
Framework-Specific Modeling Languages
with Round-Trip Engineering

Micha l Antkiewicz and Krzysztof Czarnecki

University of Waterloo
http://gp.uwaterloo.ca

{mantkiew, kczarnec}@swen.uwaterloo.ca

Abstract. We propose Framework-Specific Modeling Languages (FSMLs)
as a special category of Domain-Specific Modeling Languages that are
defined on top of an object-oriented application framework. They are
used to express models showing how framework-provided abstractions
are used in framework-based application code. Such models may be con-
nected with the application code through a forward and a reverse map-
ping enabling round-trip engineering. We also propose a lightweight and
iterative approach to round-trip engineering. Furthermore, we present a
proof-of-concept FSML for modeling the interaction of workbench parts
within Eclipse. Finally, we identify a number of challenges, opportunities,
and directions for future research on FSMLs.

1 Introduction

Object-oriented application frameworks are one of the most effective and widely
used software reuse technologies today. The creation of framework-based applica-
tions is often called framework completion. The resulting framework completion

code implements the difference in functionality between the framework and the
desired application. A framework provides a set of abstractions, referred to as
framework-provided concepts, and means of instantiating them in the framework
completion code. The concepts are instantiated by writing the completion code.

Unfortunately, framework completion can be challenging. The application
programmers need to know which framework-provided concepts are available
and how to instantiate them in order to get the desired effect. The instantia-
tion, which usually involves steps such as implementing interfaces or invoking
framework services, is challenging since the implementation choices provided by
the framework are not always compatible. Furthermore, the developers need to
be able to see how the framework-provided concepts are instantiated in the ap-
plication code. The latter is challenging since some concepts instances, such as
collaborations among objects, are usually scattered in the completion code.

In this paper, we identify the challenges of framework completion and charac-
terize framework-based application development as a mixture of concept config-
uration and open-ended programming with restrictions. As a main contribution,
we show how the challenges of framework completion can be addressed by explic-
itly capturing the framework-provided concepts as a Framework-Specific Mod-

eling Language (FSML) with round-trip engineering. Furthermore, we propose

an agile round-trip engineering approach, which is inspired by the Concurrent

Versioning System (CVS) and its Eclipse user interface [1] and can operate over
non-trivial abstraction gaps thanks to mappings enabled by FSMLs. Finally, we
describe a proof-of-concept prototype implementation of a FSML with round-
trip engineering for an aspect of Eclipse plug-in development and discuss the
merits and limitations of our approach.

2 Running Example: Eclipse Workbench Part Interaction

Eclipse [1] is a universal, open-source platform for building and integrating tools,
which is implemented as a set of Java-based object-oriented frameworks. In this
paper, we consider a particular part of the Eclipse Application Programming
Interface (API), which is concerned with workbench parts and their interactions.
Workbench parts are the basic building blocks of the Eclipse Workbench, which
is the working area of an Eclipse user. The parts can interact in various ways,
for example, by exchanging events.

In this paper, we only consider two kinds of workbench parts, namely editors

and views. An editor is used for displaying and editing the contents of input

resources. An example of an editor is the Java editor included in the Eclipse
Java Development Tools (JDT) [1]. A view is also used for displaying and editing
information, but unlike an editor, a view is not associated with any particular
input resource. An example of the standard workbench view is Content Outline,
which is used to display the outline of an input resource opened in an active
editor. Editors and views have to be contributed to the Workbench by declaring
them in a plug-in manifest files. The Workbench scans manifest files upon startup
and makes contributed workbench parts available to the user.

Workbench parts interact in various ways. In this paper, we consider two
kinds of part interactions, namely listens to parts and requires adapter. For
example, the Content Outline view listens to part activation events by registering
itself as a listener with the Workbench Part Service and, therefore, it participates
in the listens to parts interaction. When an editor, such as the Java editor, is
activated, the view will receive an activation event. In response to this event,
the view will ask the editor for its IContentOutlinePage adapter, which is used
to display the outline of the editor’s input resource. Therefore, the view and the
editor participate in the requires adapter interaction, with the view as a source
and the editor as a target. For a detailed description of the example see [2].

3 Challenges of Framework Completion

Framework completion is often difficult due to the extensive knowledge about the
framework design that is needed in order to write and understand the completion
code. In particular, application developers face the following challenges.

