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ABSTRACT
Wrapping is an established technique for API migration: the
use of a given API within the system under migration is re-
placed by the use of a wrapper-based re-implementation of
said API while using a different (preferred) API underneath.
Except for some special cases, wrapper development is a
craft. In particular, the compliance of a wrapper with the
original API is hard to assess and guidance of wrapper devel-
opment is very limited. In this paper, we describe a method
for wrapper development that is essentially inspired by no-
tions of scenario-based differential testing, API contracts as
well as selective capture and replay of program executions.
The method supports compliance testing of the wrapper un-
der development against the original API; it guides the devel-
oper in improving compliance incrementally; it also allows
for precise capture of unresolved differences between origi-
nal API and wrapper. The method is evaluated by a study
of wrapper development with different wrappers in the do-
mains of XML processing, byte-code engineering, and GUI
programming.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Assertion checkers; D.2.5 [Software Engineering]: Testing and
Debugging—Tracing; Testing tools; D.2.13 [Software Engineer-
ing]: Reusable Software—Reusable libraries

General Terms
Design, Verification

Keywords
API migration, wrapping, compliance testing, API contracts

1. INTRODUCTION
API migration [1, 29, 26, 25, 27, 3, 2, 18, 33, 11, 30,

17] is concerned with the evolution of software systems with
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regard to their dependencies on particular APIs in all do-
mains of programming, e.g., XML processing, database ac-
cess, byte-code engineering, or GUI programming. For in-
stance, a system could be subject to ‘modernization’ such
that a deprecated API is to be replaced by a state-of-the-
art API. Also, two systems could be subject to ‘integration’
such that diverging options of APIs for a specific domain
(e.g., two different GUI APIs) need to be consolidated by
using only one API in the integrated system.

Wrapping is an established technique for API migration:
the use of a given API within the system under migration is
replaced by the use of a wrapper-based re-implementation of
said API while using a different (preferred) API underneath.
Except for some special cases, wrapper development is a
craft. In particular, the correctness of wrappers is hard to
assess and guidance of wrapper development is very limited.

In this paper, we are concerned with API migration based
on wrapping and specifically the challenging case in which
original API and replacement API are not related in any
obvious manner, as, for example, in the case of upgrade
transformations [26, 25]. Instead, the two APIs may differ
in significant ways as far as protocols, contracts, type hierar-
chies and other aspects are concerned. In this context, our
previous work [3, 2] has focused on the analysis of API differ-
ences as they cause compliance issues and implementation
challenges in API migration; we have also proposed design
patterns for developing wrappers [2].

The focus of this paper is on the development process for
API wrappers.

Contributions of the paper

• We introduce a notion of scenario-based compliance
testing for API migration such that the execution of
scenarios—under the scrutiny of assertions for API
contracts—is used to establish compliance between orig-
inal API and wrapper-based re-implementation.

• We describe a method for developing compliant wrap-
pers, which involves scenario design, scenario execu-
tion, selection of API contracts including tuning, data
collection, reporting of compliance violations, and in-
cremental wrapper evolution.

• We report on the evaluation of the method for wrap-
per development by means of a study in the domains
of XML processing, GUI programming, and byte-code
engineering. Our results show that guidance can be
effective in improving wrapper compliance.



Figure 1: SwingSet2’s Tooltip demo in Swing, SwingWT and evolved SwingWT versions.

The aforementioned method has been implemented in a
toolkit called Koloo. The paper’s website1 provides access
to accompanying material such as the wrappers and appli-
cations of the study as well as additional data.

Road-map of the paper. §2 presents a motivating exam-
ple for wrapper development based on an open-source wrap-
per for Java’s Swing API for GUI programming. §3 re-
ports on interviews conducted with developers experienced
in API migration, providing requirements for an API migra-
tion method. §4 develops the overall notion of compliance
testing for wrapper-based API migration. §5 describes a
method for API migration based on compliance testing. §6
describes validation. §7 analyzes related work. §8 concludes
the paper.

2. MOTIVATING EXAMPLE
We will illustrate here compliance issues between original

API and its wrapper-based re-implementation. The aim of
wrapper development is to reduce such issues up to the point
that the wrapper is ‘good enough’ for use in applications.
Original API and replacement API (i.e., the API used inter-
nally by the wrapper) may enjoy ‘arbitrary’ differences [3,
2]; the wrapper must neutralize these differences.

Our example concerns two GUI APIs: i) the Swing API
with the help of the AWT API, which are both part of JDK

(‘the Java platform’), and ii) the SWT API2, which is part
of the Eclipse project. There exists the open-source project
SwingWT

3, which is a wrapper-based re-implementation of
Swing in terms of SWT.
Using the method of this paper (see §5–§6) and designated

tool support (i.e., the Koloo toolkit), we have developed a
revision of SwingWT

4, to which we also refer as ‘evolved
SwingWT’ in the sequel.
Fig. 1 illustrates compliance issues of SwingWT versus

Swing; it also illustrates how our systematically evolved wrap-
per reduces the compliance issues. In the figure, we exercise
one scenario of the Tooltip demo of SwingSet25, which is a
set of Swing demos originally distributed by Sun. The sce-
nario is concerned with displaying a specific tooltip, as it is
triggered when the user positions the mouse over the cow’s
mouth. The scenario was chosen because the Tooltip demo
is clearly concerned with triggering tooltips.

1http://gsd.uwaterloo.ca/issta2012
2http://eclipse.org/swt
3http://swingwt.sf.net
4http://swingwt.svn.sf.net/viewvc/swingwt/swingwt/
trunk/CHANGELOG?revision=86
5Source code see Sun JDK folder demo/jfc/SwingSet2/

On the left, the reference behavior is that the cow moos.
In the middle, the SwingWT wrapper, prior to our efforts,
is at work. Two problems are noticeable in the image: the
background color is gray instead of white, and the tooltip
shows a different message: ‘cow’ as opposed to ‘Mooooooo’.
On the right, the evolved SwingWT wrapper is at work.
The background color complies with the original API; the
tooltip’s messages complies with the original API as well.
We have chosen the example to be visually striking, but
we must emphasize that the method proposed in this pa-
per specifically reveals issues that are not easily spotted by
looking at particular screenshots; it also applies to domains
other than GUI programming.

Our method reveals behavioral differences in an automated
manner on the grounds of checked assertions for API con-
tracts. Revealed differences are also referred to as violations
(of compliance). Our method can be exercised with varying
levels of scrutiny in terms of API contracts and correspond-
ing assertions to be imposed on scenario execution. Koloo
supports recording and replaying scenarios as well as com-
paring results of execution across original API and wrapper.

