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A Product Line of Lax Lenses.

Zinovy Diskin1,2

Abstract

The goal of the present document is to support the taxonomy for bidirectional model synchronization developed in
[1] with a formal semantics. The taxonomy is 3D so that each synchronization type is characterized by a triple of
coordinates (x, y, z), in which x classifies the organizational symmetry of the case, y is for the informational symmetry,
and z is for incrementality of the update propagation operations. Different types of delta lenses (algebraic structures
modeling bx) can be classified by points on the YZ-plane. As for the x-coordinate, it says, roughly, whether update
propagation is uni- or bi-directional, but as it was shown in [1], there are several important refinements of the two-
valued uni, bi-classification so that actually axis X has four rather than two points.

A formal semantics for the enriched X-classification seems to be an entirely novel aspect for the (delta) lens lit-
erature. There are also several contributions for the very delta lens framework within the plane YZ. First of all, we
build a product line of delta lenses so that each concrete delta lens structure is characterizes by two parameters. To
this end, we will build a framework in which an asymmetric delta lens appears as a special case of the symmetric
one, which is in a sense dual to the Johnson and Rosebrugh construction, in which a symmetric lens is presented as
a span of asymmetric lenses [2]. The second novelty is more essential: we present lax versions of major lens laws of
compositionality (the infamous PutPut), and invertibility.

Keywords: Synchronization Taxonomy, Formal semantics, Model Synchronization, Model Transformation, Model
Driven Engineering

1. Introduction

The goal of the present document is to support the tax-
onomy for bidirectional model synchronization developed
in [1] with a formal semantics. The taxonomy is 3D so
that each synchronization type is characterized by a triple
of coordinates (x, y, z), in which x classifies the organi-
zational symmetry of the case, y is for the informational
symmetry, and z is for incrementality of the update propa-
gation operations. It is convenient to present the space as
a product X|timYZ, where X is the org-symmetry axis and
YZ = Y×Z is the plain of info-symmetry and incremental-
ity, which actually classifies the computational framework
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(= a system of update propagation operations) supporting
the synchronization. Different types of delta lenses (alge-
braic structures modeling bx) can be classified by points
on this plane. As for the x-coordinate of the cases placed
in axis X, roughly, it says whether update propagation is
uni- or bi-directional, but as it was shown in [1], there are
several important refinements of the two-valued uni, bi-
classification so that actually axis X has four rather than
two points.

A formal semantics for the enriched X-classification
seems to be an entirely novel aspect for the (delta) lens lit-
erature. There are also several contributions for the very
delta lens framework within the plane YZ. First of all,
we build a product line of delta lenses so that each con-
crete delta lens structure is characterizes by two param-
eters. To this end, we will build a framework in which
an asymmetric delta lens appears as a special case of the
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symmetric one, which is in a sense dual to the Johnson
and Rosebrugh construction, in which a symmetric lens
is presented as a span of asymmetric lenses [2]. The sec-
ond novelty is more essential: we present lax versions of
major lens laws of compositionality (the infamous Put-
Put), and invertibility. The semantics is algebraic and
essentially based on operations over models, updates, and
intermodel correspondence mappings—all considered as
abstract nodes and arrows.

We will define a family of algebraic structures using
the following common pattern. Let the structure to be
defined is S . We first define the carrier of S (as a rule,
it will be a previously defined structure with, perhaps,
new sets added), on which several new operations that S
has to have are defined. To specify these operations, we
give their arities, and, perhaps, some elementary techni-
cal equations (we say laws) they must satisfy (some of
these laws will be skipped to save space). Then we in-
troduce substantial laws capturing semantics of the oper-
ations, and say that S is well-behaved if its operations sat-
isfy these laws. The presentation is necessarily abstract,
although informal explanations and intuitive meaning of
the constructs are provided. Concrete examples illustrat-
ing how these abstract constructs work can be found in
papers [3, 4, 5]; some of the constructs were implemented
with TGG [6, 7].

2. Formalizing Informational Symmetry: Alignment
Frameworks with Consistency

2.1. Model spaces and alignment.

Definition 1 (Model spaces). A model space is a cate-
gory M, whose objects are called models, and morphisms
(arrows) are directed deltas or updates. In detail, a model
space is a directed graph M = (M•,M∆, s, t) with a set M•
of nodes called models, a set M∆ of arrows called deltas,
and functions s : M∆ → M•, t : M∆ → M•, which assign a
source and a target model to every delta. For a delta a
with s(a) = A and t(a) = A′, we write a : A→ A′ or else
a ∈ M∆(A, A′), where M∆(A, A′) is the set of all deltas
from A to A′.

