is not set
CONFIG_FB_UVESA=m
...

(auto.conf)

...
CONFIG_FB=y
CONFIG_FB_IMAC=y
# CONFIG_FB_EFI is not set
CONFIG_FB_UVESA=m
CONFIG_MTRR=y
...

(autoconf.h)

...
#define CONFIG_FB 1
#define CONFIG_FB_IMAC 1
#define CONFIG_FB_UVESA_MODULE 1
#define CONFIG_MTRR 1
...

uvesafb.c

5.1. reads

5.2
.tr

an
sla

tes(make)

(cpp)

5.4
. p

re-
pr

oc
es

se
s

(cc)

5.5. compiles 
(pre-processed)

Kbuild

(user)

imacfb.o

fmem.o

uvesafb.o

...

(ld)

5.6
. li

nk
s

builtin.o

uvesafb.ko

vmlinux

Top 
Makefile 5. 

ex
ec

ute
s

4. invokes  

...
i1. ... 
i2. static void __devinit uvesafb_init_mtrr
i3.                     (struct fb_info *info)
i4. {
i5. #ifdef CONFIG_MTRR
i6.     ... // Definition given upon the 
         ... //presence of MTRR
i42.  ...
i43. #endif /* CONFIG_MTRR */
i44. }
...

fbcvt.c
fbcvt.o

imacfb.c

5.3. appends #include<autconf.h>

Figure 1: The three spaces in the Linux kernel and their interaction with Kbuild

be included and those to be removed (step 5.4). The C com-
piler, in turn, compiles the resulting code (step 5.5). From
the example configuration in Fig. 1, pre-processing uvesafb.c

results in a non-empty body of the devinit uvesafb init mtrr

function (lines i6–i42), as CONFIG MTTR is a defined macro
in autoconf.h.

The last step in the compilation process links the object
files in obj-y, merging them into a built-in.o file (step 5.6).
This file is later linked into vmlinux by the parent Makefile.
Similarly, tristate features set to m, after linkage, result in
loadable kernel objects (.ko file).

2.2 Patterns and Notation
An evolution pattern gathers changes in each space and

shows how they coevolve as a result.
As a walk-through to our notation, consider a particular

feature merge pattern (Fig. 2). An instance of the pattern is
the case where developers add the capabilities of FB IMAC

into FB EFI, and consequently remove FB IMAC from the
variability model, mapping and implementation.4

As shown in the figure, a pattern depicts the transition
from a before-state to a state after the application of the
prescribed change—after-state. The transition is denoted by
an arrow (shown in the middle); the before-state is on the
left of the arrow; the after-state follows it. In each state, the
pattern captures key characteristics in the variability model,
build files and source code.

We express the variability model in a FODA-based no-

4Commit 7c08c9ae.

tation, together with the set of the existing cross-tree con-
straints (i.e., CTC ). In the before-state of Fig. 2, two optional
sibling features exist: f1 (matches FB IMAC) and f2 (matches
FB EFI). To explicitly report that these features are visible
(promptable) during configuration, we use a corresponding
attribute (shown inside square brackets).

We capture the mapping M as a sequence of build rules
defined by the following syntax:

M ::= 〈R+〉
R ::= (E,R,R) | compilation unit+ | directory+ | ε

In a build rule (e, r1, r2), e is an expression E over feature
names; r1 is another build rule R executed in case e evaluates
to true; and r2 is an alternative build rule for the case e does
not hold. To avoid clutter, the condition and the alternative
rule may be omitted to represent unconditional rules (e is
taken as true and r2 is an empty rule—ε). Moreover, the
shorthand form (e, r1) is used when r2 is empty. The pattern
in Fig. 2 shows two build rules: (f1, f1.o) and (f2, f2.o),
stating that the presence of f1 and f2 triggers the compilation
and linkage of their corresponding compilation units (imacfb.o

and efifb.o in the example). For simplicity, this representation
does not distinguish dynamically loadable modules from
objects to be statically linked against the kernel.

Similarly to the mapping space, we capture the implemen-
tation (I) as a sequence of code block triples (e, c1, c2), where
e is a macro-based expression over feature names and c1 and
c2 are themselves code block triples. As before, simplifica-
tions are possible: c denotes an unconditional code block
and (e, c1) is a conditionally compiled code block without an
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alternative. In case an entire compilation unit implements a
feature, we draw a square in the code space (e.g., matching
imacfb.c and efifb.c, respectively).

In all spaces, we use “. . . ” to ignore unrelated elements
that do not affect the features under analysis.

