Feature Scattering in the Large:
A Longitudinal Study of Linux Kernel Device Drivers

Leonardo Passos *

University of Waterloo, Canada
Ipassos@gsd.uwaterloo.ca

Sven Apel f

University of Passau, Germany
apel@uni-passau.de

Abstract

Feature code is often scattered across wide parts of the code base.
But, scattering is not necessarily bad if used with care—in fact,
systems with highly scattered features have evolved successfully
over years. Among others, feature scattering allows developers
to circumvent limitations in programming languages and system
design. Still, little is known about the characteristics governing
scattering, which factors influence it, and practical limits in the
evolution of large and long-lived systems.

We address this issue with a longitudinal case study of feature
scattering in the Linux kernel. We quantitatively and qualitatively
analyze almost eight years of its development history, focusing on
scattering of device-driver features. Among others, we show that,
while scattered features are regularly added, their proportion is
lower than non-scattered ones, indicating that the kernel architecture
allows most features to be integrated in a modular manner. The
median scattering degree of features is constant and low, but the
scattering-degree distribution is heavily skewed. Thus, using the
arithmetic mean is not a reliable threshold to monitor the evolution
of feature scattering. When investigating influencing factors, we find
that platform-driver features are 2.5 times more likely to be scattered
across architectural (subsystem) boundaries when compared to non-
platform ones. Their use illustrates a maintenance-performance
trade-off in creating architectures as for Linux kernel device drivers.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement; D.2.8 [Soft-
ware Engineering]: Metrics; D.3.4 [Programming Languages]:
Processors—Preprocessors

Keywords Pre-processor, Linux kernel, Feature, Scattering

* Funded by CAPES, grant BEX 0459-10-0.
T Funded by DFG, grants AP 206/4, AP 206/5, and AP 206/6.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

MODULARITY’15, March 16-19, 2015/Fort Collins, CO, USA.

Copyright © 2015 ACM 978-1-4503-3249-1/15/03.... $15.00.
http://dx.doi.org/10.1145/

Jesus Padilla

University of Waterloo, Canada
jpadillagaeta@gsd.uwaterloo.ca

Krzysztof Czarnecki

University of Waterloo, Canada
kczarnec@gsd.uwaterloo.ca

Thorsten Berger

University of Waterloo, Canada
tberger@gsd.uwaterloo.ca

Marco Tulio Valente

Federal University of Minas Gerais, Brazil
mtov@dcc.ufmg.br

1. Introduction

Scattering of feature code is commonly stated as an undesirable
situation [15, 28, 29, 42]. Scattered features are not implemented in
a modular way, but are rather spread over the code base, possibly
across multiple subsystems. The intermingling of scattered features
with different implementation parts can lead to ripple effects, while
requiring developers to be kept in constant sync, hindering parallel
development. Thus, scattered features may significantly increase
the maintenance effort of a system [3, 40]. Yet, feature scattering is
common in practice [30, 31, 39].

Feature scattering allows developers to overcome design limita-
tions when extending a system in unforeseen ways [40], or when
circumventing modularity limitations of programming languages,
which impose a dominant decomposition [2, 43, 44]. In other cases,
the cost of modularizing features might be initially prohibitive or
simply too difficult to be handled in practice [26]. In contrast, feature
scattering requires little upfront investment [3], although mainte-
nance costs may rise as the system evolves.

In all cases, many long-lived and large software systems have
shown that it is possible to achieve continuous evolution, while
accepting some extent of feature scattering. Examples span differ-
ent domains, including operating systems, database management
systems, text editors, and others [30, 38, 39].

Surprisingly, there are no empirical studies investigating feature
scattering in the evolution of large and long-lived software systems.
Such studies would be key in creating a widely accepted set of prac-
tices to govern feature scattering and may eventually contribute to
the formulation of a general scattering theory, which could serve
as a guide to practitioners—for instance, in identifying implemen-
tation decay [37], assessing the maintainability of a system [17],
identifying scattering patterns [18], or setting practical scattering
thresholds [39].

To contribute to a deeper understanding of feature scattering
and its evolution, we conduct a longitudinal case study of one of
the largest and long-living software systems in existence today: the
Linux kernel. Its features manifest in terms of configuration options
that users select when generating customized kernel images. Our
analysis investigates feature scattering in almost eight years of the
kernel’s 20 years of evolution. In these eight years, the kernel growth
has been steady, growing from 4,752 to 13,165 features. Of these, a
large portion is said to be scattered [38].

Due to the sheer size of the Linux kernel, we scope our analysis to
features in the driver subsystem, which we identified as the largest
and fastest growing kernel subsystem (see Sec. 3). We analyze



o Triggering of build rules e C

ion of post-pr
files

(3.9: drivers/acpi/Kconfig) | |

(3.9: drivers/Makefile) | [

(3.9: arch/iab4/kernellirq_ia64.c

depends on PM

menuconfig ACPI if ACPI is present - .
bool "Advanced Configuration and Power Interface) run acpi/Makefile void _init
Support" init_IRQ (void) o Pre-processing

c Variability model rendering

(v3.9: drivers/acpi/Makefile) |

#ifdef CONFIG_ACPI

if ACPI acpi_boot_init();
config ACPI_BATTERY ACPI compile bus.c #endif
tristate "Battery" compile glue.c iab4_register_ipi();
Battery register_percpu_irq(...);
if ACPI_BATTERY is present
endif o Feature selection compile battery.c }
(Variability Model) (Build Files) (Source File)

Figure 1: Binding of different kernel artifacts

scattering of driver features within and across the device-driver
subsystem. Our study is guided by the following four research
questions:

RQ 1) How does the growth of scattered features differ from non-
scattered ones? We analyze the relative and absolute growths of
scattered and non-scattered driver features, comparing the evolution
of the two kinds—for instance, to understand whether the proportion
of scattered features is increasing, decreasing, or stable over time.

RQ 2) How does the growth of locally scattered features differ
from globally scattered ones? We analyze the relative and absolute
growths of driver features that are (i) scattered within the driver sub-
system only (local scattering), and (ii) of those that are scattered
across at least another subsystem (global scattering). We compare
both growth rates and aim at understanding how scattering is related
to the kernel’s architecture.

RQ 3) How does the extent of feature code scattering evolve over
time? We analyze the extent (degree) of the scattering of feature
code, aiming at understanding the underlying distribution and
possible thresholds. We also want to assess how the scattering degree
relates to local and global scattering.

RQ 4) What are possible factors influencing scattering of feature
code? We formulate and test hypotheses about factors influencing
scattering. To this end, we collect and classify 170 features (10 %
of all scattered driver features), identifying possible characteristics
affecting where a feature is scattered across (local versus global
scattering) or that lead to higher scattering degrees.

Our contributions comprise:

* A large dataset covering almost eight years of the evolution
of feature code scattering extracted from the Linux kernel
repository. The dataset can be used as a replication package,
a benchmark for tools, and for further analyses.

* Descriptive statistics aimed at understanding the state-of-
practice of feature scattering in the Linux kernel.

* An inspection and classification of 170 scattered driver features,
from which we test hypotheses to verify possible factors in-
fluencing where a feature is scattered across or its scattering
degree.

* A discussion and explanation of the underlying results, with
insights to guide future investigations.

* An online appendix [1] with further details on our dataset, scripts
to analyze the data, and additional statistics.

2. Background

This section discusses how the Linux kernel explicitly represents its
features, in addition to contextualizing the kernel evolution. We also
set terminology and definitions for the remainder of the paper.

