Does Feature Scattering Follow Power-Law Distributions?
An Investigation of Five Pre-Processor-Based Systems

Rodrigo Queiroz
Federal University of Minas
Gerais, Brazil

Marco Tulio Valente
Federal University of Minas
Gerais, Brazil

ABSTRACT

Feature scattering is long said to be an undesirable charac-
teristic in source code. Since scattered features introduce
extensions across the code base, their maintenance requires
analyzing and changing different locations in code, possi-
bly causing ripple effects. Despite this fact, scattering often
occurs in practice, either due to limitations in existing pro-
gramming languages (e.g., imposition of a dominant decom-
position) or time-pressure issues. In the latter case, scat-
tering provides a simple way to support new capabilities,
avoiding the upfront investment of creating modules and in-
terfaces (when possible). Hence, we argue that scattering is
not necessarily bad, provided it is kept within certain lim-
its, or thresholds. Extracting thresholds, however, is not a
trivial task. For instance, research shows that some source-
code-metric distributions are heavy-tailed, usually follow-
ing power-law models. In the face of heavy-tailed distri-
butions, reporting metrics in terms of averages and stan-
dard deviations is unreliable, although commonly done so.
Thus, prior to extracting reliable thresholds for feature scat-
tering, one must understand the shape of feature-scattering
distribution. In this direction, we analyze the scattering
degree of five C-pre-processor-based software families and
verify whether their empirical cumulative feature-scattering
distributions follow power laws. Our results show that fea-
ture scattering in the studied subject systems have charac-
teristics of heavy-tailed distributions, with a good-fit with
power laws. Hence, we raise awareness that feature scatte-
ring thresholds based on central measures may not be reli-
able in practice.

Categories and Subject Descriptors
D.2.8 [Metrics]: Product metrics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

FOSD ’14 September 14 2014, Visteras, Sweden

Copyright 2014 ACM 978-1-4503-2980-4/14/09 ...$15.00
http://dx.doi.org/10.1145/2660190.2662114.

Sven Apel
University of Passau
Germany

Leonardo Passos
University of Waterloo
Canada

Krzysztof Czarnecki
University of Waterloo
Canada

General Terms

Measurement, Reliability, Verification

Keywords

Software families, pre-processor, feature orientation, scatte-
ring, power-law distribution

1. INTRODUCTION

Feature scattering is long said to be an undesirable prop-
erty of source code [2, 3, 9, 14, 15, 22]. Since scattered
features introduce extensions across the code base, their
maintenance requires changing different locations in code,
possibly causing ripple effects. Despite this fact, scattering
often occurs in practice [9, 14, 15, 16, 17, 22], either due to
limitations in existing programming languages (e.g., imposi-
tion of a dominant decomposition [23, 13]) or time-pressure
issues. In the latter case, scattering provides a simple way
to support new capabilities, avoiding the upfront investment
of creating modules and interfaces (when possible). Hence,
we argue that scattering is not necessarily bad, provided it
is kept within certain limits, or thresholds.

Different from other metrics [1, 20], reference thresholds
for feature scattering have not been defined so far. At best,
researchers report averages and standard deviations over a
large set of systems, as performed by Liebig et al. [16]. Cen-
tral tendency measures (e.g., mean and standard deviation),
however, might not be representative values. Recent work
[4, 18, 20, 24], for instance, suggests that some source-code
metrics follow heavy-tailed distributions, often times match-
ing a power-law distribution. In such distribution kind, the
probability that an entity measure deviates from a typical
value (e.g., mean) is not negligible. Stated otherwise, a sig-
nificant fraction of code entities do not follow typical metric
values, making central statistics unreliable [4].

As a first step towards extracting reliable thresholds for
feature scattering, we set to study the shape of feature-
scattering distributions in real-world systems. Specifically,
we concentrate in systems that rely on the C pre-processor
as a means to represent their features, and analyze five open-
source software families matching that criterion.