In the after-state of the merge pattern in Fig. 2, f1 is
removed from all three spaces (removal is generally denoted
by omitting elements previously shown in the before-state).
The set of cross-tree constraints is then rewritten (CTC ′)
such that every reference to f1 becomes a reference to f2.
Besides referential integrity, such rewrite guarantees that all
constraints imposed by f1 are now imposed by f2 as well
(no constraint is lost). Furthermore, the compilation unit of
f2 continues to support the capabilities of f1, plus its own,
which we denote as f2 > f1.

Figure 2: Merge Visible Optional Feature into Sib-
ling

3. METHODOLOGY
We extract our pattern catalog by analyzing patches that

change the variability model by either adding or removing
feature names. We then keep track of how the mapping and
implementation spaces change as a result.

To scope our analysis, we focus on the x86 architecture,
as its variability model follows the same growth pattern of
the variability model of the whole kernel [15].

We collect the entire set of added and removed features
by calculating the feature set difference among pairs of con-
secutive stable kernel releases. To that end, we extract the
Kconfig infrastructure shipped in the Linux kernel source
code to list the features in each kernel release. Currently,
such infrastructure can process Kconfig files in any version
starting from the kernel release 2.6.26, up to 3.3, the latest
release available when we conducted our analysis.

Next, we create two random samples: one comprising 5%
(206) of all added features, and another with 10% (101)
of all removed features. An entry in each sample contains
the feature name and the kernel release that either adds or
removes such a feature. The size of the additions population
in the given release range (4,112) is four times bigger than
the size of the removals sample (1,002). Although differing
in terms of the underlying release population, these sizes are
consistent with [15], showing that feature additions in the
Linux kernel exceed feature removals.

By parsing all the patches in the version control system
(VCS) of the Linux kernel, we link each sample entry with the
commit, referred as primary commit, that adds or removes

T
im

e

Figure 3: Commit window example

the corresponding feature (named as primary feature). As
one primary feature associates with a single primary commit,
we collect 206 and 101 primary commits relative to added
and removed features, respectively.

Once all primary commits are known, we set to extract the
evolution patterns. We describe their extraction procedure
in the following.

Pattern Extraction
We apply a multi-step analysis to retrieve the evolution
pattern of a primary feature.

As the primary commit only guarantees to retrieve changes
in the configuration space (changes in other spaces may be
in other commits), we rely on a commit window to collect
commits related to the primary feature that either follow or
precede the primary commit. To illustrate this, consider the
addition of the primary feature CAPTURE DAVINCI DM64X.
Figure 3 shows a sequence of commits (one commit per line)
changing the V4L and DVB subsystems,5 as recorded in the
Linux kernel VCS. In the figure, the primary commit is high-
lighted in gray, with its patch shown in Fig. 4. A patch is a
textual diff recording added (prefixed with “+”) and removed
lines (prefixed with “-”). Lines without prefix provide context
to ease understanding. In the example, the primary commit
adds a Kconfig entry (Fig. 4, lines 8–11) and a new compila-
tion rule in the correct Makefile (lines 15–16). As seen in the
patch, the developer does not add a file vpif capture.c. In that
case, we set to expand the commit window to the point where
such an addition occurs (if it occurs). The commit following
the primary one adds vpif capture.c; thus it is included in the
commit window, shown as a black rectangle in Fig. 3.

Strictly, the boundaries of a commit window are only
limited by the total number of commits in the evolution
history. Furthermore, selecting which commits should be
part of a commit window is ultimately a subjective process.
To mitigate these problems, we restrict the maximum size
of a commit window to contain at most 40 commits, and
starting from the primary commit, we expand a commit
window using four main rules: (i) include commits that
add/remove compilation units known to be mapped to the
primary feature; (ii) include commits whose changes affect
files mapped to the primary feature; (iii) include commits
whose changes add/remove compile-time variation points that
rely on the primary feature; (iv) include commits that modify
the declaration of the primary feature in the variability model.
Restricting the window size works well for our samples, as
on average it is 1.65.

Within the commit window, we move to inspect all the
changes it contains, initially classifying it as addition, re-
moval, split, merge or rename of the primary feature. This
classification may ignore changes unrelated to the primary
feature (e.g., lines 5–6 in Fig. 4). Windows with the same
category are then clustered together.

5V4L/DVB: Video for Linux/Digital Video Broadcasting
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1 drivers/media/video/Kconfig

2

3 config DISPLAY_DAVINCI_DM646X_EVM

4 help

5 - Support for DaVinci based display device.

6 + Support for DM6467 based display device.

7

8 +config CAPTURE_DAVINCI_DM646X_EVM

9 + tristate "DM646x EVM Video Capture"

10 + depends on VIDEO_DEV && MACH_DAVINCI_DM6467_EVM

11 + ...