Knowing how to complete a framework. The developers need to know
what are the framework-provided concepts and how the concepts are instantiated
in the code. Creating an instance of a concept involves making implementation

choices, some of which are stipulated by the framework’s application program-

ming interface (API). For example, creating an instance of a framework-provided
concept editor amounts to implementing IEditorPart interface and contribut-
ing the editor to the Workbench in a plug-in manifest file. Framework docu-
mentation usually provides information on what framework classes should be
extended, which interfaces should be implemented, and which API operations
need to be called in order to create an instance of the framework-provided con-
cept. Often however, concepts can be instantiated in many different ways and
the developers need to know which implementation choices are compatible. For
example, an editor can optionally be multi-page, in which case it has to extend
the framework-provided class MultiPageEditorPart and override the abstract
addPages() method. Furthermore, an editor can optionally have a contributor,
which is used to contribute editor actions to menus and toolbars. However, if a
multi-page editor has a contributor, the contributor has to extend the framework-
provided class MultiPageActionBarContributor.

Obtaining an overview of a framework-based application. As the size
of the framework completion code grows, it becomes increasingly difficult to ob-
tain overviews of the application from different viewpoints. For example, looking
at the code, it is difficult to see how many workbench parts are implemented and
how they interact. Creating such an overview involves recognizing instances of
concepts in the completion code, which may be challenging since it may require
verifying multiple facts across the code or even in multiple artifacts. For example,
recognizing that an editor is multi-page requires verifying that the editor class
extends MultiPageEditorPart and that its contributor, which may be specified
in the plug-in manifest file, extends MultiPageActionBarContributor.

Following the general rules of engagement for the framework. Some
APIs, such as the Eclipse API, expect the developers to follow a set of general
rules, which are referred to as rules of engagement [1]. Some of the rules are more
specific, such as the requirement that certain API classes, e.g., ContentOutline,
should not be subclassed. Examples of more general rules are that the arguments
of a API method call should not be null unless explicitly allowed and long-
running user operations should run in separate threads.

Repetitive code in the domain concept instantiation. Creating many
instances of the same concept often involves providing repetitive, boilerplate
code. For example, such code is needed when contributing a set of editor actions
to the Workbench. Creating and maintaining such code manually is tedious and
potentially error-prone.

Knowing how to migrate completion code after API changes. As a
framework evolves, its API and rules of engagement may also change. Migrating
completion code to the changed API is challenging and error-prone since it re-
quires changes in multiple locations. For example, in earlier versions of Eclipse,
the creation of a multi-page editor involved extending the MultiPageEditor

class. Currently, the MultiPageEditor class is deprecated and the implementa-
tion of an editor should extend the MultiPageEditorPart class instead. Migra-
tion of the code to the latest versions of Eclipse requires knowledge about what

needs to be changed and how it needs to be changed to conform to the latest
API.

4 Framework Completion As Concept Configuration and
Open-Ended Programming

We can characterize the process of framework completion as two, interleaving
activities: concept configuration and open-ended programming with restrictions.
Concept configuration is deciding which and how many instances of framework-
provided concepts are to be created and deciding among framework-stipulated
implementation choices for every concept instance. Open-ended programming
is implementing application-specific functionality that goes beyond the prede-
fined implementation choices provided by the framework, such as creating the
code that implements a required interface, overriding the default behaviour by
subclassing, or implementing code that is entirely outside the scope of the frame-
work. A concrete example from the Eclipse domain is defining a button which will
allow the user to enable or disable a part interaction at run-time. Open-ended
programming is restricted in the sense that it must not violate the framework’s
rules of engagement.

Concept Configuration. The set of framework-stipulated implementation
choices for a concept and the dependencies among these choices define all correct
ways in which the concept can be instantiated as foreseen by the framework
design. We can think of the implementation choices as features of a concept
and formalize the concept’s definition as a feature model. A feature model is a
tree with the concept as its root and children representing its features [3]. Filled
circles denote mandatory features and open circles denote optional features. A
feature may have an attribute, which is denoted by its type shown in parenthesis.
Additional dependencies between features can be expressed as constraints, such
as requires or excludes. Conceptually, a feature model describes a set of all valid
configurations (selections) of features.