The C pre-processor is largely used to extend the C lan-
guage with simple meta-programming facilities, in addition
to supporting the implementation of software families [16,
2, 21]. In the latter case, features are denoted with macro

elfgcchack.h

4494 #if defined(LIBXML_FTP_ENABLED)

4497 extern __

__attribute ((
alias("xmlIOFTPClose__internal_alias"))

)

4498 #else

4500 extern __typeof (xmlIOFTPClose) \
xmlIOFTPClose__internal_alias \
__attribute((visibility("hidden")));

4502 #endif
Figure 1: Feature example (libxml2)

names, which in turn are referenced by different compilation
guard conditions. In the C pre-processor, there are differ-
ent types of guard conditions: #ifdef, #ifndef, #elif, and
#if. In this paper, we refer to all these constructs simply as
ifdefs.

Figure 1 provides an example taken from libxml2, one of
our subject systems. In file elfgcchack.h, developers in-
troduce some code fragments conditioned to the presence
of specific features. Lines 4,495-4,497, for instance, de-
pend on the presence of feature LIBXML_FTP_ENABLED. Se-
lecting this feature causes the C pre-processor to keep the
definition of xml1IOFTPClose as given in line 4,497; other-
wise, the absence of feature LIBXML_FTP_ENABLED results in
the alternative fragment in line 4,500. To select a feature,
users/developers define them in code, as in

#define LIBXML_FTP_ENABLED
or set specific compiler flags.

We analyze scattering by parsing ifdefs in the code of
five C-pre-processor-based open-source software families: vi,
libxml2, lighttpd, MySQL, and the Linux kernel. Specifi-
cally, for each system, we measure the scattering degree of
each of its features (i.e., the number of ifdefs that refer to
each feature), checking whether the resulting empirical cu-
mulative distribution function (CDF) follows a power law.

In a nutshell, our investigation suggests that feature scat-
tering does follow a power-law distribution. Thus, we raise
awareness that feature-scattering thresholds based on cen-
tral measures may not be reliable in practice. The inves-
tigation of a larger corpus, however, is required to further
confirm (or refute) our findings.

The remainder of this paper is organized as follows: In
Section 2, we provide a short explanation of power-law distri-
butions, which we reference throughout the paper. Section 3
presents our methodology when investigating the relation-
ship between scattering and power laws. We then discuss
our results in Section 4, followed by a discussion of threats
to validity (Section 5) and related work (Section 6). Section
7 then concludes the paper and points out future work.

!Example: -DLIBXML_FTP_ENABLED in gcc.

typeof (xmlIOFTPClose) xmlIOFTPClose \

2. POWER-LAW DISTRIBUTIONS

A discrete power-law distribution (which we simply refer
as power law) is a probability distribution where the proba-
bility that a discrete random variable X assumes a value x is
proportional to x raised to the negative power of a positive
constant k:

P(X =x) x cz " where ¢ >0,k >0 (1)

A power law as given by the equation diverges when x = 0.
In fact, it requires a lower-bound value T, > 0 to set up a
cut-off value defining a starting point (z > Zmn) from which
a power-law behaviour occurs [5]. As we shall see later in the
methodology part of our work, the parameters k and xmin
play an important role when performing a goodness-of-fit
analysis.

An important characteristic of a power-law distribution
concerns its plotting: When plotted in a logarithmic scale,
a power-law function results in a decreasing line. As Bax-
ter et al. [4] report, this is a distinguishing characteristic of
power-law distributions.

Interestingly, different researchers report that the distri-
bution of different source-code metrics follow a power-law
distribution [24, 4, 18, 20]. Currently, however, no work has
investigated whether the same behaviour occurs for feature
scattering—our goal of investigation.

3. METHODOLOGY

This section discusses the selection of subject systems, the
data collection process to assess feature scattering, and the
statistical analysis of the collected data. Our datasets, R
scripts, and associated tooling are publicly available on a
companion website.?

3.1 Selection of Subjects

To verify whether scattered features follow a power-law
distribution, we selected five open-source software families
that rely on C pre-processor directives to annotate feature
code. Table 1 provides information of the subjects.