12

13 drivers/media/video/davinci/Makefile
14

15 +obj-$(CONFIG_CAPTURE_DAVINCI_DM646X_EVM) += \

16 vpif_capture.o

Figure 4: Patch adding the Davinci D6467 driver
(primary commit)

The relevant changes inside each window are then taken as
a whole, which we capture as a before-state and after-state.
At this stage, we create specialized subcategories to represent
the changes and their similarity in terms of how they affect
specific characteristics of primary features and their cross-tree
constraints. Such characteristics include, but are not limited
to: (a) visibility: feature is promptable or not; (b) type:
whether the feature is a switch (i.e., Boolean/tristate) or a
value-based feature (int/string) [3]; (c) computed defaults;
(d) mandatory; (e) whether the feature causes the addition
of compile-time variation points, and in which spaces; (f)
whether the feature contains associated compilation units.
We then re-cluster results accordingly and discard clusters
with less than 3% of the size of the sample under analysis.
We choose this cut as it matches exactly three instances in
the removal sample, thus conforming to the Rule of Three: a
pattern can be called a pattern only if it has been applied to
a real world solution at least three times.6 Applying such a
percentage in the addition sample results in finding at least
six instances, as that sample contains roughly twice more
primary commits than the removals sample.

Once we cannot further subcategorize clusters, we set to
extract a pattern that explains the changes in the commit
windows of each obtained cluster.

In total, we examine 508 commits in all commit windows,
where 406 relate to features in the additions sample and
the remaining 102 to features in the removals sample. It
is worth noting that some commit windows do not lead
to sound conclusions, and are thus excluded from analysis:
these windows account for 3% (6) of the features in additions
sample, and 7% (7) of the features in the removals sample.

Two authors were responsible for collecting patterns. As
this process requires human analysis (e.g., establishing the
boundaries of a commit window and the subcategories used
for clustering), each of those authors reviewed the results of
the other; in the case of inconsistencies, the authors discussed
them and reached a consensus on the correct form of the
pattern. Later, a third author reviewed all results, pointing
out possible inaccuracies. In that case, all three authors
discussed any resulting issue and reached a final agreement
on the patterns herein reported.

All the collected data, its analyses and the custom under-
lying infrastructure are available at our website.7

6http://c2.com/cgi/wiki?RuleOfThree
7http://gsd.uwaterloo.ca/coevolution-patterns

Additions sample Removals sample
Pattern # of instances Pattern # of instances
AVOMF 95 RVOMF 22
AVOGMF 10 RVOGMF 9
AVONMF 26 RVONMF 9
AIMF 13 RIMF 3
FTC 8 MVOFNO 3

MVOFCI 3
MVOFS 3

RNM 9 RNM 17

Total 161 Total 69
Sample % 78 Sample % 68

Table 1: Patterns frequency

4. PATTERN CATALOG
This section presents 12 patterns in our catalog. Table 1

shows their usage frequency in each associated sample. We
discuss all the patterns in the following, except for rename
(RNM), which we omit due to spacing.

Add Visible Optional Modular Feature (AVOMF).
A visible and optional modular feature increases the user
configuration space by providing a functionality unit that
can be optionally present in the resulting kernel. Modularity,
in this case, assures that the capabilities of the new feature
reside in its own compilation unit.

As shown in Fig. 5, the pattern adds a new optional
and visible feature f in the variability model, along with
its associated constraints. A build rule then relates the
feature presence to its compilation units, whose files are
added to the implementation space. The addition of CAP-

TURE DAVINCI DM646X EVM, previously discussed in Sect. 3,
is an instance of this pattern.

Most primary features in the additions sample (46%) fit
into this pattern and are used to add: (a) device drivers
(90%)—features that exist inside the kernel space and are
“plugged-in” to the core kernel (subsystems + system calls)
to support different hardware. Such high frequency agrees
with existing work [9, 12, 15, 8], stating that the Linux
kernel evolution is mainly driven by the addition of new
drivers; (b) core functionality (2%)—features added to the
core kernel, such as supporting self-test for 64-bit atomic
instructions; (c) complementary functionality (5%)—features
that complement an existing feature, either in or outside
the core, with extra functionality (e.g., debugging support);
and (d) shared functionality (3%)—features that provide a
common base to a set of features. For example, the CAN
(Controller Area Network) network bus driver provides a
generic infrastructure that all specific CAN drivers rely on.