For example, Fig. 1(a) shows a feature model describing the editor concept.
Mandatory features have to be implemented by every instance of a concept, for
example every editor has to have the implementsIEditorPart feature, mean-
ing it has to implement the IEditorPart interface. Optional features, such as
multiPage, are not required in every instance of a concept.

Fig. 1(b) presents a sample feature configuration for the instance of the
editor concept, where some features have been selected (partId) and some
eliminated (e.g., multiPage) and values of attributes have been specified (e.g.,
‘SampleEditor’ for name). The feature configuration satisfies all constraints
implied by the feature model and, therefore, the implementation choices corre-
sponding to the selected features (including the mandatory ones) are consistent.
Note that recognizing the implementation of features of a given concept in the
code also produces a configuration, which can then be checked for possible con-
straint violations.

(a) Editor concept (b) Sample feature configuration

Fig. 1. Concept definition and concept instance configuration

5 Framework-Specific Modeling Languages

A Framework-Specific Modeling Language (FSML) is a Domain-Specific Model-
ing Language [4] that is designed for a specific framework, called its base frame-

work. A FSML consists of an abstract syntax, a mapping of the abstract syntax

to the framework API, and, optionally, a concrete syntax.

A FSML explicitly captures framework-provided concepts and their features
as language concepts in its abstract syntax. The abstract syntax encodes all
valid configurations of framework-stipulated implementation choices. Models ex-
pressed using a FSML describe concept instances. The concrete syntax may offer
specialized rendering of the models to enhance their comprehension.

The mapping of the abstract syntax to the framework API defines how con-
cepts and their features map to the framework completion code. The mapping
has two parts: the forward mapping, defining how to generate new code or up-
date existing code for a concept instance, and the reverse mapping, defining how
to recognize an instance of a concept in the code. The mappings are defined for
every concept and every feature individually, allowing for a fine-grained control
over mapping execution. Together, the forward and reverse mappings enable au-
tomated round-trip engineering, where the code can be created from the model,
the model from the code, and changes made to the code and the model can be
identified and reconciled. In situations where only a subset of the FSML benefits
considered in this paper is of interest, an FSML implementation may choose to
provide only one of the two mappings. Furthermore, the forward mapping may
also be limited to code generation only.

A FSML with round-trip engineering support addresses the challenges from
the previous section.

Knowing how to complete a framework. The creation of a model con-
sists of the creation of concept instances and configuring them by selecting or
eliminating features and providing attribute values. Concept configuration is
controlled by the abstract syntax and well-formedness rules, thus guiding the
developer in making correct configuration choices.

The forward mapping knows the different places where the code implement-
ing a concept instance should be inserted in the completion code. The mappings
are executed for a correct concept configuration and, therefore, produce cor-

rect completion code. A developer can review the changes made by the forward
mapping and learn how to complete the framework.

In the case where the completion code has already been created for a concept
instance, changing the configuration of the concept by adding or removing fea-
tures and modifying attribute values may require updating the completion code
by code transformation.

Obtaining an overview of a framework-based application. The reverse
mapping can identify instances of concepts implemented in the code. The iden-
tified instances can be presented to the developer in a form of a model, which is,
in fact, an overview of the application from the viewpoint of the FSML. Further-
more, the models can be constructed for different versions of the code, allowing
the developer to verify whether the current code still conforms to the previous
model. Also, the reverse mapping may be adjusted to recognize broken or in-
complete concept instances that need to be fixed. Finally, the reverse mapping
also provides traceability between the model and the code by locating fragments
of code implementing concept instances.

Following the general rules of engagement for the framework. The
forward mapping produces code that conforms to the rules. The reverse mapping
helps ensuring that a manual customization of the code does not violate the rules
of engagement.

Repetitive code in the domain concept instantiation. The forward
mapping automates the creation and update of the repetitive code.

Knowing how to migrate completion code after API changes. A
FSML provides a framework to help with migration of completion code to a
changed API. Reverse mapping can be used to find uses of the deprecated API
and specialized forward mappings can rewrite existing code to conform to the
changed API.

6 Agile Round-Trip Engineering

The goal of round-trip engineering is keeping a number of artifacts, such as
models and code, consistent by propagating changes among the artifacts. Mak-
ing artifacts consistent by propagating changes is also referred to as synchro-

nization. Round-trip engineering is a special case of synchronization that can
propagate changes in multiple directions, such as from models to code and vice
versa. Round-trip engineering is hard to achieve in a general setting due to the
complexity of the non-isomorphic mappings between the artifacts.