2.1 Feature Representation

Features in the Linux kernel are explicitly declared in a variability
model written in the Kconfig language [6, 27]. These features
are referenced in build rules of Linux’s Makefiles and in C pre-
processor directives, controlling the compilation of entire source
files or fragments therein, respectively. Henceforth, we refer to such
fragments as extensions. As summarized in Table 1, the kernel’s
code base comprises mostly C implementation and header files.

To illustrate how the variability model, Makefiles, and C files
bind together, consider the Advanced Configuration and Power In-
terface (ACPI) driver. ACPI is an industry standard to manage power
consumption of hardware devices [22]. Figure 1 illustrates the steps
involved in configuring the ACPI feature, with excerpts of each
file type. First, an interactive configurator renders the Linux kernel
variability model (step 1). From the rendered model, users select
features of interest (step 2). Once the user is done with selecting
features, the build process triggers build rules (illustrated as gray
boxes) that conditionally compile specific source files matching
the feature selection (step 3). In our example, when feature AcpI
is selected, the build process enters the acpi directory and exe-
cutes its Makefile, which triggers the compilation of bus.c and
glue.c. Note that compiling battery.c further requires select-
ing ACPI_BATTERY. Prior to a file compilation, the build process
invokes the C pre-processor (step 4) to resolve all macro references
and conditional pre-processor directives —#if, #ifdef, #ifndef,
#elif (henceforth, generically called ifdefs). In our example, if a
user builds the kernel for the IA64 CPU, selecting ACPI' causes
the C pre-processor to include a call to acpi_boot_init (shown
in gray) inside the implementation of init_IRQ in irq ia64.c.
After pre-processing, the resulting source files are compiled into

By convention, feature macros in the Linux kernel are prefixed with
CONF IG_ to distinguish them from other macros.

Table 1: Distribution of file types (averages over the whole evolution)

File type Average (%)
C implementation file ~ 43
C header file 39
Assembly 4
Other 14




object code (step 5) and eventually linked into the kernel binary
image or a loadable kernel module (LKM).

LKMs are dynamically loaded at runtime—either upon user
request, as a dependency of another LKM, or when the operating
system identifies a hotplugged device, for which it must load the
supporting device-driver module (if any). Not all driver features can
become an LKM, except those having the feature type “tristate” in
the variability model (e.g., ACPI_BATTERY). Three possible values
can be selected for a tristate feature: y (compile into kernel image),
m (compile as LKM), or n (absent). Features that do not result in
LKMs are either Boolean (e.g., ACPI), with values y (present) or n
(absent), or value-type features, such as integer, string, and hex (not
shown in the example).

The Linux kernel is a highly configurable software system [12,
32, 38, 41], meaning that users can derive customized variants
(kernel images) by selecting particular features of interest. The
variability of the kernel is either resolved at build-time, by pre-
processing ifdefs and static linking, or at runtime (e.g., when
loading/unloading LKMs).?

2.2 Kernel Evolution

The Linux kernel evolves continuously. Fig. 2 summarizes its growth
by source lines of code (SLOC) and number of features. As Figure 2a
shows, the code base has increased by 159 % since the first release
recorded in the kernel’s git repository (v2.6.12, June 2005),® with
a growth of 2.6 + 1.5 % between two consecutive stable releases.
The short-hand 2.6 + 1.5 % denotes an arithmetic mean of 2.6 %
with standard deviation of 1.5 %. In the remainder of this paper, the
mean (or average) should always be understood as the arithmetic
mean. The kernel’s feature set, shown in Fig. 2b, displays a similar
trend, and strongly correlates with SLOC growth (Pearson product-
moment correlation 7 = 0.996).* Since v2.6.12, it increased by
177 %, growing 2.8 + 1.4 % between stable releases. The latest
kernel release in our analysis (v3.9, April 2013) contains over 13,000
features implemented in more than 33,000 C files, which amount to
over 10 million SLOC. These C files contain over 34,000 ifdefs that
explicitly refer to at least one feature in the variability model.

2.3 Feature Scattering

We consider a feature scattered when it is not implemented in a
modularized way, but rather distributed over multiple extensions
in the code base. We trace these extensions by identifying ifdefs
that reference the corresponding feature. Thus, our measurement of
scattering is based on the declaration of features in the variability
model and their syntactic reference in code—both as defined by
the original developers. This notion of feature scattering captures
the number of potential places that a developer may change upon
changing a feature of interest [39].

3. Methodology

This section describes our methodology of collecting the evolution
data of feature code scattering and of the respective analyses.

3.1 Scoping

In our study, we concentrate on driver features, that is, features
defined in the driver subsystem of the kernel. This decision relies

2 Other kinds of runtime variability also exist, such as changing the attributes
of a device driver through the sysfs virtual filesystem. See [10, 46] for further
details.

3git://git.kernel.org/pub/scm/linux/kernel/git/
stable/linux-stable.git

4 Since our sample is a snapshot of the kernel population, covering all releases
from v2.6.12 to v3.9, the correlation coefficient is necessarily significant.

q",-\

C O1e+07-

a0

B il

2 738e+06

oo

P J

gg6e+06

3 P ae+08 4=
NOTDONODNO T~ ANNMITIVONOVODO—ANTIVONONO~ANMITINONOD
T T T ANANANNANNNANNOOOOOO0O0NG0n00nn00nd
CEEOEOECOEOCOCOOEOOCOOCOOOOOOOY>>3>>3>353
aaagaaaaaaaNaaaNaANANAANNAANNANN NN
>>3353353335353535353>3>3>3>3>3>3>33>5>5>3>53>5>5>>5>

Release
(a) Kernel growth in SLOC

3

512000~

©10000-

2

5 8000-

5 6000-

z

(b) Kernel growth in number of features

Figure 2: Kernel growth evolution

on existing work stating that the Linux kernel evolution is mainly
driven by the evolution of its device drivers [16, 20, 24, 32, 38], and
on our own analyses (explained shortly).

Setting the scope to features in the driver subsystem requires
us to distinguish them from features of other subsystems. Next, we
explain how we perform such distinction.

3.2 Identifying Driver Features

To distinguish driver features from features of other subsystems, we
first slice the kernel according to its constituent subsystems. Accord-
ing to Corbet et al. [9], there are seven major subsystems in the ker-
nel: arch (architecture dependent code), core (scheduler, IPC, mem-
ory management, etc), driver (device drivers), firmware (firmware
required by some device drivers), fs (file system), net (network
stack), and misc (miscellaneous).

Greg Kroah-Hartman, the main developer of the Linux kernel
stable branch,’ provides a mapping between files in the code base of
the Linux kernel and the subsystems reported by Corbet et al.® We
take Hartman’s mapping to be expert knowledge, reusing it without
modifications.

Once we apply Hartman’s mapping to identify the subsystem of
a given file, we consider the subsystem of a feature’s declaring
Kconfig file as the feature’s subsystem. Some features in the
driver subsystem, although very few (0.65 + 0.46 %), are also
declared in other subsystem(s) (e.g., inside core). As we cannot
decide which subsystem should these features be mapped to, we
exclude such driver features from analysis.

Once we distinguished the unique features in each kernel subsys-
tem, we were able to confirm that the Linux kernel is actually driven
by the evolution of driver features. As Fig. 3 shows, the driver sub-
system is not only the largest in number of features, but also the
fastest growing.