Instances of this pattern are either tristate (90%) or Boolean.
The dominance of tristate features follows a trend in most of
the patterns related to modular features, evidencing a tight
relation between the two. That relation is intentional, as
modular tristate features provide flexibility to cover different
requirements and configuration purposes (e.g., in embedded
platforms where hardware can be anticipated, tristate fea-
tures can be statically linked against the final kernel; in other
situations, when hardware changes at will, tristate features
can be compiled as modules and loaded as needed).

It is worth noting that modular features can still be ref-
erenced in code extensions (ifdefs) elsewhere. To verify the
existence of such extensions while overcoming the scope lim-
itation imposed by the commit window size, we collect all
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ifdefs in the kernel releases that adds visible optional modular
features found in our sample. We find that such extensions
are infrequent, as they only appear in five device drivers
among all added visible modular features, and two exten-
sions appear in a header file exporting certain functions of a
new driver. In that case, an ifdef checks whether the driver
is present. If not, an alternative code generates a warning
stating that calling the exported function leads to an error;
the remaining three appear outside the related driver code,
but still outside the core kernel. This evidences that adding
new drivers agrees with the kernel planned architecture, as
drivers should integrate to the core by registering themselves
as handlers to specific events (e.g., hardware interrupts) [5].

Figure 5: Add Visible Optional Modular Feature

Add Visible Optional Guard Modular Feature
(AVOGMF). This pattern is a variant of AVOMF. The
only difference with the former is that in this pattern f serves
as a compilation guard over an entire directory, controlling
whether the compilation process should recursively descend
to it. As such, it contains an additional mapping rule

instructing Kbuild to enter a child directory f/ upon the
presence of that feature. There Kbuild processes a Make-
file with the rule on how to build f itself. The addition
of the device driver supporting Realtek’s© 8192 network
adapter illustrates this (see Fig. 6): in the parent Makefile
(top snippet in the figure), Kbuild assesses whether RTL8192

is present. If so, it enters the rtl8192se directory and processes
the child Makefile in there (bottom snippet); in that case,
RTL8192’s presence enables the compilation of all objects in
the rtl8192se-objs list.

This pattern comprises 5% of all additions, and two idioms
result from its usage: (a) developers create guard modular
features to control the compilation of a single feature, whose
implementation is given by the files in the guarded directory.
This represents 70% of the instances of in this pattern; (b)
in the remaining, a guard modular feature roots a subtree
with at least one modular descendant feature. All modular
features in the subtree reside in the directory f/.

Add Visible Optional Non-Modular Feature
(AVONMF). This pattern concerns the addition of features
that do not fit inside a module, but rather reside in an existing
host code; 13% of the additions instances fit this pattern.

As shown in Fig. 7, this pattern adds a visible optional

drivers/net/wireless/rtlwifi/Makefile

+obj-$(CONFIG_RTL8192SE) += rtl8192se/

...

drivers/net/wireless/rtlwifi/rtl8192se/Makefile

+rtl8192se-objs := dm.o fw.o hw.o led.o phy.o rf.o \

+ sw.o table.o trx.o

+

+obj-$(CONFIG_RTL8192SE) += rtl8192se.o

...

Figure 6: Guarded directory example (AVOGMF)

Figure 7: Add Visible Optional Non-Modular Fea-
ture

feature in the feature model, while not changing the map-
ping. The implementation changes by now including new
conditionally compiled code blocks whose condition refers to
f (note that the alternative code C2 may be absent).

This pattern serves the purpose of extending existing capa-
bilities in code. The following patch snippet illustrates this:

+#ifdef CONFIG_SQUASHFS_4K_DEVBLK_SIZE

+#define SQUASHFS_DEVBLK_SIZE 4096

+#else

+#define SQUASHFS_DEVBLK_SIZE 1024

+#endif

If SQUASHFS 4K DEVBLK SIZE (matches f) is present, the
block size of the Squash file system8 is set to four kilobytes;
otherwise it is set to one kilobyte.

Following the granularity measures proposed by existing
studies [14], from a total of 108 code extensions (ifdefs) in the
commit windows of all non-modular features in this pattern,
44.4% are extensions at the global level (e.g., declaring a new
macro, variable, function, structure, etc.), 33.3% occur at the
function level (e.g., by adding statements inside a function),
14% extend a block statement (e.g., adding a statement inside
an if-block) and 8.3% extend a type declaration (e.g., adding
a field to a structure). This distribution is similar to the
one found by Liebig et al. [14] when investigating 40 pre-
processor-based systems. As we do not find any extensions
on the level of single statements (e.g., changing the type of a
variable declaration), expressions or function signatures (e.g.,
adding a conditional parameter), our findings strengthens
their claim that fine-grained extensions are not frequent in
practice. Interestingly, f negatively affects the conditionally
compiled code in 2% of the extensions, i.,e., its presence
excludes a portion of code in the post-processed file (negated
f guards an ifdef block that does not have an else part).