FSMLs enable round-trip engineering over non-trivial mappings that close
the abstraction gap between the framework-provided concepts and the comple-
tion code. The reverse and forward mappings can be precisely defined because
the framework prescribes a finite set of framework-stipulated implementation
choices.

In this section, we present a particular approach, which we refer to as agile

round-trip engineering. The approach supports on-demand, rather than instan-
taneous, synchronization. The artifacts to be synchronized can be independently

edited by developers in their local workspaces, and the reconciliation of the dif-
ferences can be done iteratively. Furthermore, the agile approach assumes that a
model can be completely retrieved from the code using static analysis. We believe
that our approach fits agile development particularly well because it supports
collaborative, CVS-style development and models do not have to be maintained
separately if not desired.

Fig. 2. Artifacts and processes of agile round-trip engineering

Fig. 2 shows the artifacts and processes involved in agile round-trip engineer-
ing. The intention of agile round-trip engineering is to synchronize the current
asserted model, which represents the intended model of the application, and the
current framework completion code, which may be inconsistent with the asserted
model. The asserted model and the completion code that are consistent are also
referred to as being reconciled. In order to synchronize the asserted model and
the completion code, the current implementation model is automatically derived
from the current code. Furthermore, we assume that the last reconciled model

contains the latest copy of each concept instance that was archived after the
instance’s most recent synchronization. Special cases occur if any of the three
artifacts, namely the asserted model, the last reconciled model, or the completion
code, are missing. These cases include situations where the code has to be first
created from an existing model, the model has to be first created from existing
code, or where independently created model and code need to be synchronized
for the first time.

Given at least the asserted model or the completion code, the synchronization
procedure involves the following processes:

1. Reverse engineering. The reverse mappings of every concept and every
feature are executed on the completion code to create the implementation model.
An instance of a concept is created in the implementation model iff all mandatory
features are implemented. The requirement that all mandatory features have
to be implemented can be relaxed to enable recognizing incomplete or broken
concept instances. In the case that there is no code, the implementation model
is empty.

2. Comparison. This process compares the asserted model and the imple-
mentation model using the last reconciled model as a reference. The comparison
is similar to the three-way compare in the CVS, where the comparison of two
files uses their most recent common revision as a reference. Corresponding con-
cept instances from different models are compared. The correspondence between
concept instances is established based on the values of their key features, i.e.,
features which unambiguously identify instances. For example two instances of
the editor concept will be compared if attributes of features name and qualifier

have the same values.

The result of comparing two concept instances or two features is a synchro-

nization state, which characterizes whether a change, such as addition, removal
or modification, has occurred exclusively in the model, exclusively in the code,
or consistently in the code and the model, or inconsistently in the code and the
model. For example, the synchronization state forward addition indicates that a
concept instance or a feature has been added to the asserted model (e.g., selecting
multiPage feature in Fig. 1(b)) and, therefore, needs to be forward engineered
to the code. Synchronization state conflict indicates that incompatible changes
have been made to both the code and the asserted model (e.g., different values
have been set for the partId feature in the model and in the code). Synchroniza-
tion states are computed according to decision tables given elsewhere [2]. Here
we only explain why using the last reconciled model is important. For example,
if a concept instance is present in the asserted model but is missing in the im-
plementation model, then the instance could have been added to the asserted
model or removed from the implementation model. If the concept instance is also
present in the last reconciled model, then the instance has been removed from
the code and, therefore, the synchronization state should be reverse removal. On
the other hand, if the instance is missing from the last reconciled model, then
the instance has been added to the asserted model and, therefore, the synchro-
nization state should be forward addition. The last reconciled model also plays
an important role in the detection of conflicts.

3. Reconciliation. For all elements with synchronization state other than con-

sistent, a reconciliation decision needs to be made by the user. A reconciliation
decision specifies whether an addition, a removal, or a modification should be
propagated from the model to the code or vice versa. For example if the syn-
chronization state for an instance of the editor concept is forward addition, the
possible decisions are enforce, meaning that a new editor should be created in
the code, and replace-and-update, meaning that the asserted model should be
updated to be consistent with the code and, therefore, the instance of the editor

should be removed from the asserted model. In other cases, the possible decisions
are update and replace-and-enforce [2].