3.3 Data Collection

The data-collection procedure follows the process shown in Fig. 4.
With a cloned repository of the Linux-kernel source code in place,
we query the kernel’s source management system (git) to list all

Shttp://git.kernel.org/cgit/linux/kernel/git/
torvalds/linux.git/tree/MAINTAINERS

Shttps://raw.github.com/gregkh/kernel-history/
master/scripts/genstat.pl


git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/MAINTAINERS
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/MAINTAINERS
https://raw.github.com/gregkh/kernel-history/master/scripts/genstat.pl
https://raw.github.com/gregkh/kernel-history/master/scripts/genstat.pl

Subsystem --arch - core <+ driver = fs = misc. net

[}
[=3
I=}
o

I

.

3
3
t
¢

.
|

'

o

S

S
T

n

o

S

k=3
I

Nbr. of unique features

Figure 3: Feature distribution per subsystem

release tags. From the listing, we filter the stable-release identifiers
(step 1).7 We then check out each stable release (step 2), setting the
repository to a particular release snapshot. In the checked-out release,
we list all C implementation and header files therein and clean
them by removing empty lines and comments, and by transforming
multilines® into single ones (step 3). We also eliminate strings in
the source code as a means to facilitate pattern matching when
mining feature references across the code (step 4). Finally, we
collect metadata of each identified reference (step 5), including
the name of the file in which a feature is referred, the line in which
the reference occurs, and the associated ifdef pre-processor directive.
All feature references and their associated metadata are then stored
in a relational database. For any given feature reference, there exists
an associated file record in the database, which in turn links to a
kernel subsystem in a given stable release.

All steps in our process are fully automated and are currently
supported by extensions made to a toolset [36] we developed
previously. For further details on the collected data, the database
schema, pointers to download our dataset, and associated scripts,
we refer to our online appendix [1].

3.4 Data Analysis

To answer our research questions, we issue SQL queries through the
R statistical environment, which we connect to our database [8, 21].
Then, we plot the results and perform different statistical analyses
according to each research question (we defer details to Sec. 4).

In our analysis, we measure the scattering degree (SD) of a driver
feature ft in terms of its scattering degree at each implementation
and header C file f in a set of target subsystems 5, i.e.:

SD(ft,S) = > > SDF(ft, f) 1)

seS fes

where SDF(ft, f) is the number of ifdefs (#if, #ifdef, #ifndef,
#elif) in f referring to fr. This is an alternative, yet equivalent,
definition to how other researchers measure scattering [39].

The SD metric falls under the umbrella of absolute metrics that
count the number of source code entities relating to a given feature.
In contrast, relative metrics assess feature-scattering relative to the
code size of extensions [13]. Existing research [14] comparing
absolute metrics with relative ones shows that the former correlate
better with defects, which justifies our choice for the SD metric.

We identify a feature as scattered when its SD-value is at least
2. A single extension (SD = 1) does not qualify a feature to be
scattered, as it has no spread in the source code. In our previous
example (see Fig. 1), ACPI is a scattered feature; in addition

7 Unstable releases are suffixed with -rc (e.g., v2.6.32-rcl), whereas stable
ones are not.

8 Multilines end with the *\’ character. They spread many physical lines, but
are interpreted as a single one by the C compiler.

(Extracted DB) (Cleaned snapshot)

‘ 5. Collect ‘ 4. Collect ‘
scattering info feature refs
1. Collect stable’ 2. Checkoul
each stable
releases
elease

Wizl W=y N
§ ]

(Cloned kernel git repository)  (Stable releases)

|

(((

_

)

(Release snapshot)

Figure 4: Data extraction process

to the reference in the ifdef inside init_IRQ, it also has 110
corresponding ifdefs elsewhere.

4. Results

This section reports the results of our respective research questions,
which aim at understanding the evolution of scattered versus non-
scattered features (RQ1), of scattering within and across subsystem
boundaries (RQ2), of scattering degrees (RQ3), and possible causes
of the observed scattering and scattering degrees (RQ4).

4.1 Scattered versus Non-Scattered Features

RQ 1) How does the growth of scattered features differ from non-
scattered ones?

To answer this question, we plot the proportion of scattered driver
features in each kernel release, along with their absolute number. In
both cases, we compare the growth rate of scattered driver features
with the evolution of non-scattered ones. Figure 5 displays both
plots, with summary statistics provided in the Tables 2 and 3. When
applying Eq. 1 to identify scattered features, we take S as the union
of all subsystems in the Linux kernel.

On average, 18 + 1.2 % of driver features are scattered in any
given release, with a maximum of 21 % and a minimum of 16 %.
The average proportion is stable over time, although a decreasing
trend starts from release v2.6.26. In absolute terms, the number
of scattered driver features grows by 2.5 + 2.4 % between each
pair of consecutive stable releases. Since the first release under
analysis (v2.6.12), the number of scattered driver features has
grown by 142 %, as given by the Diff statistic.” In release v3.9, the
kernel has over 1,000 scattered driver features. The latter, however,
grows almost six times slower when compared to non-scattered
driver features, as given by the ratio of their regression line slope
coefficients. Moreover, the absolute growth of scattered driver
features is not monotonic, with three small periods of decrease:
v2.6.13-v2.6.14, v2.6.26—v2.6.27, and v3.5-v3.6.

The collected data indicate that the kernel architecture allows
most driver features to be incorporated without causing any scatter-
ing. Some driver features, however, do not fit well into this architec-
tural model and are thus scattered across the source code. Moreover,
the proportion of scattered driver features is nearly constant, which
may indicate that it is an evolution parameter actively controlled
throughout the kernel evolution.

9 The percentage difference (Diff) of two non-percentage values zo and x1
is 100 X (z2 — 1)/x1. If 2 and z; are percentages, the Diff-value is
simply z2 — x1. When calculating Diff for a given metric (e.g., number
of scattered driver features), we take x2 to be the metric value at the last
inspected kernel release (v3.9), whereas x1 is the metric value for the first
release (v2.6.12).



Type - Non-scattered driver features + Scattered driver features

Type - Non-scattered driver features -+ Scattered driver features

(a) Relative growth

g o

I e e = = e D 86000

25 © 55000

£ 3570- =3

8 m60- & 54000

5 .250- @ 23000

5 530 5 §2000

ggzo—w IV EPRIPRIPSS B8 5 S StV PGP G 0 G S0 G G S S S S S A _‘5"%1000 e e ere arerer = o = TS TS S S S S S S SRR REE!

a T ONBP O NN YOO N ORO AN TVON QPO NNTNONDD 2 OB ON OO NPT NONBPO - NOIWONBRO~ N M TGN QO
ANANNANANNNANM MMMMMMMM ANNANANNNANAN® MMMOMMM™M

(b) Absolute growth

Figure 5: Growth of (non-)scattered driver features

Table 2: Summary statistics of (non-)scattered driver features (rela-
tive)

Type Min Max Avg Diff Slope

Scat. 1623% 20.79% 1844+ -322% -0.08
1.2%

Non-scat.  79.21% 83.77% 8156+ 322%  0.08
1.2%

Table 3: Summary statistics of (non-)scattered driver features (abso-
lute)

Type Min Max Avg Diff Slope
Scat. 471 1,140 819.45 + 142.04 % 204
228.88
Non-scat. 1,949 5880 3,702.87+ 201.69% 114.36
1,280.49

4.2 Local versus Global Scattering

With the next research question, we investigate to what extent the
scattering of driver features is local and to what extent it is global. A
globally scattered driver feature has at least one associated ifdef in
an implementation or header C file that is not in the driver subsystem.
In the case of a locally scattered driver feature, referring ifdefs occur
only in source files in the driver subsystem. Ideally, most scattering
should be local, contributing to internal cohesion, while decreasing
coupling.