Opposed to modular features, in 92% of the instances

8http://squashfs.sourceforge.net/
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of this pattern, f is a Boolean feature: since it does not
introduce any compilation unit (and thus no build rules),
it is not possible to directly control whether f should be
statically present in the resulting kernel or whether it should
be possible to load it dynamically at runtime. The only
situation in which f is tristate is when it contains a reverse
dependency towards a modular tristate feature fs; if put
as Boolean, f would cause fs to be statically compiled into
the resulting kernel, and thus, breaking the flexibility of the
runtime variability related to fs. However, visible optional
non-modular tristate features are rather infrequent, as only
two instances appear in our sample; one of them has no
selection towards another tristate feature, and thus, provides
no benefit over a Boolean declaration.

Add Internal Modular Feature (AIMF). Internal mod-
ular features are not directly exposed to users during configu-
ration, as they are invisible (non-promptable). Such features
exist to provide a common infrastructure to other features,
which in turn select them by means of reverse dependencies.

This pattern concerns how internal modular features are
added: as with other modular features, the variability model,
mapping and implementation change to accommodate the
new feature (referred as f1). However, two key characteristics
arise: (i) f1 is invisible; (ii) an additional constraint states
that another feature f2 selects f1 (represented as an implica-
tion). Thus, the cross-tree constraints in the after-state are:
CTC’ = CTC ∪ CTCf1 ∪ {f2 → f1}.

As AVOMF, this pattern covers the addition of new func-
tionality, and comprises 6% of all additions.

Featurize Code (FTC). Featurization results from cre-
ating a feature from existing elements, and covers 4% of
features in the additions sample.

In the extracted pattern, illustrated in Fig. 8, the compi-
lation of a set of object files f1.o . . . fn.o depends upon the
presence of a feature p. This pattern is applied when a given
object file fi.o (1 ≤ i ≤ n) is not essential to the functionality
provided by p; rather, its capability is optional. In that case,
fi.o is featurized, i.e., a new feature fi is created to control
whether fi.o should be compiled or not. The new feature,
in turn, becomes a child of p in the hierarchy, and fi.o is
removed from the list of objects controlled by p. Adding
fi gives users a finer-grained control over the configuration
process, while decreasing the granularity of p. That prevents
unnecessary features to be shipped in the resulting kernel,
and in turn, improves its memory usage and boot time.

The example shown in Fig. 9 illustrates the featurization
of me4000.o, previously controlled by COMEDI PCI DRIVERS,
into the new feature COMEDI ME4000.

Retire Feature (RVOMF, RVOGMF, RVONMF,
RIMF). Retiring a feature consists in removing it from
all the spaces it appears. Four retirements patterns occur
in the removals sample: (a) Retire Visible Optional Mod-
ular Feature (RVOMF); (b) Retire Visible Optional Guard
Modular Feature (RVOGMF); (c) Retire Visible Optional
Non-Modular Feature (RVONMF); (d) Retire Internal Mod-
ular Feature (RIMF). These patterns are the inverse of their
counterpart addition patterns (namely AVOMF, AVOGMF,
AVONMF, and AIMF) with a similar frequency distribution.
Due to spacing, we omit their representation.

Kernel maintainers retire features when (a) the features
are under staging (unstable features) for a long time, and
there is no indication that they will gain enough quality to

Figure 8: Featurize Code

drivers/staging/comedi/Kconfig

menuconfig COMEDI_PCI_DRIVERS

tristate "Comedi PCI drivers"

...

+config COMEDI_ME4000

+ tristate "Meilhaus ME-4000 support"

+ help

+ Enable support for Meilhaus PCI data acquisition cards

+ ME-4650, ME-4670i, ME-4680, ME-4680i and ME-4680

...

drivers/staging/comedi/drivers/Makefile

-obj-$(CONFIG_COMEDI_PCI_DRIVERS) += me4000.o

+obj-$(CONFIG_COMEDI_ME4000) += me4000.o

Figure 9: Featurize Code example

be merged into the main kernel. Reasons include broken,
unmaintained or buggy features, or non-adherence to devel-
opment conventions; (b) the features break due to changes
elsewhere and no effort is put to fixing them; (c) the features
are not used and are unmaintained for a long time; (d) a
feature supersedes an obsolete one, which is then retired.