Being a category means that the graph is endowed
with two additional structures. First, arrows can
be sequentially composed: for any pair a1 : A→ A′

and a2 : A′ → A′′, there is defined their composi-
tion a1; a2 : A→ A′′, and the associativity law holds:
(a1; a2); a3 = a1; (a2; a3). Second, every model A ∈ M•
is assigned with a special delta idA : A→ A called iden-
tity, and idA; a = a = a; idA′ for any a : A→ A′.

Intuitively, one may think about M• as the class of all
models conforming to a fixed but implicit metamodel.
Deltas from M∆ can be thought of as either structural
(mappings) or behavioral (edit sequences) specifications
of updates; details and a thorough discussion can be found
in [4]. Identity deltas can be seen as idle updates that do
nothing. We will use terms delta and update interchange-
ably.

We will also assume the following update (delta) di-
vision condition. Given a pair of updates with a common
source, a1 : A→ A1, a2 : A→ A2, let a2/a1 denotes the set
{a : A1 → A2 : a1; a = a2} of updates that continue update
a1 and result in update a2. We require this set to be non-
empty for any pair (a1, a2):

(UDiv). a2/a1 , ∅

Definition 2 (Alignment frameworks). An alignment
framework is given by the following data.

(a) A pair of model spaces (M,N) called the source and
the target space resp.

(b) A set R of correspondence mappings or just corrs
between M- and N-models. That is, there are total func-
tions s : M• ← R and t : R→ N•, and we write r : A↔ B
or r ∈ R(A, B) if A = s.r and r.t = B. Note that we write
the function symbol to the right or to the left of the argu-
ment to match the direction of function in our diagrams,
in which space M will be on the left, and space N is on the
right.

In our applications, a corr r : A↔ B is to be thought
of as a set of bidirectional links from elements of model
A to elements of model B so that if e1∈A and e2∈B are
linked (then we could write r(e1, e2)), we consider them
as two different representations of the same object. More-
over, one of the elements ei, or even both, can be derived
in its model by posing suitable queries against the model
(see [8, 9] for details). However, in the present paper,
elements of R are just abstract entities called corrs and
denoted by bidirectional arrows between models in dif-
ferent spaces. Similarly, updates are abstract entities de-
noted by arrows between models in the same space. In our
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Figure 1: Alignment operations and their laws

diagrams, update arrows will be always vertical whereas
corrs are horizontal.

(c) A pair of operations over corrs and updates,
fAln and bAln, which are called forward and backward
(re)alignment. Their arities are shown in Fig. 1(a): op-
erations’ input nodes are framed, input arrows have solid
bodies, and output arrows are dashed. We write a ∗ r for
fAln(a, r) and r ∗ b for bAln(b, r).

We denote an alignment framework by a stroked arrow
R : M = N. Although the arrow is bidirectional to recall
the symmetry of the notion, we still distinguish spaces
M and N by their order in the line: the left space is the
source space of the framework, and the right one is the
target space.
Definition 3 (Well-behavedness). An alignment frame-
work is called well-behaved (wb) if the following four
laws are respected.

(a) Identity updates do not actually need realignment:

(IdAln) idA ∗ r = r = r ∗ idB

for any corr r : A↔ B.
(b) The result of applying a sequence of interleaving

forward and backward alignments does not depend on the
order of application as shown in Fig. 1(b):

(Assoc) (a ∗ r) ∗ b = a ∗ (r ∗ b)

for any corr r and any updates a, b.
We will call diagrams like those shown in Fig. 1(a,b)

commutative if the arrow at the respective operation out-
put is indeed equal to that one computed by the opera-
tion. For example, diagram Fig. 1(b) is commutative if
r′ = a ∗ r ∗ b.

(c) Alignment is compositional: for any con-
secutive updates a : A→ A′, a′ : A′ → A′′, b : B→ B′,
b′ : B′ → B′′, the following holds:

(AlnAln) (a; a′)∗r = a′∗(a∗r) and r∗(b; b′) = (r∗b)∗b′

(d) Corr division condition holds. Given a pair of corrs
with a common source, r1 : A↔ B1, r2 : A↔ B2, let r2/r1
denotes the set {b : B1 → B2 : r1 ∗ b = r2} of updates that
map the first corr into the second via realignment. Simi-
larly, r2 \ r1 is {a : A1 → A2 : a ∗ r1 = r2} for a given pair
of corrs ri : Ai ↔ B. We require these sets to be non-
empty:

(CDiv) r2/r1 , ∅ , r2 \ r1

We will assume all our alignment frameworks are well-
behaved by default. 2

Remark 1 (Categorical treatment). It is easy to check
that conditions (a,b,c) of well-behavedness make an align-
ment framework a functor R : M × N→ Set or, equiva-
lently, R : (M◦)◦ × N→ Set (where ◦ denotes dualization
of a category, i.e., inversion of all its arrows). Such func-
tors are called profunctors or distributors [? ][Benabou],
and usually denoted by stroked arrows R : M 9 N◦.
However, in our context it is more natural and conve-
nient to work in a more symmetric setting of functor
R : M × N→ Set.