RQ 2) How does the growth of locally scattered features differ from
globally scattered ones?

The growth of locally scattered driver features varies along the
Linux kernel evolution. Nonetheless, it dominates the growth of
globally scattered driver features, both proportionally and in absolute
numbers. Figure 6 shows the corresponding plots, with summary
statistics provided in Tables 4 and 5.

In release v2.6.12, the proportion of locally scattered driver fea-
tures is 70 %—the highest across all releases. Immediately after, the
proportion follows a steady decrease, which stabilizes around 57 %
from v2.6.38 onwards. In the latest release (v3.9), the percentage
of locally scattered features is 56.8 % (648 absolute). The stabiliza-
tion of local scattering causes a stabilization of globally scattered
driver features at 43 %. The latter, however, was preceded by an
increasing trend. In absolute terms, the number of globally scattered
driver features grows at a faster rate than locally scattered ones, as
given by their corresponding slope coefficients. Consequently, their
relative difference decreases over time, resulting in the funnel shape
of Fig. 6a.

Type = Globally scattered driver features -+ Locally scattered driver features

e e e

7

60 R S e = o S S e S A S S e e
50

40 W
30 | i i i i

Perc. of scattered—
driver features

(a) Relative growth

Type = Globally scattered driver features -+ Locally scattered driver features

NWHAOID
1=y
S
T
1
1

Nbr. of scattered—
driver features

(b) Absolute growth

Figure 6: Growth of locally and globally scattered driver features

Table 4: Summary statistics of locally and globally scattered driver
features (relative)

Type Min Max Avg Diff Slope

56.84% 70.28% 62.13+£4.12%  -13.43% -0.36
29.72% 43.16% 37.87+4.12% 13.43 % 0.36

Local
Global

Table 5: Summary statistics of locally and globally scattered driver
features (absolute)

Type Min Max Avg Diff

Local 331 648 500.08 +110.89  95.77 % 9.82
Global 140 492 31937+ 11853  251.43%  10.58

Slope

The relative and absolute dominance of local scattering con-
tributes to internal cohesion within the driver subsystem. We con-
jecture that it eases maintenance, as local scattering requires less
synchronization across subsystems. Nonetheless, it is interesting
to see that the gap between the proportions of locally and globally
scattered features has consistently decreased, with a growing pro-
portion of globally scattered driver features. Consequently, there is
an increasing dependency from other subsystems to driver features.
Although the latter may indicate an evolution decay, it does not seem
to hinder the Linux kernel growth. As we showed in Sec. 2.2, the



Table 6: Relative and absolute growth of scattered outlier features

Type Min Max Avg Diff Slope

Relative 1.09% 3.76 % 225+£071% 22%  0.05
Absolute 7 42 19.61+£10.84  500%  0.89

kernel has grown at a similar pace between each pair of consecutive
releases. Thus, we interpret the stabilization of the proportion of
globally scattered driver features as an effort to control its preced-
ing growth trend. Hence, 43 % seems a current upper limit kept by
Linux kernel developers.

4.3 Scattering Degrees

RQ 3) How does the extent of feature code scattering evolve over
time?

To answer this question, we plot the scattering degrees (SD) of
all scattered driver features at each kernel release. When measuring
SD (see Eq. 1), we take the target set of subsystems (,S) as the union
of all subsystems in the kernel. The boxplot in Fig. 7, which is
adjusted for skewness [23], shows that 50 % of all scattered driver
features have a low scattering degree, with SD < 4 across all stable
releases. Above the 50 % of the distribution, however, the scattering
of features considerably increases. In the third quartile (up to 75 % of
the distribution), SD-values practically double, lying between seven
and eight. In the remaining 25 %, the highest SD-values that are
not outliers range from 34 to 55, as indicated by the top whiskers.
In this range, the average SD-value is 44 £+ 5.3. Above the top
whiskers, outliers (shown as dots) have high SD-values, with a
minimum of 35 and a maximum of 377 (median of 63). As the
kernel evolves, outliers have grown in absolute numbers as well as
relatively. Figure 8 displays the corresponding graphs, with summary
statistics provided in Table 6. In absolute numbers, outliers show
a 500 % increase, with as little as 7 features in release v2.6.12 and
42 in v3.9. Relatively, however, the Diff between the first and last
release is only 2.2 %.

The analysis of the SD-values of scattered driver features in-
dicates a skewed distribution. In the kernel’s evolution, 75 % of
SD-values are small (4) to medium (8). A dispersion, however, oc-
curs in the remaining 25 % (values 34-377), pushing the distribution
tail to the right. Consequently, the distribution is skewed to the right,
increasing the difference between a typical SD-value (4) and the
mean (8). In such settings, the mean is a not robust statistic. Instead,
practical scattering limits should be relative (e.g., 75 % of the fea-
tures should have SD < 8), rather than a single value to which all
features would adhere to.

To ascertain the observed skewness, while summarizing how
unevenly SD-values are distributed among scattered driver features,
we calculate the Gini coefficient [45] for each kernel release.
The Gini coefficient is a popular summary statistic in economics,
measuring the inequality of wealth (e.g., the value of a software
metric, such as SD) among the individuals (e.g., features) of a
population. Its value is in the range of zero and one; zero means a
perfect equality, where all individuals have the same wealth. A high
value, in contrast, denotes an uneven distribution.

Figure 9 shows the evolution of the Gini coefficient in the Linux
kernel evolution. The coefficient follows a decreasing trend in
the first 12 releases, meaning that SD is more evenly distributed.
From release v2.6.23 onwards, an increasing trend can be observed,
indicating that SD is more concentrated towards a particular set of
features. The absolute difference between the coefficients in v2.6.23
and v3.9, however, is only 0.06, which indicates that SD distribution
does not vary considerably. At all times, the Gini coefficient is closer
to one than to zero, confirming the observed right-skewness.

380 .

110+ ¢

PR
o oo
- oo

e mone
o o oo
o oce o0
oo aee o o
enoosce e o
oo we o
ermmeces
e ceee

oe oo
.
> we o

Figure 7: SD-values of scattered driver features

Table 7: Summary statistics of the average SD-value of scattered
driver features

Type Min Quartile ] Median Quartile3  Max
Local 2 2 3 6 84.13
Global 2 2.14 4 7.49 199.5

Finally, we partition the SD distribution into globally and locally
scattered driver features. For each feature, we take the average
of all its SD-values, as reported at each release where the feature
existed. We then compare the distributions of the averages in each
partition. As Table 7 shows, starting from the median, globally
scattered features have higher average SD-values. Thus, globally
scattered driver features do not only affect more subsystems, but
also tend to have higher prospective maintenance costs, given that
more locations in the code base might have to be maintained.

4.4 Causes of Scattering

RQ 4) What are possible factors influencing scattering of feature
code?

To answer this research question, we investigate whether specific
kinds of features exist that by their nature affect where a feature is
scattered across (local versus global scattering) or lead to higher
scattering degrees. The characteristics we test are the result from
past experience and observations when manually analyzing and clas-
sifying features in the Linux kernel [5, 6, 38] and other systems [4].