Interestingly, 67% of RVONMF and RIMF, and 23% of
the RVOMF instances are removed as a consequence of
retiring the whole subtree containing them. This suggests
that: (i) most visible optional non-modular and internal
modular features are retired together with their parent; (ii)
some forms of retirement occur in a coarse-grained manner
and are triggered by the removal of a feature rooting an entire
subtree. Thus, its descendants are recursively removed.

Merge Visible Optional Feature into New One
(MVOFNO). This pattern concerns the creation of a fea-
ture from an existing one, which is then enhanced with new
code. Figure 10 illustrates the pattern: a feature f1 is re-
named to f2 and its set of cross-tree constraints is replaced
with a new set CTCf2 . Furthermore, all references to f1 are
replaced by references to f2 in all spaces. At the implemen-
tation level, f2 > f1 captures the enhanced code.

Of all instances in the removals sample, 3% fit into this
pattern and mostly relate to generalizing drivers to support
a set of related hardware family.

As a concrete example, consider the merge of BATTERY PA-

LMTX into the new feature BATTERY WM97XX supporting
a whole family of chips. As shown in the related patch (see
Fig. 11), developers drop the original cross-tree constraints
and rename the previous feature from the variability model
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Figure 10: Merge Visible Optional Feature into New
One

a/drivers/power/Kconfig b/drivers/power/Kconfig

-config BATTERY_PALMTX

- tristate "Palm T|X battery"

- depends on MACH_PALMTX

+config BATTERY_WM97XX

+ bool "WM97xx generic battery driver"

+ depends on TOUCHSCREEN_WM97XX

help

- Say Y to enable support for the battery in Palm T|X.

+ Say Y to enable support for battery measured by WM97xx

...

drivers/power/Makefile

-obj-$(CONFIG_BATTERY_PALMTX) += palmtx_battery.o

+obj-$(CONFIG_BATTERY_WM97XX) += wm97xx_battery.o

...

Figure 11: Merge Visible Optional Feature into New
One example

and mapping. Moreover, the code is updated with various
information about the new driver (not shown). Note that in
the example, the merge changes the associated help text, but
it does not relate the new feature back to BATTERY PALMTX.
Thus, when users migrate towards a newer kernel with BAT-

TERY WM97XX, they may incorrectly conclude that BAT-

TERY PALMTX is no longer supported. That follows from the
fact that merges can cause the false impression that some
features cease to exist.

Merge Visible Optional Feature into Computed In-
ternal (MVOFCI). This pattern, depicted in Fig. 12, re-
moves the user decision about the presence of a visible op-
tional feature f1, whose selection triggers an associated inter-
nal feature f2. In the after-state, the presence of f2 becomes
computed (shown with an annotation C) by the conjunction
of all constraints imposed by f1 and f2. Feature f1 is then
removed from the variability model, and all references to f1
are updated to f2. In total, this pattern accounts for 3% of
all removals.

The patch snippet in Fig. 13 illustrates the pattern: RT2400-

PCI LEDS (matches f1) is removed from the variability model,
while RT2X00 LIB LEDS (matches f2), previously selected by
RT2400PCI LEDS, becomes a computed feature. Its presence
is now given by the default value y (users cannot configure
the feature, as it is invisible) iff RT2X00 LIB, NEW LEDS, and
LEDS CLASS are all present.

Figure 12: Merge Visible Optional Feature into
Computed Internal

Merge Visible Optional Feature into Sibling (MVOFS).
This pattern covers the situation in which developers merge
a visible optional feature into its sibling (see Fig. 2), due to
their similarity (the merging of the features FB IMAC and
FB EFI, previously discussed, exemplifies the pattern).

This pattern aims at easing maintenance, as keeping the
two similar features potentially requires a duplicate effort
whenever a change occurs in either of them. As other merges,
this pattern responds for 3% of all removals.

Others. The patterns reported in Tab. 1 cover most of the
additions (78%) and removals (68%) of our sample.

The remaining commits that were not excluded from analy-
sis in the additions sample refer to two situations: (i) clusters
under the threshold: these include features that exist with
the sole purpose of adding a compilation flag (2%), that
guard the compilation of a given directory (2%), that exist
only in the variability model (2%), that are non-optional
modular features (1%), or that are merges (1%); (ii) clusters
above the threshold, but that do not fit in a pattern: these
include non-modular features (4%) that are invisible or are
value-based, or refer to featurizations (7%).

For the most part, unexcluded instances in the removals
sample refer to distinct situations in which features are re-
moved from the variability model, but remain mandatory in
code (7%). Another cluster (3%) actually fits in a well-defined
pattern (Retire Computed Internal Non-Modular Feature),
but we refrained from including it on the basis that an in-
verse pattern in the additions sample does not exist (no
feature can exist without being first added). The remaining
instances refer to nine small clusters (1% each), or are the
residuum of clusters contributing to patterns, but that do
not share all the characteristics of such patterns (6%). As in
the addition sample, few features are value-based (6%), or
are either mandatory or computed (11%).