If we enable API contracts for return values of calls to API
methods exercised by the application, then the violation is
detected that SwingWT does not reproduce the return value
for the method contains(Point) of class java.awt.Polygon.
An investigation reveals that the Tooltip demo uses the
method to map areas of the image to the corresponding mes-
sages. The violation is directly linked to the observable fact
that a wrong message is displayed in the middle of Fig. 1.

If we also enable API contracts for asynchronous calls
from the API to the application, then the violation
is detected that SwingWT does not execute an asyn-
chronous callback to the method contains(int, int) of
class java.awt.Component. An investigation reveals that
the Tooltip demo overrides the method to select the appro-
priate tooltip to display—specific to the component. The
violation is also directly linked to the observable fact that a
wrong message is displayed in the middle of Fig. 1.

If we also enable contracts for state integrity for method-
call receivers of API types, then a violation is also flagged
for the diverging background color, which cannot be revealed
though by looking at return values of method calls because
the scenario’s design is such that the application does not
exercise the (getter of the) background color in any way.
It must be noted that additional scrutiny in terms of API
contracts may also imply noise in reporting violations (see
§6) in so far that elimination of these violations does not
need to be reasonably expected by a ‘good enough’ wrapper.

http://gsd.uwaterloo.ca/issta2012
http://eclipse.org/swt
http://swingwt.sf.net
http://swingwt.svn.sf.net/viewvc/swingwt/swingwt/trunk/CHANGELOG?revision=86
http://swingwt.svn.sf.net/viewvc/swingwt/swingwt/trunk/CHANGELOG?revision=86


3. INTERVIEWS
In order to better understand what process developers em-

ploy for API migration in practice we conducted interviews
with developers with experience in some form of API migra-
tion (wrapping or rewriting).
We performed 5 guided interviews by phone and 1 infor-

mal interview by email. The subjects came from 3 different
countries, had at least 5 years of professional development
experience and participated in at least one API migration
effort, in domains such as banking, gaming, GUI, web ser-
vices, and logging. We asked general open questions about
i) the used development process, ii) the used techniques and
criteria for verification of results, and iii) the actual or de-
sired use of tool support. The outcome of the interviews can
be summarized as follows.
Specific applications — all reported API migration ef-

forts used specific applications to drive the development
process. Even wrapping projects aiming at general wrap-
pers initially targeted a single application. For instance,
SWTSwing6, which is one of the wrappers covered by the
interviews, was developed initially to migrate Eclipse from
SWT to Swing. That is, SWTSwing essentially flips the role
of original and replacement GUI APIs, when compared to
the SwingWT wrapper that we discussed in §2. No interview
was conducted though with the developer of SwingWT.

Simple samples — even with specific applications in
mind, developers usually start with basic samples. In the
case of API migration by rewriting, developers reported to
target samples initially so that they can assess the migration
effort. In the case of API migration by wrapping, develop-
ers reported to create small samples that imitate API usage
in the application. Such samples are then used to evolve
the wrapper up to the point that the original applications
start executing with it. (In addition to hand-coded samples,
developers also reported to leverage (simple) open source
applications that exercise the original API.)
Limited test automation — developers reported that,

in most cases, they simply try to informally compare the
behavior of the application before and after migration, for
example, by looking at the resulting GUI snapshots, files, or
the return value of some important functions. In fact, a sim-
ple ‘crash-driven’ method is often used, such that developers
try to run the application under migration and incomplete-
ness or non-compliance of the wrapper reveals itself as a
crash to be debugged and analyzed by developers.
One interviewee reported an approach for a more rigor-

ous testing process in banking applications. Developers first
recreate requirements documents to account for missing, in-
complete, or outdated requirements documents. Then, de-
velopers derive use cases from which they in turn derive
high-level, automated test cases manually so that essential
business flows can be verified automatically.
Relaxed behavioral equivalence —all developers of wrap-

pers mentioned that strict behavioral equivalence between
the original API and wrapper was never a goal. More gener-
ally, all developers did not even strive for strict behavioral
equivalence between the original and the migrated applica-
tion. These expectations are also aligned with our experi-
ence that the differences between APIs are often too hard
to be neutralized completely. Strict equivalence is report-
edly considered unnecessary. Developers are content with a

6http://swtswing.sf.net

migration that is ’good enough’.
Related to the issue of behavioral equivalence, in the case

of wrapper-based API migration some developers reported
that limited, manual adaptation of the application is also
applied in some cases, when this simplifies the wrapper im-
plementation or enables better utilization of the replacement
API. Migrated SWTSwing applications, for example, may
benefit from added initialization code related to threading.

Conceivable tool support — developers varied in their
opinions about conceivable tool support. Some developers
expressed interest in automated comparison of results. In
certain domains, e.g., in the GUI domain, developers ex-
pressed concerns about the feasibility of automated compar-
ison. For instance, developers of SWTSwing used a tool for
opening side-by-side the same application—once with SWT,
once with SWTSwing, thereby simplifying the manual com-
parison of states of the GUI including details of appearance.
A general, automated comparison was considered infeasible.

One developer said that automated rewriting tools should
not be trusted for complex migration tasks because the code
may become unmaintainable while the same could be true
for generated wrappers. Finally, one developer expressed
that debugging and regression testing may benefit from the
selective use of injected observation functionality to be ap-
plied to objects of interest.

4. COMPLIANCE TESTING
We introduce the notion of compliance testing for API mi-

gration, as a form of automated testing, to explicitly capture
the behavior of the original API in a manner that behavioral
compliance can be asserted for the wrapper. Compliance
testing can be seen as a blend of regression, differential [15]
and compatibility testing [12] based on developer-designated
test cases (as opposed to test-data generation) that are en-
riched by the generation of assertions, also common else-
where in the testing area [31].

While regression testing is focused on preserving test-based
contracts of an earlier version in a later version, compliance
testing is concerned with with alternative implementations
(the original API is now the point of reference). Differential
testing is more general than regression testing in that it helps
comparing different implementations, akin to compatibility
and compliance testing. However, differential testing tradi-
tionaly focuses on random input generation and uses appli-
cation output as oracles whereas compatibility testing com-
pares behavior via inferred boolean invariants, and compli-
ance testing generates assertions. When compared to other
assertion generation approaches, the proposed form of com-
pliance testing is specifically focused on the interaction be-
tween an application and an API with coverage of callbacks,
state observation, and tuning of any sort of comparison.