Reconciliation may also require manual editing of the completion code or the
asserted model (e.g., by providing new values for the attributes), in which case
the synchronization states need to be recomputed.

4. Forward engineering and asserted model update. Finally, any necessary
changes are executed according to the reconciliation decisions. Forward decisions

Fig. 3. Fragment of the metamodel of the WPI FSML expressed in MOF

trigger the execution of the forward mappings and reverse decisions force an
update of the asserted model with the values from the implementation model.
The last reconciled model is updated with the copies of reconciled concepts. The
execution of the individual forward mappings needs to be properly scheduled in
order to be correct.

7 Eclipse Workbench Part Interaction (WPI) FSML

In this section, we present a fragment of the design of a FSML for specifying
Eclipse workbench part interactions (WPI). The current prototype implementa-
tion of the FSML consists of a metamodel defining the abstract syntax and the
forward and reverse mappings, and it supports full round-trip engineering as de-
scribed in the previous section. Currently, the prototype only provides abstract
syntax editor. The complete design of the WPI FSML is described elsewhere [2].

Abstract Syntax. Figure 3 presents an excerpt of the metamodel of the
WPI FSML. Classes EditorPart, ListensToParts, RequiresAdapter, and Part-

Service are used to represent framework concepts described in Section 2.
The metamodel from Fig. 3 is derived from feature models such as the one

presented in Fig. 1(a). Concepts such as EditorPart in Fig. 1(a) and composite
features such as multiPage map to classes. Atomic subfeatures such as name or
partId map to class properties. The multiplicity of a property depends on the
corresponding feature type and is 1 for mandatory features and 0..1 for optional
features. Properties used to unambiguously identify instances of concepts, i.e.,
the key properties are annotated with the stereotype <<K>>. For example, an
instance of EditorPart is identified by its name and qualifier properties, and
an instance of RequiresAdapter interaction is identified by its source, target
and interface properties.

Property partId is an example of an optional property. An editor is not
required to have a part id, in which case, the value of the partId property is
null and indicates the absence of the feature. Mandatory features which do not
have any attributes are represented as Boolean properties. In this case, false
indicates absence of the feature. Representing mandatory features as Boolean

properties allows us to create instances for concepts partially implemented in the
code. The abstract syntax also contains additional well-formedness constraints
that correspond to the constraints from the feature model, such as requires

from Fig. 1(a).
Mapping abstract syntax to the framework API. We define a map-

ping for every class and class property. A mapping for a property consists of a
reverse part and a forward part. The reverse part is a code query. The forward
part is a code transformation that reflects in the code an addition, removal, or
modification of a feature in the model. A feature is modified when its attribute
value is changed.

In our prototype, we have implemented the mappings in Java. For better
presentation, we present the mappings using a concise pseudo-notation. For the
queries, we use a number of predefined functions. For transformations we use
a mixture of predefined procedures and aspect templates. An aspect generated
from a template can be woven into the source code. We specify the templates
using Meta-AspectJ [5] as it allows us to use AspectJ pointcuts, method in-
troductions and inter-type declarations to specify where the code should be
woven. In Meta-AspectJ, ‘[<code>] is the quote operator, #<variable> and
#[<expression>] are the unquote operators. The unquote operator splices the
value of a variable or an expression.

We present fragments of mappings for editor and listens to parts concepts to
highlight some of the more interesting mechanisms. We start with the mapping
declaration for the editor concept.

mapping EditorPart(EditorPart ep <-> Class editor);

The declaration of the EditorPart mapping specifies that ep is bound to an
EditorPart in the model, and editor is bound to a Class in the code. The
mapping can be executed in forward and reverse directions. For example, execut-
ing the mapping in the forward direction and providing a concrete EditorPart

instance and a null reference for editor will create a new class in the code. If
an actual class is passed as editor, that class will be modified to be consistent
with the EditorPart instance.