Our selection takes a subset of the systems analyzed by
Liebig et. al [16] when investigating 40 open-source systems.
The choice of our subjects was guided by three criteria: (i)
each system must cover a distinct functional domain. This
criterion prevents bias towards an specific domain; (ii) each
system must be a mature software system in the selected
functional domain. This decision relies on the assumption
that developers of mature systems are more likely to have
found a practical balance to when and how much to scat-
ter. It is a requirement for establishing credible thresholds;
(iii) the selection of subjects must comprise systems with
different sizes, which we measure using two distinct metrics
(avoids bias towards a particular system size):

e SLOC (Source Lines of Code): The total number of
source lines of code of a given system. This count-
ing excludes blank lines and comments. Moreover, se-
quence of multilines (lines ending with a backslash) are
counted as a single line.?

2http://rodrigoqueiroz.bitbucket.org/fosd2014.html
3Multilines are convenient when spanning a long line across
multiple ones; during compilation, sequences of multilines
are taken as a single line.

Table 1: Selected subjects (general description)

System Version Source Code Location Functional Domain
vi 50325 http://sourceforge.net/projects/ex-vi | Text editor
libxml2 2.9.1 https://git.gnome.org/browse/1ibxml2 XML library
lighttpd 1.4.35 http://wuw.lighttpd.net/download Web server
MySQL 5.6.19 http://dev.mysql.com Database management system
Linux kernel | 3.15 https://github.com/torvalds/linux Operating system

Table 2: Selected subjects: size metrics (SLOC: Source Lines

of Code, NOFC: Number of Feature Constants) 200 -
— v
285 — libxmlI2
System SLOC NOFC 270 4 :\i,?hétgcli—
vi 22,275 118 255+ ipuckernel
libxml2 222,009 | 2,095 -
lighttpd 39,990 179 8 210
MySQL 1,578,250 1,987 § 1:3
Linux kernel | 11,964,252 12,653 ;&; 165
O 150
2 135 4
e NOFC (Number of Feature Constants): The total num- ;“;-’ i(ng i
ber of macros names that are referred in, at least, one § 90
ifdef. 75
60
As shown in Table 2, our subjects include small (vi and :Z: /
lighttpd), medium (libxml2), and large software systems 15 4
(MySQL and Linux kernel), as quantified by the SLOC and 0 -
NOFC metrics. All subjects are mature systems, and have T T T T T T
existed over many years. 8832JA3BIYBBIBRLIBES3
O O 0O 0O 0000000000000 OO OO -
Percentiles (% of features)

3.2 Data Collection

To assess feature scattering, we first parse the source files
(implementation and header C files) of each target system.
Parsing is performed using the src2srcml tool,* which out-
puts an XML representation of the code. The resulting
XML files preserve all the code, including macro directives
(src2sreml does not perform any pre-processing).

With all annotations in place, we run a custom-made tool
(fscat) to process the XML files produced by src2srcml and
measure the scattering degree of each feature.

The scattering metric reported by fscat defines the scat-
tering of a feature as the number of ifdefs that refer to it. In
the previous example of Figure 1, for instance, the scatte-
ring degree of LIBXML_FTP_ENABLED is one for the presented
code fragment.

3.3 Statistical Analysis

Our statistical analysis is performed using the R statistical
environment® and the poweRlaw package [11].

First, we define the two parameters k and ., of the best-
fit power law (IPo) that approximates as close as possible to
the empirical CDF of the scattering distribution (IP) of a sys-
tem under analysis. When searching for a Py, we rely on the
maximum-likelihood estimator method (MLE), while choos-
ing Xmin as the value minimizing the Kolmogorov-Statistic
(KS). The KS statistic is given by the maximum distance
|Po(x) — P(z)|, for all £ > zmin. For further details, the
reader is referred to elsewhere [5, 12, 11].