4.1 Trace Capture
The execution of a compliance test is captured as a trace,

which consists of a sequence of events that represent method
calls, constructor calls and field accesses to API-defined ele-
ments. An element is API-defined if it is declared by the API
or it is an application extension of an element declared by
the API. Thus, a trace is meant to abstract from execution
events that do not involve API types or subtypes thereof in
the application.

Fig. 2 defines the structure of events more precisely. An
event is an eight-tuple uniquely identified by its execution

http://swtswing.sf.net


event E ::= (eid, tid,pid, d, T , sig, P [], R)
execution id eid ∈ N

thread id tid ∈ N

parent id pid ∈ {eid}
direction d ∈ → | ←֓
event entity T ,P ,R ::= (type, content)
entity content content ::= | value | id | (id, entity[])
signature sig ∈ string

type name type ∈ string

object id id ∈ N

content value value ∈ string | primitive

Figure 2: Event structure of captured traces.

e1, t0 → :Robot.<init>():0 ...
e16, t0 → :ToolTipDemo.<init>( ):1 ...
e22, t0 → :JPanel.<init>():2 ...
e29, t0 → :ToolTipDemo$Cow.<init>(1):3 ...
e32, t0 → :Polygon.<init>():4 ...
e62, t0 → 3:ToolTipDemo$Cow.setToolTipText(“Cow”):V ...
e66, t0 → 2:JPanel.add(3):3 ...
e68, t0 → :JFrame.<init>(“ToolTip Demo”):5 ...
e72, t0 → 5:JFrame.getContentPane():6
e73, t0 → 6:Container.add(2, “Center”): ...
e77, t0 → 5:JFrame.show():V ...
e85, t0 → 0:Robot.mouseMove(’342’, ’312’):V
e86, t0 → :Thread.sleep(’3000’):V
e87, t1 ←֓ 6:Container.contains(’155’, ’112’):’true’
e88, t1 → :Point.<init>(’155’, ’112’):7
e89, t1 → 4:Polygon.contains(7):’true’
e90, t1 → 3:ToolTipDemo$Cow.setToolTipText(

“<html><center><font color=blue size=+2>
Mooooooo
</font></center></html>”)):V

Figure 3: API trace for the example in Fig. 1.

id, which captures the order in which events were detected.
A thread id identifies the active thread. The parent id in-
dicates the state of the execution stack–event eid occurred
in the control flow of its parent event pid. The event signa-
ture identifies the target API element, including the static
target type. From the viewpoint of the application an event
is either outgoing (→), if it originates from an application
type, or otherwise incoming (←֓). Incoming events express
callbacks, when the API calls a method implemented by the
application. A callback is synchronous, if it is the response
to a call in the same thread. It is asynchronous otherwise,
i.e., if it is a top-level event of a thread that is controlled by
the API. (In this case, the trace contains only callbacks at
the top-level, meaning that the API created the thread.)
The remaining items correspond to the target object, a

sequence of parameters and a return object, all encoded as
event entities. An entity represents a runtime value or object
as a tuple with a string (the runtime type of the entity) and
a content item. The content can be (null or void), a value
(primitive or string), an object reference id or the reference
to an array (which has an id and points to a sequence of
entities). Exceptions thrown by events are encoded by the
return value being a reference with the exception type.
Fig. 3 shows an excerpt for the actual trace underlying

the motivating cow example of §2. No parent id is included
as it is clear from indentation. This is the trace as captured
with the original Swing API. (The trace is edited for read-
ability. For instance, type names are abbreviated.) The
trace contains calls to the two different contains methods
that we encountered during the discussion of behavioral dif-
ferences in §2: one for the area check (e89) and one for the
missing callback (e87). The last event assigns the specific
tooltip’s text using HTML format. As an aside, Swing is
capable of handling HTML, whereas SWT does not support
HTML here. This API difference eventually led to an ob-

servable GUI difference, which was resolved during wrapper
development such that HTML was stripped off.

4.2 API Contracts
Trace re-execution is subjected to API contracts, which

are checked by assertions. Different forms of API contracts
can be selected by the developer. (This is similar to con-
trol available in other forms of testing, e.g., the different
controls for test-data generation in randomized testing [14]).
The generation of assertions is also used in other forms of
testing [31]. Technically, Koloo provides a corresponding
DSL to select contracts.

Value Equality — when a method call or field access
returns a value (or a string) it must equal the value observed
at capture time.

Reference Integrity — when a method call or field ac-
cess returns a reference (i.e., an object) its identity must
equal the identity observed at capture time modulo consis-
tent renaming of identities.

Value equality and reference integrity are also applied to
arrays and their contents. That is, the array must preserve
reference integrity and its contents must all preserve value
or reference integrity, depending on the element type.

Exception Conformance — if a method call throws an
exception during trace capture, it must also throw an ex-
ception of the same type during re-execution. Furthermore,
re-execution must not throw any additional exceptions.

Callback Conformance — if a callback was triggered
during trace capture, it must also be triggered during re-
execution. To this end, the event for triggering a callback
must be verified by associating it with an actual callback.
Invocation of callbacks is tracked globally so that they can
be matched with triggering events.

In the case of synchronous callbacks, the association be-
tween callbacks and the (preceding) triggering event is un-
ambiguous. In the case of asynchronous callbacks, the trig-
gering event could date back more arbitrarily. In fact, there
is no guarantee that (multithreaded) callbacks re-execute
deterministically in the order of trace capture [8] and devi-
ations from the captured order do not imply incorrect be-
havior. Assertions are checked hence conservatively such
that a check for re-execution of the callback is issued at the
preceding event (which is not necessarily the trigger) and
the check does not need to succeed immediately, but it is
attempted repeatedly and in parallel to re-execution (in a
separate, auxiliary thread), subject to a large timeout.