Perc. of outlier
scattered features
SN W W
T

(a) Relative growth

Nbr. of outlier
scattered features

=)
T

(b) Absolute growth

Figure 8: Growth of outlier scattered features

o
o
&

Gini coefficient
o o
o o
S ()

Figure 9: Evolution of the Gini coefficient of the SD-value of
scattered driver features

The first kind of features we observe relates to so-called plaz-
form devices. As opposed to hotplugging devices, these cannot be
discovered by the CPU. An experienced kernel developer explains:'®

"Happily, we now live in the days of busses like PCI which
have discoverability built into them; any device sitting on
a PCI bus can tell the system what sort of device it is and
where its resources are. [...] Alas, life is not so simple; there
are plenty of devices which are still not discoverable by the
CPU. [...] So the kernel still needs to provide ways to be
told about the hardware that is actually present. ’Platform
devices’ have long been used in this role in the kernel."

In the kernel, a platform driver is any driver that instantiates a
platform_driver C structure. Since platform devices cannot be
discovered by the CPU, the kernel cannot automatically load their
corresponding LKMs, as in hotplugging. Instead, board-specific
code [25] instantiates which devices to support for a target CPU,
and with which drivers. However, developers do not instantiate
all possible platform devices when porting Linux to a particular
CPU, as only some will be present at all times. In the face of such
hardware variability, it is intuitive to assume that developers will be
more prone to introducing extensions outside the driver subsystem
(e.g., in the arch subsystem, which contains CPU-dependent code),
conditioning them on the presence of specific platform devices and
their associated drivers and capabilities. For non-platform driver
features, the opposite should occur; through hotplugging, devices
should be discovered at runtime, triggering the automatic loading of
required LKMs.

The second kind of features concerns domain abstractions, which
provide a core infrastructure from which concrete drivers are built.
These abstractions do not bind to a specific vendor, but rather
represent a generic set of devices and driver-related capabilities.
Examples include generic buses (e.g., USB, PCI, and ACPT), drivers
declaring specific device classes (a type of a device, such as an audio

10 Written by Jonathan Corbet, the main author of the Linux Device Drivers
book [10]. See http://lwn.net/Articles/448499/

or network device),ll and hardware-description frameworks (e.g.,
OpenFirmware).'? Since these features denote abstractions in the
operating-system domain, we assume that they should have a higher
likelihood of being scattered in comparison to non-infrastructure
features. In such cases, extensions in code would check for specific
generic functionality and related capabilities, allowing features to
react accordingly.

Next, we investigate whether the kind of a feature affects which
subsystem the feature’s code is scattered across (location) or its
scattering degree.

4.4.1 Influence on Scattering Location

We test the effect of being a platform feature on scattering location
by first collecting a random sample of 10 % of all scattered driver
features (population size is 1,700). We then manually classify
sample features as either platform or not. A platform-driver feature
is either a platform driver (i.e, it has at least one compilation unit
instantiating a platform_driver structure) or it is a capability
of a container platform-driver feature. For further details on the
classification process, see our online appendix [1].

With the classified sample, we then perform the x? statistical
test at a significance level of 0.05. Our hypotheses are:

Null hypothesis (Ho): being a platform-driver feature has no
effect on scattering location

Alternative hypothesis (H1): being a platform-driver feature has
an effect on scattering location

Table 8 shows the contingency table used in the test, along with the
resulting x? statistic and p-value.

We find strong evidence (p = 1.933 x 1075 < 0.05) of a de-
pendency between being a platform-driver feature and scattering
location. Thus, we can reject the null hypothesis in favor of the al-
ternative one. In fact, the analysis of Table 8 indicates that platform-
driver features are 2.5 times more likely to be globally scattered
than non-platform ones. Conversely, a non-platform driver feature
is 1.8 times more likely to be locally scattered. In summary, the test
confirms our initial understanding: when facing non-discoverable
devices, developers are more likely to introduce ifdefs outside the
driver subsystem. For non-platform devices, the scattering of their
driver code is likely local. As Fig. 10 shows, most globally scat-
tered platform-driver features in our sample are scattered across the
arch subsystem, either only in arch, or in both arch and driver (in
the figure, ’either’ is captured by the '+’ sign, whereas ’and’ is
denoted by *&’). This evidences a tight relationship between the
arch subsystem and platform-driver features; since platform devices
are not discoverable by the CPU, supporting the drivers of some

Uhttps://www.kernel.org/pub/linux/kernel/people/
mochel/doc/text/class.txt

2nttp://www.openfirmware.info/


http://lwn.net/Articles/448499/
https://www.kernel.org/pub/linux/kernel/people/mochel/doc/text/class.txt
https://www.kernel.org/pub/linux/kernel/people/mochel/doc/text/class.txt
http://www.openfirmware.info/

Non-platform Platform

~
o
'

Nbr. of features
3

only driver _
others _
only driver _
others _

arch + (arch & driver) _
core + (core & driver) _.

rch + (arch & driver) _
core + (core & driver) _

s
Subsystem

Figure 10: Scattering location of sampled (non-)platform drivers

Table 8: Relationship between being a platform-driver feature and
scattering location

x2 = 18.26,p = 1.933 x 10~°

Is locally scattered?

Is platform?  No Yes Total
No 28 93 121
Yes 28 21 49
Total 56 114 170

Table 9: Relationship between being an infrastructure-driver feature
and scattering location

X2 =2.43,p = 0.1194

Is locally scattered?

Is infrastructure? ~ No Yes Total
No 44 100 144
Yes 12 14 26
Total 56 114 170

of such devices requires scattering CPU-dependent code, which is
mostly found inside the arch subsystem.

To check the influence of infrastructure features, we perform
similar steps as in the previous test. Using the same sample set of

scattered features, we classify them as either infrastructure or not.

We test the following hypotheses:

Null hypothesis (Ho): being an infrastructure-driver feature has
no effect on scattering location

Alternative hypothesis (H1): being an infrastructure-driver
feature has an effect on scattering location

Here, we do not have a strong evidence suggesting that being

an infrastructure-driver feature has an effect on scattering location.

As Table 9 shows, running the x? test results in a p-value greater
than the chosen significance level. Thus, we fail to reject the null
hypothesis.

4.4.2 Influence on Scattering Degree

In order to verify the influence of being a platform or an infrastructure-
driver feature on scattering degree, we initially calculate the aver-
age SD-value of each sample feature across all releases containing
1t.

To check the influence of being a platform-driver feature, we split
the calculated average SD-values into those that concern platform-
driver features, and those that do not. We then perform a one-
tailed Mann-Whitney-Wilcoxon rank sum statistical test to assess
whether platform-driver features systematically yield higher average
SD-values in comparison to non-platform driver features.'* Our
hypotheses are:

Null hypothesis (Ho): there is no difference in the distribution of
average SD-values of platform and non-platform driver features

Alternative hypothesis (H1): average SD-values are systemati-
cally higher in platform-driver features

We do not find convincing evidence that average SD-values are
systematically higher in platform-driver features. With a 0.05 sig-
nificance level, we are unable to reject the null hypothesis. We also
test whether platform-driver features influence the average SD-value
of non-infrastructure features, as we do not classity platform-driver
features as infrastructure. As before, we do not find convincing
evidence (p = 0.8496).

There seems to be also no significant influence of being an
infrastructure-driver feature on scattering degree. Running the one-
tailed Mann-Whitney-Wilcoxon rank sum statistical test to compare
the average SD-values of infrastructure with non-infrastructure
features only supports the null hypothesis.