‘http://www.sdml.info/projects/srcml/
Shttp://www.r-project.org/

Figure 2: Cropped percentile-plot of the scattering degree

Once we estimate k& and x,,, we perform a hypothesis
test to verify whether a power-law distribution is a plausible
model for the behaviour of each empirical CDF. Following
Clauset et al. [5], we perform a goodness-of-fit test via a
boostrap procedure following the algorithms and steps out-
lined in [12]. Simply put, we generate 2,500 datasets from
the Py model and then try to re-infer a new best-fit power
law for each generated dataset. The p-value of the simula-
tion process corresponds to the fraction of times the KS of
the best-fit model of the generated dataset is higher than
the one obtained for P. Our hypotheses are the following:

e Null hypothesis: Py is a plausible fit for P
e Alternative hypothesis: Py is not a plausible fit for P

As Clauset et al. argue, if the test reports a p-value larger
than 0.1, one must accept the null hypothesis. Otherwise,
it should be rejected in favour of the alternative hypothesis.
In the latter case, P is unlikely to conform to a power-law
distribution; rather, the empirical CDF function is better fit
in another model, and may or not be heavy-tailed.

4. RESULTS

To assess distribution of the feature-scattering degrees,
we plot the percentile graph of the empirical CDF of each

Table 3: Max and mean scattering degree (SD) value

System Max SD | Mean SD
vi 53 4.73
libxml2 379 4.15
lighttpd 48 4.21
MySQL 652 6.99
Linux kernel 2,698 5.43

subject system. As Figure 2 shows, the highest scattering-
degree (SD) value in 95% of the features in each system
ranges from 13 to 27. In contrast, the remaining 5% of fea-
tures have a steep scattering degree (due to space, we crop
the y-axis of the plotted graph to report a maximum SD of
300). In the latter share, the scattering degree reaches ex-
treme values in MySQL and in the Linux kernel, while other
systems display lower bounds (vi, libxml2, and lighttpd).
Table 3 shows the maximum SD in each system, along with
its mean value.

The analysis of the percentile plot shows that the mean
SD-value is too far apart from the values in the last 10%
of the features. This nicely illustrates that the mean is not
a representative value of the scattering degree of a typical
feature. Such characteristic is a necessary, yet not sufficient
condition for us to claim that feature scattering follows a
power-law distribution in the analyzed systems. To this end,
we perform a best-fit analysis.

Following the methodology steps described in Section 3.3,
we perform a best-fit analysis to estimate the parameters of
the power-law model (k and Zmin) of each empirical CDF.
In Figure 3, we plot each power law in logarithmic scale,
resulting in the red decreasing line in each graph of the fig-
ure. As we state in Section 2, the resulting line is a distinct
characteristic of power-law distributions. We then take the
logarithmic scale of the scattering measures of the empirical
CDF of each system, adding the transformed data points to
the graph of each system. The resulting plot reveals that the
data points approximate the line of the power law, strength-
ening our understanding that scattering follows a power-law
distribution.

To statistically check whether the fitted power laws are
plausible models (null hypothesis), we perform a bootstrap-
ping hypothesis test. Table 4 shows the p-values obtained
for each power law. We find four statistically significant
models (p-value > 0.1), leading us to accept the null hy-
pothesis for vi, lighttpd, MySQL, and Linux kernel. In the
case of libxml2, however, we reject the null hypothesis in
favour of the alternative one (the power-law model is not a
plausible explanation model). Note that this is not the same
as concluding that the scattering distribution of libxml2 is
not heavy-tailed. In fact, Figure 2 suggests a heavy-tailed
behaviour. Thus, feature scattering in libxml2 is likely to
better fit an alternative heavy-tailed model (e.g., stretched
exponential or log-normal).

Summary of findings: Feature-scattering distributions
follow power laws in four out of five systems we analyze. In
the remaining system (libxml2), feature scattering seems to
follow an alternative heavy-tailed distribution.

S. THREATS TO VALIDITY

The most likely threat to the validity of our findings is
the selection of only five subject systems (external valid-
ity). We acknowledge that the current selection is not large
enough for us to judge whether our results are applicable
to every pre-processor-based software family. We, however,
attempted to minimize this threat by carefully selecting ma-
ture systems of different sizes and that come from different
domains. The mechanism in which features are realized also
poses an external threat. Since features may be realized
in different ways depending on the programming language,
scattering may not have the same behaviour as observed
in the five investigated C-pre-processor-based software fam-
ilies.