Set/get Integrity — subject to name-based patterns,
certain pairs of API methods for object modification and
observation are subjected to integrity assertions. For in-
stance, a set followed by a get should retrieve the argument
of the set. More precisely, if a method for assumed object
modification is executed and there is an associated object
observer, then the observation must retrieve the argument
of the modification. These are the assumed pairs of modi-
fiers and observers that can be selected for such contracts;
we use X for variable postfixes of method names and T for
type names:

Modifier Observer Comment
setX(... v) getX() getter returns v
setX(boolean v) isX() predicate returns v
addX(... v) getXs() result contains v
add(T v) getTs() result contains v
put(... k, ... v) get(k) getter returns v



Such state integrity is only required for the re-execution of
the trace if it was valid during trace capture. It may be rea-
sonable that APIs do not satisfy ‘laws’ as this. For instance,
a setter may handle nulls or perform normalization.
State Integrity — if an object on a receiver position

during trace capture admits observations based on name
patterns, then value equality and reference integrity must
hold for the corresponding observations during re-execution.
Method names for observations are assumed to start with
“get”, “has”, “is”, or “count”. Such observation can be con-
trolled by opt-in or opt-out for types. Such observation may
also be controlled to be iterated in depth such that results of
observers are observed again etc. (We assume ‘shallow’ ob-
servation by default.) Finally, such observation may also be
declared in a ‘point-wise’ manner such that specific receiver
types are associated with specific observations including ar-
bitrary closures over the receiver object.

DSL-based declaration of the tuning

org/apache/bcel/classfile/
JavaClass.getBytes : BytecodeTuning

Match operation for the tuning

public class BytecodeTuning implements ... {
public boolean matches(byte[] expected,

byte[] actual) {
return serialize(expected).equals(

serialize(actual));
}
private static String serialize(byte[] bytecode)
StringWriter w = new StringWriter();
new ClassReader(bytecode).accept(
new TraceClassVisitor(new PrintWriter(w)), 0);

return w.toString();
}
}

Figure 4: BytecodeTuning implementation.

4.3 Assertion Tuning
The major source of control in compliance testing is selec-

tion of contracts for which assertions are to be checked, as we
discussed above. A further source of control is tuning of the
semantics of assertions, as we will discuss now. For instance,
value equality can be relaxed. Also, non-deterministic, non-
repeatable behavior can be accounted for. Technically, Koloo’s
DSL, which we mentioned above in the context of API con-
tracts, also serves the declaration of tunings: declarations
are of the form Package/Type.Method : NameOfTuning.
Tunings can be applied to results of a certain reference

type or in a more point-wise manner to results of specific
methods. Conceptually, a tuning consists of a match opera-
tion for expected and actual result (i.e., the results captured
originally and during re-execution).
Fig. 4 demonstrates an example in more detail. The ‘Byte-

codeTuning’ occurred in a wrapper study in the domain of
byte-code engineering (see §6). The example is concerned
with the comparison of the result returned by the central
getBytes method of the API, which is supposed to return
the byte-code of a given Java class; see the upper part of the
figure for the DSL phrase that applies a tuning to getBytes.

org/apache/bcel/generic/
InstructionHandle.getTargeters : ArrayIsSet

Compliance of byte-code engineering APIs: a specific
method’s result of an array type is declared to have set
semantics.

java/awt/
Component.getHeight : Percentage 10

Compliance of GUI APIs: a percentage-based divergence
between expected and actual height of a component is
admitted.

java/awt/
Point.x : Margin 15

Compliance of GUI APIs: a margin-based divergence be-
tween expected and actual value of a point’s coordinate
is admitted.

javax/swing/
JFrame.pack : SkipPackCallbacks

Compliance of GUI APIs: an API-specific tuning that
turns off checking of certain callbacks (not listed here)
that are triggered by calling pack().

Figure 5: Diverse tuning examples.

The challenge is that the original API and the replacement
API may use different orders for the constant pool that is
part of the returned byte code sequence. When serializing
the bytecode into strings, then constants are essentially in-
lined and hence this difference is neutralized. The replace-
ment API readily provides a visitor for serialization, which
is accordingly used by the match operation in the figure.

5. METHOD
We propose a method for wrapper development, which is

motivated by our prior experiences with API migration [3, 2]
and the results of the interviews with experienced developers;
see §3. Accordingly, the input of the corresponding process is
an application (or several applications) subject to wrapper-
based migration with regard to a specific API couple; the
output is a wrapper, which is supposed to be ‘good enough’.
Also, the method is iterative to improve the wrapper in a
stepwise manner. Overall, the method provides a level of
automated testing that improves state of the art in API
migration; see, again, §3.

Each iteration is composed of three phases (see Fig. 6)
inspired by capture and replay approaches [20, 24, 12]. De-
velopers first extract a dynamic trace of the interaction be-
tween the application and the API; see §5.1. (Of course, an
iteration could also deal with multiple traces at once.) Then,
an interpreter is used to re-execute the trace so that it can
be validated in the sense that the trace mocks the behav-
ior of the original application—still using the original API;
see §5.2. In this phase, settings are aggregated to decide on
API contracts to be asserted. Ultimately, the interpreter is
used with the wrapper under development and activities of
wrapper evolution and configuration alternate; see §5.3. In
this phase, the final decisions on applicable API contracts
and corresponding tunings are made. The violations of con-
tracts guide the evolution of the wrapper. The method is
supported by the Koloo toolkit.



Figure 6: An overview of an iteration according to the Koloo method.

5.1 Phase: Trace Collection
Scenario Design — Trace collection starts with the de-

sign of scenarios that can be automated as tests eventually.
A scenario is an execution of the application using the orig-
inal API. It is important to design scenarios that cover the
desired uses of the application since they represent the re-
quirements for the migration: the wrapper will be consid-
ered compliant if it properly replaces the original API in
these scenarios with respect to the verified contracts.
Scenarios usually target the applications at hand (as op-

posed to directly using the API). Tests for an application,
if available, can be used as scenarios. Such tests usually
contain assertions related to application logic, which may or
may not also check (indirectly) some aspects of API usage.
The interpreter of the method enriches scenarios—both with
and without assertions for application logic—with assertions
for selected API contracts.
Traces that are derived from scenarios must not depend

on external actions, and all results should be reproducible—
this is common requirement for automated testing. In the
context of API migration, this requirement may imply extra
challenges though. Consider, for example, API migration
for GUI APIs: GUI actions would need to be automated
by using a record&replay tool (such as GUITAR [16]) or
by manually writing scripts that automate actions upon the
GUI. In the example of Fig. 1 we designed a scenario that
positions the mouse over various areas of the image, and
automated the scenario with AWT’s Robot class.
It is the responsibility of the developer to design scenarios

that explore interesting interactions with the API. Depend-
ing on the selected contracts, those interactions are more or
less strongly verified. As a baseline, let us assume that these
contract forms are selected: value equality, reference in-
tegrity, exception conformance, and callback conformance—
we also refer to these contracts as ‘basic contracts’. With
these contracts, verification will essentially not look into ob-
jects (such as receivers of method calls). Scrutiny of verifica-
tion is hence increased when state integrity is also selected,
but this may also be problematic, as we will discuss in §6.
Tracing — The tracer executes the scenarios and col-

lects the API interactions as traces. (Koloo uses the byte-
code engineering framework ASM

7 for tracing.) To this end,
the tracer is also configured with a description of the types
that belong to the application and the API; this metadata
is also incorporated into the traces. Trace collection should

7http://asm.ow2.org

abstract away details of the underlying application that are
not important from an API compliance testing point of view.
(This also helps with automating the scenario and making
it reproducible.) Such abstraction is similar to other ap-
proaches for extracting regressions tests from application
traces [7, 20, 24, 23].