To better understand these results, we place sample features in
one of three groups according to the scattering degree limits reported
in RQ 3: low (average SD < 4), medium (4 < average SD < 8),
or high (average SD > 8). The resulting plot in Fig. 11, which
compares infrastructure and non-infrastructure features, shows that
both feature kinds have a similar proportional contribution to each
scattering degree level bin, yielding similar outcome probabilities.
The same occurs between platform and non-platform driver features.

In the case of the outliers observed in RQ 3 (see Fig. 7), however,
we do find some influence of being an infrastructure-driver feature
on extremely high SD-values. By ranking the average SD-value
of each outlier feature, we plot the histogram of the number of
features with an average SD-value matching each rank, partitioning
the feature set into infrastructure and non-infrastructure outliers. As
Fig. 12 shows, infrastructure-driver features are the most scattered
features among outliers, with 9 out of the 15 most scattered driver
features in the kernel evolution. Considering the total number of
outliers, however, infrastructure-driver features are out-performed
by non-infrastructure ones. Consequently, most outliers are not
infrastructure-related, but are rather narrow in purpose (e.g., target
a specific bus-type or particular hardware manufacturer). Among
those (Fig. 13), we find that most relate to platform-driver features
bound to specific system-on-a-chip devices, such as serial link
devices, general input/output (GPIO) capabilities, and video support.

5. Threats to Validity

External Validity. The largest threat to external validity is that our
data are based on one case study only. Still, it is one of the largest
open-source projects in existence today. Furthermore, our focus on
device drivers is justified by the insight that it is the largest and most

13 Systematically here means that the probability of having an aver-
age SD greater than a value X among platform-driver features is greater
than the probability of having an average SD > X among non-platform
ones [33].



Infrastructure Non-infrastructure

Nbr. of features
3

n
a
1

—

3
g

High

£
E]
2
2
=

Scattering level

Figure 11: Scattering degree levels in (non-)infrastructure driver
features

W4 Infrastructure 4 Non—infrastructure

2.0+

.51

.0+

Nbr. of outlier features

0.01

U UL PR SRR U i
VVVVOPO-NVWWONDDOO N T O ~@
—n S Frr T — N _oaaN ®m

r

— N
Rank of average SD-values of outlier features

Figure 12: Ranking of outlier features

vibrant subsystem of the Linux kernel. Despite this focus, we study
scattering not only within this subsystem, but also investigate how
device-driver features affect the other subsystems of the kernel.

To investigate whether two specific kinds of features (platform
and infrastructure features) impact scattering degrees and lead to
global scattering, we performed hypothesis testing based on a sample
of 170 scattered features (population size is 1,700), given that it
required manual classification of features. This sampling is justified,
and we rely on standard p-value limits to test hypotheses. Recall
that the investigation of outliers does not rely on sampling, but on
classifying the whole population (54 features).

Finally, our analysis of code scattering relies on pre-processor
directives. However, variability in the Linux kernel also affects
entire files, as their compilation is controlled by specific features.
Thus, we show a partial, yet valid, view of the true story. Of course,
our results should be complemented by studying code scattering on
the more coarse-grained source file level. Using this information,
such as from previous attempts to analyze the Linux kernel’s build
system, would be valuable future work.

n Platform ﬂ Non-platform

2.0-

Nbr. of outlier features

[ L L
LOITWORDONRNRLTONRONRIND
= ® oo <

i
~
- NN NG mmFF TS

L:z ©

Qe

— o . @ .

Rank of average SD-values of non-infrastructure outlier features

Figure 13: Ranking of features among non-infrastructure outliers

Internal Validity. There is always the risk that bugs in our custom-
made tools and scripts impact results. To mitigate this threat, we
have performed extensive code reviews, where two authors of the
paper performed independent code inspections, summing to almost
16 hours in total. We have also implemented a test suite with over
70 test cases.

For all analyses, we exclude features that we could not uniquely

map to one subsystem. This limitation, however, has no further
impact on our results, as only very few driver features (0.65 =+
0.46 % per kernel release) are declared in multiple subsystems. We
also exclude references to features that occur in strings in the code,
assuming that such references have no impact on maintenance, as
opposed to the code parts controlled by pre-processor-directives,
which we analyze.
Construct Validity. To measure scattering of feature code, we rely
on a very simple metric (SD). Given that it is a very low-level metric,
it is reliable. Since it measures the parts related to feature code as
specified by the original developers (using pre-processor directives),
it is also a very valid measurement of scattering. In fact, the ability to
rely on this information is a major advantage over previous studies,
which had to recover the mapping of features (or concerns, see
Sec. 6) to code.

However, it is not completely clear how these syntactic code
extensions, which aim at realizing configurability, relate to seman-
tic code extensions, that is, units of functionality from a domain-
oriented view. Understanding this relationship constitutes an inter-
esting future research question. In fact, it is subject of our current
research.

6. Related Work

Feature scattering is part of a broader research topic: scattering
of concerns. Scattering of concerns in programs has been studied
before. Note that such concerns do not only comprise features (in
the sense of how we use the term), but also requirements, design
elements, design patterns, or programming idioms [14, 18]. The
representation of features in the Linux kernel [4, 6, 34] can be
compared to concern models [40], which map concerns to code and
support concern location.



A particular research interest in recent years has been on cross-
cutting concerns, which are under general suspicion to negatively
impact quality and maintainability.

Eaddy et al. [14] investigate the relationship of cross-cutting
concerns to defects. They argue that insufficient modularization can
lead to increased defects for various reasons. For instance, code
maintenance might miss parts of the implementation, leading to
inconsistencies. Furthermore, concerns might be tangled with other
concerns, thus, changing one concern might accidentally change the
other. The authors test their hypothesis on three case studies—open-
source projects written in Java. Based on a manual identification
of the mapping between concerns, classes, and bugs, their analysis
shows a high correlation between scattering and defects, regardless
of the system’s size. The manual concern identification technique
has been proposed in a previous work by Eaddy et al. [13]. There,
the authors argue that concern location through execution traces is
incomplete, as they miss non-functional concerns, such as logging.
In our study, we include these kinds of features and fully trace their
implementation through pre-processor directives.

Chaikalis et al. [7] report on a longitudinal case study on fea-
ture scattering in four open source Java projects. As opposed to
our case study, their projects are relatively small, ranging from
24 KLOC to 177 KLOC. They apply dynamic analysis to trace
classes implementing each feature, and use formal concept analy-
sis [19] to model and analyze the feature-to-class/method mapping.
Their results show a continuous increase of scattering, with very rare
exceptions. Similarly, the Gini coefficient shows an increasing fluc-
tuation in scattering degrees over time. Interestingly, they observe
an increasing accumulation of feature implementations in already
large classes. In our study, using the Gini coefficient is inspired
by their work, and we also observe constant (linear-like) increase.
However, Chaikalis et al.’s notion of scattering is very different, as
they consider all code involved in the control-flow when executing
a feature, which may include methods not related to the feature im-
plementation. We do not consider such dependencies (e.g., function
calls to other extensions). Thus, despite small projects, they observe
very high scattering degrees (up to 1,467 methods)

Several studies have investigated structural characteristics of
cross-cutting concerns. For instance, Figueiredo et al. [18] iden-
tify patterns of cross-cutting concerns in the source code of three
case studies. Their catalogue of 13 patterns—which may overlap—
characterizes patterns in terms of (i) their scattering degree and
relative code size of their implementations in the scattered classes
or methods, (ii) how concerns scatter along an inheritance hierar-
chy, (iii) control and data-flows, and (iv) whether they are realized
by code-cloning. The authors use pattern-detection techniques and
identify patterns in three Java projects. Interestingly, they find a neg-
ative correlation between some cross-cutting patterns (inheritance-
related) and design stability. In a product-line re-engineering effort,
Couto et al. [11] found that six of their total of eight features follow
the octopus pattern, a cross-cutting pattern previously reported in
Figueiredo’s work.