Another threat arises when computing the scattering de-
gree. When using fscat, we consider all the C source of each
system, and we do not distinguish files that are automati-
cally generated (e.g., those produced by parser generators)
from those that are not. Thus, our results are, to some
extent, subject to the influence of such particular files (con-
struct validity). We argue, however, that the majority of
files we take for analysis are not automatically generated.

Last, but not least, our results indicate that feature scat-
tering follows a power-law distribution in four out of five of
our subjects. However, it might be the case that other dis-
tributions are a better fit (e.g., log-normal or stretched ex-
ponential). We defer such an investigation for future work.

6. RELATED WORK

Liebig et al. [16] analyzed forty program families to show
how developers employ the C pre-preprocessor when imple-
menting features and their associated ifdefs in code. The au-
thors consider not only scattering metrics, but also metrics
measuring tangling (the degree in which features interplay in
ifdef annotations), the granularity of annotations (the syn-
tactic location where an ifdef occurs—e.g., at a global level,
inside a function, inside a block, etc.), and the type of an-
notated code (homogeneous, meaning that a verbatim copy
of the annotated also appears in another annotated code;
heterogeneous, with distinct extensions; or a mix of the pre-
vious two). The authors report their results using central
statistics measures, including averages and standard devi-
ations. However, the properties of the underlying metric-
distributions have not been checked (e.g., whether data is
symmetric, as seen in Gaussian distributions, or whether
they are heavy-tailed, as in power-law distributions), which
may turn results not representative of true typical values.
Moreover, the authors performed transformations in the an-
notations of their investigated subjects (e.g., by propagat-
ing the condition of outer ifdefs to inner ones and making a
conjunction of each elif condition with the condition of pre-
ceding branches.) We argue that such transformations may
lead to over-scattering. In contrast, we measure scattering
in a conservative manner, taking it as is given explicitly in
the source code.

Couto et al. [7] extracted a software product line from
the ArgoUML tool, using ifdefs to annotate feature code.
As part of their study, the authors report similar metrics
to those used by Liebig et al., including the scattering de-
gree of features. With the observed scattering values, the
authors link the corresponding features to specific patterns
reported by Figueiredo et al. [10]. The patterns reported by

CDF

CDF

1.00

0.50

0.10 0.20

0.05

0.02

0.01

0.500

0.200

0.050

0.020

0.005

—— Power Law
xmin = 1
k= 1.8542

1 2 5 10 20 50
vi SD
(a)
° —— Power Law
xmin = 3
o k= 22314

T T T T
1 2 5 10

lighttpd SD

(c)

CDF
le-02 le-01 1e+00

1le-03

le-04

20 50

CDF

CDF

5e-03 5e-02 5e-01

5e-04

5e-03 5e-02 5e-01

5e-04

Power Law
xmin = 15
k= 1.9790

2 5 10 20 50 100 200
libxml2 SD
(b)
—— Power Law
xmin = 8
o k= 20113

2 5 10 20 50

MySQL SD

(d)

—— Power Law
xmin = 8
k= 2.2237

5 10

50 100

Linux kernel

(e)

SD

500

T T
100 200

Figure 3: Power-law distribution of the scattering degree (SD) values in logarithmic scale

Table 4: Power-law inferred parameters and their statistical significance

System k xmin | p-value | Statistically significant?
vi 1.8542 1 0.2688 Yes
libxml2 1.9790 15 0.0756 No
lighttpd 2.2314 3 0.8752 Yes
MySQL 2.0113 8 0.2368 Yes
Linux kernel | 2.2237 8 0.6436 Yes

Figueiredo et al. formalize rules on how to identify specific
kinds of scattered features.