Type Rules — Developers need to identify application
and API types. Such identification boils down to ‘type rules’
such as regular expressions over their fully qualified names,
e.g., java.awt.*, javax.swing.* and javax.accessibility.* in
the case of Swing as the original API. However, the interac-
tion between application and API may be mediated by aux-
iliary types that are essential for the scenario even though
they should not be migrated. For example, APIs often use
collections, iterators, and files. In order to reproduce the sce-
nario in subsequent phases, events for such auxiliary types
must also be incorporated into the traces. The tracer reports
on unbound object references in API calls, and developers
need to add type rules for auxiliary types until traces can be
constructed completely. (In the study of §6, only few such
rules were needed: one scenario needed 8 auxiliary types but
most did not need any).8

Additional type rules are needed for rewriting type names
such that the interpreter can eventually deal with possibly
divergent namespaces for wrappers, when compared to the
original API. For instance, the SwingWT wrapper of §2 re-
quires the type rule java.awt ⇒ swingwt.awt.

5.2 Phase: Trace Validation
Traces must be validated before they are even attempted

with the emerging wrapper. By validation we mean that
interpretation of the trace is checked to reproduce the cap-
tured behavior. We also include the effort for contract selec-
tion, including the corresponding aggregation of state that is
needed by contracts but not readily available from the trace,
in particular state for checking state integrity; see §4.2.

Interpretation — The interpreter mocks the application
by reproducing its role in the interactions recorded in the
trace. The interpreter builds a model of all types and meth-
ods from the trace so that mock applications types and meth-
ods can be provided for trace execution; also, assertions for
the selected contracts (see ‘Settings’ in Fig. 6) can be in-
jected. In particular, each incoming event is associated with
a mock application type; each mock application method can

8Koloo defines Java’s Thread and Runnable types to be aux-
iliary types by default, thereby being able to mock multi-
threaded applications.

http://asm.ow2.org


be seen essentially as a sequence of API interactions, i.e.,
outgoing events. Additional rules apply to model parent re-
lationships for events. Events without parents are stored
in a special main method. (Koloo uses a custom classloader
that generates byte-code for the mock application types with
method implementations that call back into the interpreter.)
Interpretation starts with the main method and proceeds

sequentially. Each outgoing event is executed in turn. The
interpreter keeps a map from trace object id to runtime ob-
ject so that it can determine the target and parameters of
events; primitive values are used directly. After returning
from an event execution, the interpreter registers the return
value in the object map and uses the available contracts to
verify the result. Contracts can issue fatal violations that
immediately interrupt interpretation or can register the vi-
olation but allow interpretation to continue. After the last
event is executed the interpreter reports the set of detected
violations. If no violations were detected, the trace is con-
sidered ’validated’.
Reproducibility — Validation of reproducibility for the

original API assures interpretation does not attempt to ver-
ify in the wrapper behavior that is even unreproducible with
the original API. For instance, if the trace contains a call to
a time() method, then the corresponding event will not be
validated and will be accordingly omitted from the verifica-
tion of the wrapper. Such omission of events that fail to
be reproducible also decreases the chance of attempting to
verify undeterministic behavior common in multi-threaded
APIs. The reproducibility may obviously depend on the se-
lected contracts. For instance, the broad use of contracts for
state integrity may potentially invalidate objects from the
trace, thereby providing feedback to developers so that they
may backtrack on their selection.

5.3 Phase: Wrapper Development
Trace collection and validation prepares actual develop-

ment (evolution) of the wrapper. The same interpreter as in
trace validation is used to verify the traces for the wrapper,
while type rules for type-name rewriting may now apply, and
aggregated state from trace validation may be used as well.
If interpretation does not result in a violation, the vali-

dated trace is deemed ’asserted’, meaning that the wrapper
is known to comply with the corresponding scenario, modulo
tunings, with respect to the verified contracts. If desired, the
level of scrutiny can now be increased by selecting stronger
contracts and repeating the process. The set of asserted
traces constitutes a regression suite that should be used any
time the wrapper evolves, hence guaranteeing that no re-
gression goes undetected. Koloo contains a corresponding
regression running tool to automate this part of the process.
Wrapper Evolution — Any given violation may imply

that developers need to evolve the wrapper. However, vio-
lations may also be addressed in other ways. That is, de-
velopers may also decide to add a tuning to relax the API
contracts; see §4.3. Alternatively, developers may decide to
reconfigure the setting such that the scrutiny of API con-
tracts is lowered by selecting less API contracts or opting
out of specific cases of asserting the contracts.
By the end of an iteration the wrapper demonstrably com-

plies with the original API in the exercised scenarios. The
specification of contracts in use documents the level of scrutiny
while the specification of tunings capture precisely the unre-
solved differences between wrapper and original API.

6. EVALUATION

6.1 Research Questions
We designed a study to address the following overarching

research questions:
RQ1 — How does our method compare with alternatives

in terms of the ability to produce a compliant wrapper?
RQ2 — How do the various API contracts help in driving

the evolution of wrappers in practice?
RQ3 — Which types of tunings are necessary and how

often are they used?

6.2 Subjects
Table 1 presents general information for the applications,

wrappers and APIs that were subjects of our study. (These
artifacts and additional data are available from the paper’s
website.) We chose representatives of 3 domains and sought
to cover a wide range of development methods for compar-
ison. XOM2JDOM is a wrapper we developed driven by the
test suite for XOM; it failed at around 40% of XOM’s test
cases [3]. Memoranda9 is a scheduling tool that uses XOM

to store data in XML files. Quilt10 uses BCEL
11 to mod-

ify the byte-code of applications to perform code coverage
analysis. We selected Quilt because it contains a large test
suite, allowing the comparison against a method driven by
application tests. Finally, SwingWT was developed in the
traditional crash-driven style and offered the opportunity of
consulting its developers for validation of our results.