5. FINDINGS
We summarize our findings as follows. (i) Most features

in the Linux kernel are modular and cause little scatter-
ing when added. Hence, we conjecture that the practice of
keeping high modularity and low scattering mitigates the
negative effects of ifdef-based variation points [24, 7, 6], al-
lowing the kernel to continuously evolve. Furthermore, as the
AVONMF pattern shows (the second highest pattern found)
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1 drivers/net/wireless/rt2x00/Kconfig

2

3 -config RT2400PCI_LEDS

4 - bool "Ralink rt2400 leds support"

5 - depends on RT2400PCI && NEW_LEDS

6 - select LEDS_CLASS, RT2X00_LIB_LEDS

7 - ---help---

8 - This adds support for led triggers provided my mac80211.

9

10 config RT2X00_LIB_LEDS

11 boolean

12 - depends on RT2X00_LIB && NEW_LEDS

13 + depends on RT2X00_LIB && NEW_LEDS && LEDS_CLASS

14 + default y

15 ...

16

17 drivers/net/wireless/rt2x00/rt2400pci.c

18

19 ...

20 -#ifdef CONFIG_RT2400PCI_LEDS

21 +#ifdef CONFIG_RT2X00_LIB_LEDS

22 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);

23 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio,

24 LED_TYPE_RADIO);

25 ...

26 -#endif /* CONFIG_RT2400PCI_LEDS */

27 +#endif /* CONFIG_RT2X00_LIB_LEDS */

28 ...

Figure 13: Merge Visible Optional Feature into
Computed Internal example

adding non-modular features does not cause fine-grained
extensions to appear (e.g., controlling whether a function
parameter should or not be declared), which evidences a
disciplined annotation usage. In turn, it greatly mitigates
the drawbacks of the low-level variability representation used
in the kernel. (ii) Despite the size and complexity of the
Linux kernel, adding and removing features is performed
in a systematic manner, leading to a small number of pat-
terns. This evidences that variability evolution can follow
systematic patterns. Following Kim et al. [13], patterns
could then be retrieved from the evolution history (as we
did) and used to summarize changes. (iii) Our merge pat-
terns show that considering changes only in the variability
model may lead to incorrect conclusions. While removed
from the variability model, these features are combined with
existing features by means of changes in other spaces, with
no overall functionality loss. Consequently, existing trace-
ability and edit-reasoning techniques [26] that account for
changes only in the variability model have to be adapted to
consider coevolution with other artifacts. (iv) Although we
do not prescribe any specific support mechanism, our catalog
evidences to tool implementers which operations developers
face in practice when coevolving variability models, build
files and source code. Furthermore, our retirement patterns
evidence that developers remove entire subtrees, along with
their related artifacts. Therefore, existing tools ought to
support such functionality. (v) We provide further evidence
towards the claim in [18] stating the need to extend the
existing theory of SPL refinement [4], as feature retirement
is rather frequent.

6. THREATS TO VALIDITY
There is a threat that our analysis does not reflect the

whole population of feature additions/removals in the Linux
kernel. To mitigate this, we rely on randomly collected

samples and on a threshold cut to eliminate non-recurrent
change strategies.

Scoping to x86 architecture is also a threat. Yet, previous
research [15] reports that the variability model of x86 has a
similar growth to the variability model of the whole kernel.

The choice of the threshold value also poses a threat. We
argue, however, that the use of 3% assures the inclusion
of less frequent patterns, while still requiring a minimal
recurrence. Furthermore, the threshold prevents us from
incorrectly reporting patterns over extreme outliers.

The size of the samples also poses a threat, although
minor: if a different and larger sample is used, new patterns
may be found, possibly with a different relative frequency.
However, our patterns would still be valid (although not
possibly reported), as they follow from the threshold value.

Manually extracting and classifying patterns also poses a
threat. To mitigate this, we devise a methodology with a well-
defined sequence of steps. As some of them rely on certain
subjectivity, we perform three extensive reviews (see Sect. 3)
to guarantee consistency among all patterns. Moreover, all
our collected data and analyses are publicly available, and
we encourage the community to verify it independently.

As an external threat, we cannot state that our patterns
occur in systems other than the Linux kernel, even if based
on Kconfig+Kbuild. We argue, however, that this does
not diminish the importance of our catalog; Linux is the
most successful open-source software, with a large and rich
variability whose evolution can provide new insights on how
to support evolution in a multi-space setting.