The above declaration is followed by mappings for individual features. We
start with the key features name and qualifier.

key name

←֓ ep.name = editor.name;

7→ RENAME(editor, ep.name);

key qualifier

←֓ ep.qualifier = editor.package;

7→ MOVE(editor, ep.qualifier);

A mapping for a property consists of two parts: a reverse mapping indicated
by the ←֓ symbol and a forward mapping indicated by the 7→ symbol. For the
name and qualifier properties, the reverse mappings are assignments, and the
forward mappings execute the RENAME and MOVE refactorings, respectively. Map-
pings for some of the remaining features are as follows.

mandatory implementsIEditorPart

←֓ ep.implementsIEditorPart = IMPLEMENTS(editor, IEditorPart);

7→ ‘[declare parents : #[ep.name] implements IEditorPart]

optional partId

←֓ ep.partId = EDITORID(editor);

7→ EDITORID(ep.qualifier + "." + ep.name, ep.partId);

optional multiPage

←֓ ep.multiPage = REVERSE(MultiPageFeature(ep <-> editor));

7→ FORWARD(MultiPageFeature(ep <-> editor));

The reverse mapping for the implementsIEditorPart property uses the IM-

PLEMENTS function to check if the class implements the IEditorPart inter-
face. The forward mapping specifies an inter-type declaration that will add the
implements declaration to the class, if woven. The mapping for the partId prop-
erty uses the EDITORID function to retrieve values from the plug-in manifest file
and the EDITORID procedure to set the values. Mappings for the multiPage

property use the FORWARD function and the REVERSE procedure to execute the
MultiPageFeature mapping.

Finally, we present a mapping for the listens to parts interaction.

mapping ListensToParts(ListensToPart ltp <-> Class s)

when Part(sp <-> s);

mandatory sourceRegistersWithPartService

←֓ ltp.sourceRegistersWithPartService =

CALLS(s, ‘[IPartService.addPartListener(IPartListener)]);

7→ ‘[private void #[sp.name].registerWithPartService() {

getSite().getPage().addPartListener(this);

}]

The reverse mapping for the property sourceRegistersWithPartService uses
the CALLS function to determine whether there exists a call to addPartListe-

ner() method in class s or any of its superclasses. The forward mapping for the
sourceRegistersWithPartService property creates a new method, register-
WithPartService(), which contains the required registration call. Note that
the programmer can move the registration call elsewhere and remove the gen-
erated method and yet, the reverse mapping will still be able to recognize the
registration call.

WPI FSML prototype. We developed a prototype of the WPI FSML as
an Eclipse plug-in. Abstract syntax of the language, including well-formedness
constraints, is implemented using Eclipse Modeling Framework (EMF) and its
model validation framework. Reverse mappings use the AST, query, and pattern
matching API of Eclipse’s Java Development Tools (JDT) and type inference
engine of the Infer Generic Type Arguments refactoring [6]. Forward mappings
use Eclipse’s JDT Java Model and AST rewriting API. The prototype supports
agile round-trip engineering. The reverse mappings are completely implemented.
To date, the forward mappings support the creation of classes with methods
implementing the framework-stipulated behaviour, addition of interfaces and

superclasses, and handling the plug-in manifest files. Weaving of before and after

advices, and code fragment removal are not yet implemented.

The initial evaluation of the prototype involved round-trip engineering of a
few Eclipse UI plug-ins as well as some of our own plug-ins. For all of these plug-
ins, we were able to completely reverse engineer the models from the plug-ins’
code. Furthermore, we were able to synchronize the models and the code after
modifying each of them. A more thorough evaluation of the precision and recall
of the reverse engineering and the correctness of the forward engineering remains
a future work. An on-line demonstration of the prototype is available at our web
page.

8 Related Work

There is a large body of related work; however, for space reasons, we can only
highlight a few works in each category.

Domain-Specific Modeling Languages (DSMLs) and frameworks.
The idea of putting a DSML on top of a framework is not new. Roberts and
Johnson consider language-based tools on top of frameworks as the highest ma-
turity level in framework evolution [7]. They advocate that black-box frameworks
are particularly well-suited for use with a DSML on top. However, as we discussed
in Section 4, configuration alone does not allow fine-grained customization, and
it often has to be combined with open-ended programming in practice. We are
not aware of any work exploring FSMLs with round-trip engineering support.

General-purpose code analysis tools for architecture recovery and
program comprehension. There is an enormous body of work in this category.
Two subcategories are prominent. The first subcategory includes tools (e.g.,
JQuery [8]) that allow code querying for typical dependency structures such as
call graphs and include dependencies. In contrast to these tools, our approach
uses whatever specialized analyses are needed for detecting a domain-concept
instance. For example, in order to recognize the requires adapter interaction, a
set of exact types of objects returned by a method needs to be computed.