Other researchers [8] investigated the relation between
scattering and bugs, but do not prescribe a threshold lim-
iting the degree of scattering. Nonetheless, they provide
evidence that simple metrics as the scattering degree (a.k.a.
concern diffusion metric) correlate with the number of bugs
in a system, independent of the size of the latter. This
strengthens our claim towards the need of reliable thresh-
olds.

Outside the feature-oriented and product-line community,
there are different pieces of work checking the characteris-
tic distribution of size, coupling, and cohesion-related met-
rics. For example, Louridas et al. [18] study the existence of
power-law distributions in different kinds of software com-
ponents, including Java classes, Perl packages, shared Unix
Libraries, and Windows dynamic linked libraries (DLLs).
The authors conclude that heavy-tailed distributions, usu-
ally power-law distributions, appear at various levels of ab-
straction, in many domains, operating systems, and lan-
guages. Concas et al. [6] study ten different properties re-
lated to classes and methods of a large Smalltalk system,
consistently finding non-Gaussian distributions for these prop-
erties. The authors then conclude that “the usual evaluation
of systems based on mean and standard deviation of met-
rics can be misleading”. Baxter et al. [4] report that some
structural properties of Java software follow power-law dis-
tributions, while other do not. They conjecture that metrics
measuring properties that programmers are inherently aware
about (e.g., out-degree distributions or number of method
parameters) tend to follow distributions that are not power-
law distributions.

From the observation that source code metrics may fol-
low heavy-tailed distributions, researchers have recently pro-
posed techniques for extracting reliable thresholds for exist-
ing metrics, including McCabe [1] and object-oriented met-
rics [19, 20].

7. CONCLUSION AND FUTURE WORK

We analyzed the statistical distribution of the scattering
degrees in five open-source pre-processor-based systems (vi,
libxml2, lighttpd, MySQL, and Linux kernel). Our investi-
gation shows that the feature-scattering distribution of four
of our subjects (vi, lighttpd, MySQL, and Linux) follow a
power law. We provide preliminary evidence that feature
scattering is concentrated in specific features that skew the
distribution. In such settings, feature-scattering thresholds
based on central measures may not be reliable in practice.

To confirm or refute our preliminary findings, researchers
shall investigate a larger set of systems. In this direction,
we aim at re-applying our methodology in the investigation
of other pre-processor-based software families, ideally cov-

ering the same systems as Liebig et al. By increasing the
target corpus, we also plan to investigate how to extract
reliable thresholds for pre-processor-based software families.
Another direction for future investigation is to assess feature
scattering in software families written in languages other
than C (e.g., in object-oriented languages).

8. ACKNOWLEDGEMENTS

We thank CNPq, CAPES, FAPEMIG and German Re-
search Foundation (AP 206/4, AP 206/5, AP 206/6) for
partially funding this project.

9. REFERENCES

[1] T. L. Alves, C. Ypma, and J. Visser. Deriving Metric
Thresholds from Benchmark Data. In Proceedings of
the International Conference on Software
Maintenance, pages 1-10. IEEE, 2010.

[2] S. Apel, D. Batory, C. Kstner, and G. Saake.
Feature-Oriented Software Product Lines: Concepts
and Implementation. Springer, 2013.

[3] S. Apel, T. Leich, and G. Saake. Aspectual Feature
Modules. IEEE Transactions on Software Engineering,
34(2):162-180, 2008.

[4] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith,
M. Visser, H. Melton, and E. Tempero. Understanding
the Shape of Java Software. In Proceedings of the
International Conference on Object-oriented
Programming Systems, Languages, and Applications,
pages 397-412. ACM, 2006.

[5] A. Clauset, C. R. Shalizi, and M. E. J. Newman.
Power-Law Distributions in Empirical Data. Society
for Industrial and Applied Mathematics Review,
51(4):661-703, 2009.

[6] G. Concas, M. Marchesi, S. Pinna, and N. Serra.
Power-Laws in a Large Object-Oriented Software
System. IEEE Transactions on Software Engineering,
33(10):687-708, 2007.