Finally, researchers have also extracted realistic thresholds for
source-code metrics as a prerequisite to effectively assess quality
and maintainability of systems. For instance, Oliveira et al. [35]
calculate thresholds for common source-code metrics based on two
corpora of Java projects, while accounting for the heavy tail of the
underlying metric distributions. They argue that certain percentages
of classes naturally violate thresholds (e.g., outliers). In the face of
heavy-tailed distributions, the authors state that thresholds should
not be based on a single limit value (e.g., mean); instead, thresholds
should be relative. A relative threshold defines a percentage p of
code entities that a metric threshold & applies to (e.g., p = 85 % of
the methods should have McCabe complexity of at most k = 14).
From p, it follows that (100 — p) % of code entities should not have

a metric value greater than k. Our work stresses the importance of
relative thresholds, as outliers in the Linux kernel evolution skew
the scattering distribution. Consequently, the mean as a threshold
value is not representative of the typical scattering degree that most
features in the Linux kernel adhere to. Moreover, we show that 75%
of scattered driver features have SD < 8. This relative threshold,
however, is based on the analysis of adjusted boxplots, rather than
applying Oliveira’s calculation technique, which is not directly
applicable to our case.

7. Conclusion

We have analyzed almost eight years of evolution history of device-
driver features in the Linux kernel and studied the scattering of code
used to implement the features. Our goal was not to investigate
limitations or maximum degrees of scattering, but to find empirical
evidence that scattering can be handled to the extents we can find in
one of the largest feature-based software systems in existence today.
Main Results. We learn that the majority of driver features (82 %)
can actually be introduced without causing scattering (RQ 1). Clas-
sic modularity mechanisms, as employed by the Linux kernel soft-
ware architecture, seem to suffice. Yet, the absolute number of scat-
tered driver features is still higher than we expected. Proportionally,
however, the amount of scattered features remains nearly constant
throughout the kernel evolution. Whether such a limit is actively
maintained by developers remains an interesting future research
question.

We also found that scattering is not limited to subsystem bound-
aries (RQ 2). While most driver features are in fact only imple-
mented in the driver subsystem, a significant proportion (43 %)
of features has extensions in other subsystems. This proportion,
however, is stable in the last third of releases.

The implementation of the majority (75 %) of scattered driver
features is scattered across a moderate number of four to eight
locations in code (RQ 3). Moreover, the median is low and constant
across the entire evolution (SD = 4). Yet, the distribution is skewed
to the right, with outliers having scattering degrees up to 377.
Thus, the arithmetic mean is not a reliable threshold to monitor
the evolution of feature scattering. Outliers, however, are limited in
number, accounting for less than 4 % of the total number of features
in the kernel; however, their absolute counting and magnitude grow
with the system.

We identify and analyze two kinds of features that are prone to

scattering (RQ 4). So-called infrastructure features account for 9 out
of the 15 most highly scattered outliers in the scattering distribution
of driver features, affecting many parts of the code. So-called
platform features in the Linux kernel are more frequently scattered
across subsystem boundaries, but do not necessarily have higher
scattering degrees. The cases where platform-driver features affect
scattering degree occur within non-infrastructure outlier features,
where platform-driver features account for most of the outliers
in that group. While the scattering of platform features across
subsystem boundaries could be potentially avoided, the necessary
generalization of code and abstraction layers might be too expensive
or difficult to be achieved in practice, due to hardware detection
limitations. Thus, scattering using pre-processor directives is a
natural mechanism in this context, yet facing a potential maintenance
trade-off.
Open Research Questions. As future work, we aim at studying
scattering in a confirmatory manner, running interviews (or surveys)
with kernel contributors and device-driver developers. Specifically,
we want to uncover whether kernel developers consciously manage
feature scattering and whether the limits we found are enforced
in practice. We also do not know whether the observed scattering
evolution is a model for other systems. Obtaining a more general
picture requires further case studies.



Another open research question concerns the effect of scatter-
ing on the actual maintenance effort. For instance, are modules
with highly scattered features harder to maintain, to what extent,
and are they more error-prone, and how? What is the effect of
feature-ownership on maintenance effort, especially when features
are highly scattered? A single developer maintaining a feature is
likely most efficient, but given a high numbers of features and a
distributed development model, it is unrealistic. Thus, finding an
optimal organizational structure in a project such as the Linux kernel
is a difficult problem—solving it requires further empirical measure-
ments.

Finally, we are interested in investigating how scattering in
the kernel could be reduced with alternative solutions, either by
using better languages or designs. In either case, we need to know
from developers whether such alternatives are suitable to their
development context—and if not, the reasons for not adopting them.

References

[1] Online Appendix.
modularityl5/.

[2] S. Apel, T. Leich, and G. Saake. Aspectual Feature Modules. /EEE
Transactions on Software Engineering, 34(2):162—180, 2008.

[3] S. Apel, D. Batory, C. Kistner, and G. Saake. Feature-Oriented
Software Product Lines: Concepts and Implementation. Springer, 2013.

[4] T. Berger, S. She, R. Lotufo, K. Czarnecki, and A. Wasowski. Feature-
to-Code Mapping in Two Large Product Lines. In Proceedings of
the 14th International Conference on Software Product Lines, pages
498-499. Springer, 2010.

[5] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. Variabil-
ity Modeling in the Real: A Perspective from the Operating Systems
Domain. In Proceedings of the 26th International Conference on Auto-
mated Software Engineering, pages 73-82. ACM, 2010.

[6] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. A Study
of Variability Models and Languages in the Systems Software Domain.
Transactions on Software Engineering, 39(12):1611-1640, 2013.

[7] T. Chaikalis, A. Chatzigeorgiou, and G. Examiliotou. Investigating the
Effect of Evolution and Refactorings on Feature Scattering. Software
Quality Journal, pages 1-27, 2013.

[8] J. Conway, D. Eddelbuettel, T. Nishiyama, S. Kumar, and T. Neil.
Package 'RPostgreSQL’, 2013. R package version 0.4.

[9] J. Corbet, G. Kroah-Hartman, and A. McPherson. Linux
Kernel Development: How Fast It is Going, Who is Do-
ing It, What They are Doing, and Who is Sponsoring It.
http://www.linuxfoundation.org/publications/
linux-foundation/who-writes-1inux-2013. Last seen:
February 14, 2015.

[10] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers.
O’Reilly, 3rd edition, 2005.

[11] M. V. Couto, M. T. Valente, and E. Figueiredo. Extracting Software
Product Lines: A Case Study Using Conditional Compilation. In
Proceedings of the 15th European Conference on Software Maintenance
and Reengineering, pages 191-200. IEEE, 2011.

[12] C. Dietrich, R. Tartler, W. Schroder-Preikshat, and D. Lohmann.
Understanding Linux Feature Distribution. In Proceedings of the 2nd
Workshop on Modularity in Systems Software, pages 15-20. ACM,
2012.