7. RELATED WORK
Our previous investigation [18] presents four preliminary

evolution patterns taken from a specifically-selected set of
140 commits. In contrast, this work bases on a random set
of over 500 commits and collects 13 evolution patterns and
their usage frequency following a systematical methodology.
Further, we crosscheck them against existing research and
extract general findings.

She et al. [23] propose the Linux variability model as a
realistic benchmark for evaluating variability modeling tools.
By analyzing various metrics (e.g., branch factor, cross-tree
constraint ratio, depth, etc.), the authors show that, for the
most part, Linux Kconfig models surpass the complexity of
models found in the research community.

Lotufo et al. [15] extend She’s work with a longitudinal
analysis over Linux Kconfig models, in addition to presenting
evolution scenarios and operations faced by developers when
evolving those models. The authors, however, restrict their
analysis to variability models, which, as we argued before,
leads to an incomplete and possibly misleading understanding
of the evolution in place.

Others cover evolution in a multi-space setting, but restrict
analysis to small SPLs. Holdschick [11] presents change op-
erations between variability models and functional models in
the automotive domain. Neves et al. [17] extract operations
conforming to the refinement theory in [4]. Their operations
guarantee that old products can still be mapped to products
in the SPL resulting from an operation execution. In con-
trast, our catalog has no such focus, and further shows that
the Linux kernel drops support for specific products during
its evolution, as feature retirement often happens.

Researchers also investigate the problems resulting from
the coevolution of the spaces of the Linux kernel. Tartler et
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al. [25] detect inconsistencies between the variability model
and the C code (e.g., an ifdef whose condition cannot be
satisfied given the set of cross-tree constraints). Nadi et
al. [16] extend that framework to detect inconsistencies
among different spaces (e.g., a build rule is dead due to an
inconsistency with the constraints in the variability model).

Seidl et al. [22] present a set of evolution scenarios and
mapping operators to reestablish the correct binding of differ-
ent spaces in an SPL. Opposed to our work, the authors do
not provide empirical evidence over the need of supporting
those scenarios. Furthermore, the authors state that changes
are driven either by edits in the variability model or in the
implementation side. As we show, that is not the case in
practice, as code is featurized (see the FTC pattern).

Kim et al. [13] propose a rule-based program differencing
approach that discovers and summarizes systematic code
changes as logic rules. They also use the version control
history to detect evolution patterns, as we did. However,
they inspect only code differences, whereas we investigate the
coevolution of the variability model, Makefiles, and source
code.

8. CONCLUSION AND FUTURE WORK
We investigate the coevolution of the Linux kernel vari-

ability model, Makefiles and C source code by inspecting a
sample of the evolution history spanning almost four years
of Linux kernel development. We collect a catalog of evo-
lution patterns that capture a range of high-level evolution
operations as a result of the coevolution process.

Each pattern in our catalog covers how changes affect each
artifact, the usage frequency of each pattern, and how they
are used by Linux kernel developers. To the best of our
knowledge, this work is the first to study the coevolution
of variability models and related artifacts in a multi-space
setting of a large and complex real-world software. Further,
we extract a set of general findings to guide further research
and tool development for variability coevolution.

As future work, we aim to investigate coevolution when
changes are not triggered by adding or removing features in
the variability model (e.g., updating a cross-tree constraint,
ifdef condition, etc.). Furthermore, we aim to extract a set
of general operators capable of expressing patterns in any
ifdef-based project.
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M. Schulze. An analysis of the variability in forty
preprocessor-based software product lines. In ICSE,
2010.

[15] R. Lotufo, S. She, T. Berger, K. Czarnecki, and
A. W ↪asowski. Evolution of the Linux kernel variability
model. In SPLC, 2010.

[16] S. Nadi and R. Holt. The Linux kernel: a case study of
build system variability. J. Softw. Maint. Evol.-R, To
appear.

[17] L. Neves, L. Teixeira, D. Sena, V. Alves, U. Kulezsa,
and P. Borba. Investigating the safe evolution of
software product lines. In GPCE, 2011.

[18] L. Passos, K. Czarnecki, and A. Wasowski. Towards a
catalog of variability evolution patterns: the Linux
kernel case. In FOSD, 2012.

[19] L. Passos, M. Novakovic, Y. Xiong, T. Berger,
K. Czarnecki, and A. W ↪asowski. A study of
non-boolean constraints in variability models of an
embedded operating system. In SPLC, 2011.

[20] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and
S. Kowalewski. Model-driven support for product line
evolution on feature level. J. Syst. Softw., 85(10), 2012.
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