[7] M. Couto, M. Valente, and E. Figueiredo. Extracting
Software Product Lines: A Case Study Using
Conditional Compilation. In Proceedings of the
FEuropean Conference on Software Maintenance and
Reengineering, pages 191-200. IEEE, 2011.

[8] M. Eaddy, T. Zimmermann, K. D. Sherwood,

V. Garg, G. C. Murphy, N. Nagappan, and A. V. Aho.
Do Crosscutting Concerns Cause Defects? IEEE
Transactions on Software Engineering, 34(4):497-515,
2008.

[9] J.-M. Favre. Preprocessors from an Abstract Point of
View. In Proceedings of the International Conference
on Software Maintenance, pages 329—. IEEE, 1996.

[10]

E. Figueiredo, B. C. da Silva, C. Sant’Anna, A. F.
Garcia, J. Whittle, and D. J. Nunes. Crosscutting
Patterns and Design Stability: An Exploratory
Analysis. In Proceedings of the International
Conference on Program Comprehension, pages
138-147. IEEE, 2009.

C. S. Gillespie. Fitting Heavy-Tailed Distributions:
The poweRlaw Package, 2014. R package version
0.20.5.

C. S. Gillespie. The poweRlaw Package: A General
Overview, 2014.

C. Kastner, S. Apel, and K. Ostermann. The Road to
Feature Modularity? In Proceedings of the
International Software Product Line Conference, pages
1-8. ACM, 2011.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In Proceedings of the
European Conference on Object-Oriented
Programming, pages 220—-242. Springer, 1997.

G. Krone, M.; Snelting. On the Inference of
Configuration Structures from Source Code. In
Proceedings of the International Conference on
Software Engineering, pages 49-57. IEEE, 1994.

J. Liebig, S. Apel, C. Lengauer, C. Késtner, and

M. Schulze. An Analysis of the Variability in Forty
Preprocessor-Based Software Product Lines. In
Proceedings of the International Conference on
Software Engineering, pages 105-114. ACM, 2010.

J. Liebig, C. Késtner, and S. Apel. Analyzing the
Discipline of Preprocessor Annotations in 30 Million
Lines of C Code. In Proceedings of the International
Conference on Aspect-Oriented Software Development,
pages 191-202. ACM, 2011.

(18]

(19]

20]

(21]

(22]

23]

[24]

P. Louridas, D. Spinellis, and V. Vlachos. Power Laws
in Software. ACM Transactions on Software
Engineering and Methodology, 18:1-26, 2008.

P. Oliveira, F. Lima, M. T. Valente, and S. Alexander.
RTTOOL: A Tool for Extracting Relative Thresholds
for Source Code Metrics. In Proceedings of the
International Conference on Software Maintenance
and Evolution (Tool Demo Track), pages 1-4, 2014.

P. Oliveira, M. Valente, and F. Paim Lima. Extracting
Relative Thresholds for Source Code Metrics. In
Proceedings of the International Conference on
Software Maintenance, Reengineering and Reverse
Engineering, pages 254-263. IEEE, 2014.

L. Passos, J. Guo, L. Teixeira, K. Czarnecki,

A. Wasowski, and P. Borba. Coevolution of Variability
Models and Related Artifacts: A Case Study from the
Linux Kernel. In Proceedings of the International
Software Product Line Conference, pages 91-100.
ACM, 2013.

H. Spencer and G. Collyer. #ifdef Considered
Harmful, or Portability Experience with C News. In
Proceedings of the USENIX Technical Conference,
page 185-197. USENIX Association, 1992.

K. Sullivan, W. G. Griswold, Y. Song, Y. Cai,

M. Shonle, N. Tewari, and H. Rajan. Information
Hiding Interfaces for Aspect-Oriented Design. In
Proceedings of the International Symposium on
Foundations of Software Engineering, pages 166—175.
ACM, 2005.

R. Wheeldon and S. Counsell. Power Law
Distributions in Class Relationships. In Proceedings of
the International Working Conference on Source Code
Analysis and Manipulation, pages 45-54. IEEE, 2003.