6.3 Methodology
The study was conducted following the steps of our method.

6.3.1 Trace Collection
We designed scenarios for each application, collected traces

and iterated over the process to resolve unbound references.
Memoranda — we designed a single scenario in which

we opened and closed a complex schedule document. We
performed the scenario manually in the GUI while tracing
the interaction between Memoranda and XOM.

Quilt — we executed the 65 test cases in Quilt’s suite.
Out of those, we used the 33 that actually used BCEL.

SwingSet2 — we designed 59 scenarios, 2 to 6 for each
of the 16 applications in the set, trying to simulate a user
exploring the GUIs. For example, in the Button demo we
selected all possible push buttons, check boxes and radio
buttons. We automated the scenarios using AWT Robot.

6.3.2 Trace Validation
We validated the collected traces against the respective

original APIs. We started using basic contracts and incre-
mentally increased the scrutiny, first with set/get contracts
and then with contracts for state integrity. Whenever nec-
essary, we created tunings for the original API.

6.3.3 Wrapper Development
XOM2JDOM — we evolved XOM2JDOM based on the de-

tected violations. We started with basic contracts, and sub-
sequently used contracts for set/get and state integrity. Af-
ter the wrapper was compliant, we re-executed XOM’s test

9http://memoranda.sf.net
10http://quilt.sf.net
11http://commons.apache.org/bcel/

http://memoranda.sf.net
http://quilt.sf.net
http://commons.apache.org/bcel/


Subjectversion Types Methods NCLOC
Type Definitions

XML
Memoranda1.0−RC3.1 461 1684 23891

net.sf.memoranda.*

XOM1.2.1 110 884 19395
nu.xom.*

XOM2JDOM0.1 43 602 5203
nu.xom.*

JDOM1.1 73 908 8755
org.jdom.*

Bytecode
Quilt0.6−a−5 67 579 4974

org.quilt.*

BCEL5.2 408 3386 27384
org.apache.bcel.*

ASM3.3.1 174 1526 23348
org.objectweb.asm.*

GUI
SwingSet21.4 131 425 6422

swingset2.*

Swing1.4 2032 18702 234731
java.awt.*

javax.swing.*

javax.accessibility.*

SwingWT0.90 864 6537 33948
swingwt.awt.*

swingwtx.swing.*

swingwtx.accessibility.*

SWT3.3.2 696 9607 99205
org.eclipse.swt.*

Each domain has an application on top followed by two APIs; XML

and GUI also have a wrapper between the APIs they wrap. NCLOC

stands for non-comment lines of code. SwingSet2 originally used the

default package; we moved it to its own package.

Table 1: The subjects of the study.

suite. The goal was to check whether the suite was able to
spot the same behavioral differences as Koloo.

BCEL2ASM — we created a BCEL2ASM wrapper from
scratch. We started with an exception-throwing wrap-
per such that every method throws an UnsupportedOpera-

tionException. The chosen application, Quilt, can already
be compiled with the initial wrapper. We then developed
the wrapper using one trace at a time and only basic con-
tracts. For each trace we would execute the interpreter, pick
a violation and either evolve the wrapper or create a tuning.
After each of these iterations we executed the suite of as-
serted traces to detect regressions. Furthermore, because
each trace corresponds to the execution of a Quilt test case,
we executed the original suite, which let us compare the con-
tract checking of manually written test cases against Koloo.
We used mostly basic contracts; sometimes, however, we

resorted to selective state-based contracts to verify the state
of specific types of objects. In two occasions, we decided to
add a call to an API object in the original Quilt test case be-
cause we wanted to observe a certain behavior at a particular
point in the trace; the relevant behavior was not exercised
by the application. When all traces were asserted for ba-
sic contracts, we collected compliance data for contracts for
set/get and state integrity.

SwingWT — we used SwingSet2 validated traces in two
ways. First, we verified the initial compliance of SwingWT

with respect to all kinds of contracts, which provides an
overview of the overall compliance achieved by SwingWT de-
velopers for each category of contracts. Second, we selected

two applications of the set, Button and Tooltip demos, to
evolve SwingWT. We proceeded as usual, evolving by resolv-
ing violations and tuning, using only basic contracts. We
validated that the contracts were indeed valuable by sub-
mitting a patch to the developers of SwingWT.

6.4 Results
Table 2 shows an overview of the results.
XOM2JDOM —we needed 3 auxiliary types and validation

occurred without violations. Koloo detected 4 violations
that were corrected in the wrapper. By executing XOM’s
suite before and after the modifications we noticed that a
single test case accounted for one of the state contract vio-
lations; 3 violations had no corresponding test case. Two of
these relate to reference integrity and one to the execution
of an unexpected operation (getParent() without parent).

BCEL2ASM — we needed 8 auxiliary types for Quilt be-
cause BCEL makes heavy use of JRE types like streams and
classloaders. During validation we found one trace that our
tool could not interpret (due to classloader use) and it was
discarded. The BCEL reference integrity violation is due to a
returned array with set semantics (Fig. 5). State contracts
were violated twice due to side-effects caused by Method-

Gen.getLocalVariables(), and were tuned with Skip.
During the development of BCEL2ASM we resorted to 7

additional tunings. One was the BytecodeTuning presented
in Fig. 4. The other 6 were methods with reference integrity
problemas that we ignored (with Skip) because they were
caused by our decision not to implement reuse of handles. In
2 occasions, state violations helped detect problems in the
wrapper. Repeated re-execution of asserted traces resulted
in detection of 19 regressions.

In all traces that presented violations (some passed di-
rectly due to previous evolution of the wrapper) the corre-
sponding Quilt test case started to pass while Koloo still
detected violations. That is, while fixing the contract viola-
tions detected by Koloo we also fixed the assertions manually
written by Quilt developers. Furthermore, while trying to
reproduce the behavior of BCEL using ASM we discovered 4
problems in BCEL. The problems were reported as 3 bugs
and 1 enhancement proposal12, and all were acknowledged
by BCEL developers. Two bugs were detected by compar-
ing the byte-code after BytecodeTuning tuned return value
contracts, and the other was a reference integrity problem
that detected a memory leak. The enhancement proposal
concerns a custom sort algorithm used by BCEL that we had
to reproduce (we proposed the use of a standard sort).