The other subcategory groups works on detecting design patterns in code
(e.g., [9]). The main problem with these approaches is that a design pattern
can be implemented in the code in a multitude of different ways. Our approach
avoids this problem by limiting itself to the detection of API-stipulated concepts
and features, which is more tractable.

Framework instantiation. Most approaches in this category only support
forward mapping to code. They usually utilize wizards and scripts, as imple-
mented in many industrial tools, including Eclipse. Unfortunately, such wizards
or scripts can usually be run only once since they cannot take manual customiza-
tions into account. This problem is sometimes addressed by strictly separating
the generated code from the manual one using techniques such as protected re-
gions, subclassing of generated classes, and partial classes in C#. However, we
believe that the separation approach affords less flexibility in customizing the

generated code, in particular, when the generated code dictates the structure of
customizations.

Many approaches have been proposed to assist the framework-instantiation
process through active documentation [10–13], which specifies and interactively
guides the developer through available hotspots, instantiation tasks and possible
implementation choices. Attempts for automating the framework instantiation
such as [10] offer code generation based on developer’s choices, but cannot ana-
lyze existing code for correctness. Also, the generator (the wizard) is unable of
analyzing existing code in order to determine which choices have been made in
the previous run.

AHEAD [14] offers concept configuration controlled by feature models, where
features represent modular slices through multiple artifacts, such as code and
XML files. The slices may be composed to produce framework completion code.
Step-wise refinement is a generative approach, which supports only forward en-
gineering without the ability to update customizations.

Approaches, such as SCL [15], allow framework developers formalizing frame-
work rules using a constraint language. The constraints can be checked on de-
mand against the completion code and detect rule violations. Such approaches
could be used to define the reverse mappings of FSMLS.

Round-trip engineering. According to Sendall and Küster the main dif-
ference between round-trip engineering and forward and reverse engineering is
that round-trip engineering takes both artifacts into account with the intention
of reconciling them, whereas forward and reverse engineering typically create
new artifacts, potentially replacing the old versions [16].

Round-trip engineering between UML and object-oriented languages such
as Java is supported by several commercial UML modeling tools. The provided
synchronization can be instantaneous or on demand as in our approach. However,
the mappings supported by these tools are rather simple one-to-one mappings
between UML classes and Java classes.

9 Discussion and Future Work

The prototype implementation of the WPI FSML provided us with many insights
regarding the usefulness of the presented approach to modeling and round-trip
engineering.

Most of the features of framework-provided concepts in WPI correspond to
small implementation steps such as implementing an interface or invoking a
service. However, features corresponding to higher-level requirements can also
be represented and mapped to implementation features using constraints.

The reverse mappings of FSMLS are restricted by the available static code
analysis techniques. Our agile round-trip engineering approach requires the de-
sign to be retrivable from the code, which may not always be possible using
purely static analysis. This problem could be addressed by injecting design in-
formation into the source code, e.g., as code annotations. The FSML could also

suggest to the application programmer how to restructure the code to make its
design more explicit in the static code structure.

WPI FSML currently does not use flow analysis to properly implement the
CALLS function, which should check whether there exists a call to the given
method within the control flow of an instance of a class in question. Also, con-
stant propagation and data flow analysis would improve the precision in some
other cases. Currently, we are in the process of designing a FSML for a part of
Eclipse’s Graphical Modeling Framework (GMF). Reverse engineering of GMF’s
completion code requires more powerful static analysis techniques than the ones
used in WPI, such as techniques typically used in partial evaluation and pro-
gram slicing. In general, the effectiveness of the reverse engineering depends on
the programming language and the type of the framework. This aspect requires
further research.

In our approach, the forward mappings are not required to produce fully
functional code. A FSML is intended to be used in an interactive manner. The
generated or transformed code is intended to be further customized. We think
that generation of code fragments demonstrating the use of the framework can
help application developers overcome the initially steep learning curve. Further-
more, the forward mappings need a better infrastructure in terms of automatic
scheduling of the execution of individual mappings and a more declarative way
of specifying the mappings, such as offered by scripting languages for refactor-
ing [17]. In general, forward mappings designed to update the code, which are
code transformations, are usually harder to devise than reverse mappings.