[13] M. Eaddy, A. Aho, and G. C. Murphy. Identifying, Assigning, and
Quantifying Crosscutting Concerns. In Proceedings of the 1st Inter-
national Workshop on Assessment of Contemporary Modularization
Techniques, pages 2—7. IEEE, 2007.

[14] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C. Murphy,
N. Nagappan, and A. V. Aho. Do Crosscutting Concerns Cause Defects?
IEEE Transactions on Software Engineering, 34(4):497-515, 2008.

[15] J.-M. Favre. Preprocessors from an Abstract Point of View. In Proceed-
ings of the 12th International Conference on Software Maintenance,
pages 329-339. IEEE, 1996.

http://lpassos.bitbucket.org/

[16] D. G. Feitelson. Perpetual Development: A Model of the Linux Kernel
Life Cycle. Journal of Systems and Software, 85(4):859-875, 2012.

[17] E. Figueiredo, C. Sant’Anna, A. Garcia, T. T. Bartolomei, W. Caz-
zola, and A. Marchetto. On the Maintainability of Aspect-Oriented
Software: A Concern-Oriented Measurement Framework. In Proceed-
ings of the 12th European Conference on Software Maintenance and
Reengineering, pages 183-192. IEEE, 2008.

[18] E. Figueiredo, B. C. da Silva, C. Sant’ Anna, A. F. Garcia, J. Whittle, and
D. J. Nunes. Crosscutting Patterns and Design Stability: An Exploratory
Analysis. In Proceedings of the 17th International Conference on
Program Comprehension, pages 138—147. IEEE, 2009.

[19] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical
Foundations. Springer, 1st edition, 1997.

[20] M. W. Godfrey and Q. Tu. Evolution in Open Source Software: A
Case Study. In Proceedings of the 16th International Conference on
Software Maintenance, pages 131-142. IEEE, 2000.

[21] G. Grothendieck. Package 'sqldf’, 2014. R package version 0.4-7.1.

[22] Hewlett-Packard Corp., Intel Corp., Microsoft Corp., Phoenix Tech-
nologies Ltd. and Toshiba Corp. Advanced Configuration and Power
Interface Specification, Revision 5.0. http://www.acpi.info/
spec50a.htm. Last seen: February 14th, 2015.

[23] M. Hubert and E. Vandervieren. An Adjusted Boxplot for Skewed
Distributions. Computational Statistics & Data Analysis, 52(12):5186—
5201, 2008.

[24] C. Izurieta and J. Bieman. The Evolution of FreeBSD and Linux. In
Proceedings of the 5th International Symposium on Empirical Software
Engineering, pages 204-211. ACM, 2006.

[25] M. T. Jones. Anatomy of the Linux Kernel. IBM Developer Works,
20009.

[26] C. Kastner, S. Apel, and K. Ostermann. The Road to Feature Modular-
ity? In Proceedings of the 15th International Software Product Line
Conference, pages 5:1-5:8. ACM, 2011.

[27] Kbuild. The Kernel Build Infrastructure. www.kernel.org/doc/
Documentation/kbuild. Last seen: February 14th, 2015.

[28] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Lo-
ingtier, and J. Irwin. Aspect-Oriented Programming. In Proceedings
of the 11th European Conference on Object-Oriented Programming,
pages 220-242. Springer, 1997.

[29] G. Krone, M.; Snelting. On the Inference of Configuration Structures
from Source Code. In Proceedings of the 6th International Conference
on Software Engineering, pages 49-57. IEEE, 1994.

[30] J. Liebig, S. Apel, C. Lengauer, C. Késtner, and M. Schulze. An
Analysis of the Variability in Forty Preprocessor-Based Software
Product Lines. In Proceedings of the 32nd International Conference
on Software Engineering, pages 105-114. ACM, 2010.

[31] J. Liebig, C. Kastner, and S. Apel. Analyzing the Discipline of Pre-
processor Annotations in 30 Million Lines of C Code. In Proceedings
of the 10th International Conference on Aspect-Oriented Software
Development, pages 191-202. ACM, 2011.

[32] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wasowski. Evolution
of the Linux Kernel Variability Model. In Proceedings of the 14th
International Conference on Software Product Lines, pages 136—150.
Springer, 2010.

[33] D. S. Moore, G. P. McCabe, and B. Craig. Introduction to the Practice
of Statistics. W. H. Freeman, 6th edition, 2009.

[34] S. Nadi and R. Holt. The Linux Kernel: A Case Study of Build System
Variability. Journal of Software: Evolution and Process, 26(8):730-746,
2014.

[35] P. Oliveira, M. T. Valente, and F. P. Lima. Extracting Relative
Thresholds for Source Code Metrics. In Proceedings of the Conference
on Software Maintenance, Reengineering and Reverse Engineering,
pages 254-263. IEEE, 2014.

[36] L. Passos and K. Czarnecki. A Dataset of Feature Additions and Feature
Removals from the Linux Kernel. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages 376-379. ACM,
2014.


http://lpassos.bitbucket.org/modularity15/
http://lpassos.bitbucket.org/modularity15/
http://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2013
http://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2013
http://www.acpi.info/spec50a.htm
http://www.acpi.info/spec50a.htm
www.kernel.org/doc/Documentation/kbuild
www.kernel.org/doc/Documentation/kbuild

[37]

[38]

[39]

[40]

[41]

L. Passos, K. Czarnecki, S. Apel, A. Wasowski, C. Kistner, and
J. Guo. Feature-Oriented Software Evolution. In Proceedings of the 7th
International Workshop on Variability Modelling of Software-Intensive
Systems, pages 17:1-17:8. ACM, 2013.

L. Passos, L. Teixeira, N. Dintzner, S. Apel, A. Wasowski, K. Czarnecki,
P. Borba, and J. Guo. Coevolution of Variability Models and Related
Atrtifacts: A Fresh Look at Evolution Patterns in the Linux Kernel.
Empirical Software Engineering, 2015. To appear.

R. Queiroz B., L. Passos, M. T. Valente, S. Apel, and K. Czarnecki.
Does Feature Scattering Follow Power-Law Distributions? An Investi-
gation of Five Pre-Processor-Based Software Families. In Proceedings
of the 6th International Workshop on Feature-Oriented Software Devel-
opment, pages 23-29. ACM, 2014.

M. P. Robillard and G. C. Murphy. Representing Concerns in Source
Code. Transactions on Software Engineering Methodologies, 16(1),
2007.

J. Sincero, H. Schirmeier, W. Schroder-Preikschat, and O. Spinczyk.
Is the Linux Kernel a Software Product Line? In Proceedings of the

[42]

[43]

[44]

[45]

[40]

International Workshop on Open Source Software and Product Lines,
pages 30-33, 2007.

H. Spencer and G. Collyer. #ifdef Considered Harmful, or Portability
Experience with C News. In USENIX, pages 185-197, 1992.

K. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle, N. Tewari, and
H. Rajan. Information Hiding Interfaces for Aspect-Oriented Design.
In Proceedings of the 10th European Software Engineering Conference,
pages 166—175. ACM, 2005.

P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N Degrees of
Separation: Multi-Dimensional Separation of Concerns. In Proceedings
of the 21st International Conference on Software Engineering, pages
107-119. ACM, 1999.

R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz. Comparative
Analysis of Evolving Software Systems Using the Gini Coefficient.
In Proceedings of the 25th International Conference on Software
Maintenance, pages 179-188. IEEE, 2013.

S. Venkateswaran. Essential Linux Device Drivers. Prentice Hall Press,
1st edition, 2008.