SwingWT — only one application of SwingSet2 needed an
auxiliary type (from java.bean). During Swing validation
Koloo detected 6 callback violations, all caused by missed
asynchronous callbacks in an application that uses threads
to paint a canvas. We found that 4 methods in Swing do not
follow the set/get rule. When receiving a null parameter,
one method sets a default and another ignores the call com-
pletely. Two other methods enforce bounds on the parame-
ter value. Most state contract violations refer to side effects
of getting size and position information, or state from un-
prepared objects (e.g., getLocationOnScreen() throws an
exception if the widget is not showing). We created 2 tun-
ings for callbacks and 10 for the other violations.

Koloo detected many contract violations in SwingWT veri-
fication. 53 value equality violations were about size and po-

12Complete list in http://gsd.uwaterloo.ca/issta2012

http://gsd.uwaterloo.ca/issta2012


Memoranda 1 Scenario 3 Auxiliary Types

XOM Validation XOM2JDOM Development

No violations Reference 1
State 3
Tunings/Regressions 0

Quilt 32 Scenarios 8 Auxiliary Types

BCEL Validation BCEL2ASM Development

Reference 1 Reference 50
State 2 Exception 5
Tunings 3 State 2

Tunings 7
Regressions 19

SwingSet2 59 Scenarios 1 Auxiliary Type

Swing Validation SwingWT Verification

Sync 3 Value 72
Async 3 Reference 4
Set/Get 4 Exception 1
State 6 Sync 32
Tunings 12 Async 6

Set/Get 8
State 100s

SwingWT Development

Button 4 Scenarios Tooltip 5 Scenarios

Value 18 Value 1
Sync 4 Async 1
Tunings 7 Tunings/Regressions 0
Regressions 3

Table 2: A summary of the study results.

sitioning, 12 about missing functionality and 7 about wrong
state or default value in widgets. A total of 38 callbacks
were found missing. SwingWT did not comply with the
set/get contract in 8 methods: 6 were empty setters, one
method wraps its parameter in another object, and another
method explicitly deviates from the original API behavior
(as per code comments). Hundreds of violations were de-
tected with state contracts. Many were thread invalid access
exceptions and 2 applications deadlocked; most violations
were value equality problems and the side-effects of state
gathering caused the GUIs to be distorted.
Most of the violations that drove the evolution of SwingWT

were related to size and positions. We tried to solve them
until we were content with the result, and applied tunings
if necessary (3 Percentage, 2 Margin and 2 Skip, see Fig. 5).
Asserted traces helped us detect 3 regressions while devel-
oping for Button. Violations detected for Tooltip were dis-
cussed in §2. Finally, SwingWT developers used our patch
for these issues to release version 0.91.

6.5 Discussion
RQ1, Alternative Methods — of the 4 violations de-

tected by Koloo in XOM2JDOM, only 1 could be detected
by the original XOM test suite. This is evidence that appli-
cations exercise APIs in ways that even very complete test
suites like XOM’s may fail to foresee (like calling getParent()
on a document without parent), or that the test case that
asserts this behavior may be failing for other causes already
(remember 40% of the test cases still fail). By concentrating
on scenarios Koloo can better pinpoint the wrapper evolu-
tion that is needed by the application at hand. Furthermore,
the 2 additional violations revealed internal wrapper bugs
that would be seldom target of assertions in API test suites.
Another result of the study is that manually written Quilt

test cases were subsumed by Koloo’s basic contracts with
respect to the behavior they asserted. This suggests that
the type of contracts used by developers in practice may be
similar to the basic contracts Koloo checks, but they are not
consistently applied to all interactions with the API.

We also have evidence that Koloo leads to a much more
compliant wrapper than the customary crash-driven method.
The verification of SwingWT showed that many compliance
violations were detected, even with respect to an application
that is used by the project to showcase itself. The fact that
our patch for Button and Tooltip was accepted by SwingWT

validates that developers were interested in solving the com-
pliance issues detected by Koloo.

Finally, we should note that we observed three different
ways of scaffolding wrappers. In BCEL2ASM we used ex-
ceptions to signal unimplemented methods (so called excep-
tion throwing approach); SwingWT uses best effort in that it
leaves void methods empty and returns bogus values when
necessary in hope that it is good enough; from our interviews
we know that SWTSwing uses a mixed approach: best effort
but logging unimplemented methods. If SwingWT used ex-
ception throwing it would be able to detect some of the prob-
lems due to missing functionality. However, that would be
too pedantic because many client applications would easily
crash. Therefore, we argue that a compromise is a pedan-
tic switch that allows incomplete wrappers to be released in
best effort while being developed with exception throwing.

RQ2, Contracts — the study showed that basic con-
tracts represent a minimum level of compliance to be achieved
by wrappers, modulo tunings. Basic contracts allowed us to
develop BCEL2ASM to be compliant with Quilt’s test suite,
to find bugs in BCEL and to successfully evolve SwingWT.
Value equality contracts helped detect missing functionality
and deviations in size and positioning of widgets in SwingWT,
and differences in the generated byte-code in BCEL2ASM. A
reference integrity contract helped detect a small memory
leak in BCEL. Callback conformance contracts were essen-
tial to understand which functionality of the API was being
overridden by SwingWT applications.

Set-get contracts were useful to better understand the be-
havior of 4 methods in Swing. None of the corresponding
methods in SwingWT complied with that behavior and this
deviation did not show in the interaction with applications.

For relatively complete and compliant wrappers, such as
XOM2JDOM, state-integrity contracts helped in finding com-
pliance violations. However, state gathering often triggered
side-effects that affected other contracts, even when applied
to the original APIs (BCEL and Swing). Neither BCEL2ASM

nor SwingWT are close to be compliant in terms of state in-
tegrity. State contracts naturally demand more of the wrap-
per than what the application directly needs, and may force
the wrapper to implement additional functionality, but ap-
pear to be useful for mature, general wrappers.

RQ3, Tunings — we used a total of 15 tunings for valida-
tion and 14 tunings for development. In validation, tunings
were used to accommodate undeterministic behavior and
side-effects of state gathering, and to relax the semantics of
strict equality contracts (e.g., ArrayIsSet). In development,
tunings were additionally used to document unimplemented
features (handle reuse in BCEL) and to compromise on fea-
tures that are difficult to emulate perfectly (positioning and
sizes of widgets). The results provide evidence of the need
and usefulness of tunings.