FSMLs can potentially be used for automatic or semi-automatic code migra-
tion as described in Section 5. Although we do not have any practical experience
with this aspect yet, we think that the specialized forward mappings can be
defined for different versions of the API, or even for different frameworks. Cur-
rently, we are investigating the possibility of using FSMLs for the migration of
code from the Struts framework to the Java Server Pages framework.

We think that, in practice, a single FSML will typically cover a small area
of a framework’s concern, and multiple FSMLs will be provided for a single
framework. For example, in Eclipse, in addition to WPI, another FSML could
be used to specify the graphical appearance of workbench parts. Furthermore,
round-trip engineering affords manual integration of completion codes created
for multiple frameworks. Such integration may be difficult for completion code
generated from code templates because such code can be customized in only
limited ways. Integration of multiple FSMLs remains future work.

10 Conclusion

In this paper, we propose the concept of FSMLs with round-trip engineering
support. The concept addresses a number of challenges in framework-based ap-
plication development, such as knowing how to write framework completion code,
being able to see the design of the completion code, and the migration of the code
to new framework API versions. Compared to round-trip engineering support in

the context of a general purpose modeling and programming languages such as
UML and Java, FSMLs can enable round-trip over non-trivial mappings. This
more powerful round-trip engineering is possible because the framework API
allows capturing the design structures in the application code more explicitly.
Furthermore, the ability to freely modify application code manually gives the de-
veloper more customization flexibility than the alternative approach of strictly
separating generated code from customizations.

Acknowledgements. We would like to thank Bran Selic, Todd Veldhuizen,
and the anonymous reviewers for valuable comments on previous drafts. This
work is partially supported by IBM Centers For Advanced Studies, Ottawa.

References

1. Eclipse Foundation: Eclipse. http://www.eclipse.org/ (2006)
2. Antkiewicz, M., Czarnecki, K.: Eclipse workbench part interaction FSML. Techni-

cal Report 2006-09, ECE, University of Waterloo (2006) http://gp.uwaterloo.ca.
3. Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints:

a progress report. In: International Workshop on Software Factories. (2005)
4. DSM Forum: Workshop on domain-specific modeling (2001-2006) http://www.

dsmforum.org/DSMworkshops.html.
5. Zook, D., Huang, S.S., Smaragdakis, Y.: Generating AspectJ programs with Meta-

AspectJ. In: GPCE’04. Volume 3286 of LNCS., Springer (2004) 1 – 18
6. Tip, F., Fuhrer, R., Dolby, J., Kieżun, A.: Refactoring techniques for migrating

applications to generic Java container classes. IBM Research Report RC 23238,
IBM T.J. Watson Research Center (2004)

7. Roberts, D., Johnson, R.: Evolving frameworks: A pattern language for developing
object-oriented frameworks. In: PLoP’96, University of Illinois, Addison-Wesley
(1996)

8. De Volder, K.: JQuery: A generic code browser with a declarative configuration
language. In: PADL’06. Volume 3819 of LNCS., Springer (2006) 88–102

9. Shi, N., Olsson, R.A.: Reverse engineering of design patterns from Java source
code. In: ASE 2006. (2006)

10. Braga, R.T.V., Masiero, P.C.: Building a wizard for framework instantiation based
on a pattern language. In: OOIS’03. Volume 2817 of LNCS., Springer (2003) 95–106

11. Hakala, M., Hautamäki, J., Koskimies, K., Paakki, J., Viljamaa, A., Viljamaa, J.:
Generating application development environments for Java frameworks. In: GCSE
2001. Volume 2186 of LNCS. (2001) 163–176

12. Ortigosa, A., Campo, M.: Smartbooks: A step beyond active-cookbooks to aid in
framework instantiation. In: TOOLS’99, IEEE Computer Society (1999) 131

13. Tourwé, T., Mens, T.: Automated support for framework-based software evolution.
In: ICSM’03), IEEE Computer Society Press (2003) 148–157

14. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE
Transactions on Software Engineering (2004)

15. Hou, D., Hoover, H.J.: Using SCL to specify and check design intent in source
code. IEEE Transactions on Software Engineering 32(6) (2006) 404–423

16. Sendall, S., Küster, J.: Taming model round-trip engineering. In: Workshop on
Best Practices for Model-Driven Software Development. (2004)

17. Verbaere, M., Ettinger, R., de Moor, O.: JunGL: a scripting language for refactor-
ing. In: ICSE’06. (2006)