6.6 Threats to Validity
The main threats to internal validity concern possible

bugs in Koloo, errors in the collection of data during the
execution of the study, and experimenter bias. Because we
checked each violation manually it is unlikely that there are
false positives; false negatives would not affect our results.
We minimized experimenter bias by looking for external con-
firmation of findings, such as BCEL and SwingWT developers.
Threats to external validity include the subjects of our

study and interviews. We mitigated this threat by selecting
subjects in 3 different domains of API programming. We
also sought developers with a varied background to inter-
view, but were constrained by the availability of developers
with experience in API migration.

7. RELATED WORK

Methods of API migration. Existing methods leverage
only straightforward regression testing where applicable (i.e.,
“establish that a migrated application passes all available
(migrated) tests.”), while making orthogonal contributions—
not related to testing. One group of methods addresses the
implementation of wrappers or transformations for API mi-
gration [1, 29, 18, 11]. API mappings may be represented
as refactorings, rewrite rules, and other specifications. An-
other group of methods aims at inference of mappings for
API migration [26, 27, 33, 30, 17]. Such inference meth-
ods usually rely on additional assumptions. For instance, a
readily migrated application may be used to extract map-
ping rules [33].

Differential and compatibility testing. Differential test-
ing, as initially proposed by McKeeman [15], is a special
case of random testing to detect differences between differ-
ent implementations, e.g., different compilers for the same
language. More recently, an approach similar to differential
testing has been applied to COTS-based systems. BCT [13]
is a technique to capture the behavior of components in a
COTS system and generate invariants that represent the I/O
and interaction behavior of components. These invariants
represent an oracle that can be verified on competing imple-
mentations for compatibility [12]. The main differences are
thatKoloo allows for explicit tunings whereas BCT users can
only ignore violations, and that BCT uses object flattening
to store object state. Thus, BCT cannot check referential
integrity contracts and relies on the ability of getting all
relevant state from objects. BCT’s approach targets large
components. It is not clear whether the approach will be
effective for APIs that allow many relationships among fine-
grained objects. Furthermore, it is not clear whether I/O
invariants capture asynchronous callbacks.

Regression testing. There is a large body of work in re-
gression testing; hence, we concentrate our discussion on the
approaches closer to Koloo. Elbaum et al. [7] propose dif-
ferential unit tests to detect differences between versions of
the same unit. In this approach the system state is serialized
prior to the execution of a method. During regression test-
ing, the state is deserialized, the method is executed and
results are compared. Hoffman et al. [9] propose a frame-
work for analyzing traces and present RPRISM, a tool that
analyzes traces to identify the cause of regressions. Our

method and Koloo are mostly inspired by the test factor-
ing [24] and SCARPE [20] techniques. These approaches
capture the interaction of an application with a certain mod-
ule and mock the module’s behavior via a replay system that
reproduces return values and callbacks. These approaches
can be used, for example, to abstract costly APIs during re-
gression tests. GenUTest [23] further generates smaller unit
tests from the traces, one for each trace event that returns
some value. Koloo presents many differences with these sys-
tems, including the verification of asynchronous callbacks,
contracts for state integrity, and support for tunings. The
approach of [7] is state-based in that it stores the necessary
state of the system prior to a method execution; Koloo, test
factoring, SCARPE and GenUTest are action-based since
they restore the state by reproducing the original events.

GUITAR [16] is a framework for automated model-based
GUI testing. GUITAR analyzes a GUI application at run-
time and builds a model of the available user interactions.
A tool then generates regression test cases by traversing the
GUI in various ways and collecting state information. A
replayer can re-execute the regression tests to detect differ-
ences in the state information across versions of the applica-
tion. In contrast to Koloo, GUITAR is domain specific and
needs platform-specific rippers to create GUI models.

Automated test generation. There are methods for test-
suite generation for object-oriented programs that readily
apply to API implementations including, potentially, wrap-
pers. Jartege [19] performs random generation of unit tests
based on JML specifications. The Korat framework [4] gen-
erates systematically all non-isomorphic test cases for the
arguments of a method under test using an advanced back-
tracking algorithm that monitors the execution of predicates
for class invariants. For these methods to be applicable, the
API implementations would need to provide detailed con-
tracts; such contracts are not available for APIs in the mi-
grations we have performed or encountered.

Eclat [21] performs dynamic inference of certain (API)
properties (manifested as assertions) from the execution of
a given test suite, and it uses the inferred properties in
generating further possibly fault-revealing test cases. Ran-
doop [22] generates random sequences of calls to a given
API and uses dynamic feedback to guide the generation of
additional sequences. Randoop checks default contracts (ex-
ception throwing and equals) and allows users to implement
additional contract checking code. Orstra [31] is a tool for
augmenting generated tests with regression oracle testing.
Koloo implements the interface-based object-state contract
proposed by Orstra; the concrete state contract is not im-
plemented since wrappers usually do not contain the same
private fields as the classes they are replacing.

Various approaches were proposed with the main goal of
improving structural branch coverage: Ocat [10] captures
and stores object state during execution and mutates the
state during random testing, Palus [32] uses a combination
of static and dynamic analyses to generate behaviorally di-
verse tests, while DyGen [28] combines dynamic trace analy-
sis with symbolic execution. All these methods are not well
aligned with the objectives of wrapper development, where
the testing effort should be limited such that the applica-
tion under migration passes its existing tests enriched by
assertions for simple API contracts.



8. CONCLUSION AND FUTURE WORK
In this paper we presented a notion of scenario-based com-

pliance testing for API migration. We described a method
for developing compliant API wrappers and its implemen-
tation in the Koloo toolkit. We evaluated the method in a
study involving compliance assessment, evolution and devel-
opment from scratch of wrappers for object oriented APIs in
the domains of XML processing, byte-code engineering and
GUI programming. Our evaluation provides evidence that
the method is effective in improving wrapper compliance,
that API contracts help driving the evolution of the wrap-
per and that contract tuning is both necessary and useful.
The study showed that the violations uncovered by Koloo

helped in understanding the deviation from the original API.
However, finding the cause of the deviation in the wrap-
per and fixing it are orthogonal problems for which Koloo
gives little help. Delta-debugging [5] might be promising
in helping determine the root cause, although its applicabil-
ity to APIs with long start-up times like Swing is not clear.
The same work proposes a technique to automatically de-
termine which objects to trace from an initial trace. This
technique could also be adapted to support the discovery of
needed auxiliary types in the type rules (see §5.1). Finally,
techniques for removing non-determinism from replaying of
multi-threaded applications [6] could be used to better sup-
port the verification of asynchronous callbacks.
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