The following three conditions are equivalent:
(i) R : M = N is an alignment framework,
(ii) functor R : M×N→ Set satisfies (CDiv),
(iii) category Col(R) (with Col the collage functor

Col : Dist→ Cat/2) satisfies the arrow division condition
for any pair of its arrows with a common source, i.e., con-
ditions (UDiv) and (CDiv).
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Definition 4 (Consistency and private updates). A
consistency framework is an alignment framework
endowed with two extra structures modeling intermodel
consistency. Formally, it is a triple of the following
components.

(a) An alignment framework R : M = N as defined
above.

(b) A subset K ⊂ R of corrs called consistent. In other
words, for any pair of models A∈M• and B∈N• and the
respective set of corrs R(A, B), there is a defined a subset
of consistent corrs K(A, B) ⊂ R(A, B) between A and B
(i.e., K(A, B) = R(A, B)∩K). If a corr r ∈ K(A, B), we say
that models A and B are consistent via r and write A ∼r B.

We do not exclude the cases when K(A, B) has more
than one corr, or is empty. In the latter case we write
A#B and call the models (entirely) inconsistent. If, on
the contrary, K(A, B) , ∅, we say that the models are
potentially consistent and write A ∼ B. For A∈M•, we
write A.K• for the set {B ∈ N• : A ∼ B}. Similarly, •K.B
denotes the set {A ∈ M• : A ∼ B} (where we again write a
function symbol to the right or to the left of the argument
to suggest the direction of function in our diagrams).

We assume the following totality condition:

(Total) A.K• , ∅ , •K.B for all A∈M•, B∈N•

That is, any model has at least one potentially consistent
counterpart on the other side, and hence synchronization
is always possible.

(c) Subspaces of private updates are given, Mprv ⊂ M
and Nprv ⊂ N, such that Mprv

• = M• and Nprv
• = N•. That

is, for any two models A, A′ ∈ M•, there is a set (perhaps,
empty) of updates Mprv

∆
(A, A′) ⊆ M∆(A, A′) called private,

composition of two private updates is private, idle updates
are private, and divisions of private updates are private
two: a2/a1 ⊂ Mprv

∆
as soon as a1, a2 ∈ Mprv

∆
. Likewise for

the N side.
Non-private updates are called public. Thus, we have

partitions: M∆ = Mprv
∆
]Mpub

∆
and N∆ = Nprv

∆
] Npub

∆
.

Definition 5 (Well-behavedness). Informally, a consis-
tency framework is well-behaved, if (the underlying align-
ment framework is wb and) the two facets of consistency,
consistent corrs and private updates, fit together so that
private updates do not affect consistency. Formally, we
require the following two laws to hold: (a) For any corr
r : A↔ B and any private updates a : A→ A′, b : B→ B′,

we have a ∗ r ∈ K iff r ∈ K iff r ∗ b ∈ K. (b) For any two
consistent corrs with the same source, r1 ∈ K(A, B1) and
r2 ∈ K(A, B2), we have r2/r1 ⊂ Nprv

∆
. That is, two consis-

tent N-counterparts of an M-model A only differ privately
(but share the same public part determined by A). Simi-
larly, r2\r1 ⊂ Mprv

∆
for any two corrs with the same target,

r1 ∈ K(A1, B) and r2 ∈ K(A2, B). 2

To unify notation, we will sometimes use sym-
bol K polymorphically for denoting both con-
sistent corrs and private updates. That is, we
write K(X,Y) with X,Y ∈ M• ∪ N• meaning that

K(X,Y) def
= Mprv

∆
(X,Y) if both X,Y ∈ M•,

K(X,Y) def
= Nprv

∆
(X,Y) if both X,Y ∈ N•,

K(X,Y) def
= K(X,Y) if X ∈ M• and Y ∈ N•,

K(X,Y) = ⊥ (not defined) if X ∈ N•, Y ∈ M•.3

Then we can say that a consistency framework is a
pair (R,K) with R an alignment framework and K a poly-
morphic function as above, which satisfy all necessary
conditions. We will denote a consistency framework as
K : M = N without explicit mentioning the underlying
alignment framework R : M = N.

Remark 2 (Categorical treatment). The polymor-
phic use of K described above is a known categorical
construction of presenting a distributor by its collage
category, actually a barrel. It can be proven that functor
Col : Dist→ Cat/2 is an equivalence of categories (see
Joyal’s Catlab; http://nlab.mathforge.org/joyalscatlab/)

If to follow Leibniz’s (formal) vs. Newtonian (physi-
cal) style of building mathematical models, then the defi-
nitions should ensure that K is a sub-profunctor with divi-
sion of R. Correspondingly, category Col(K) is a subcate-
gory of Col(R), which inherits the division property.

2.2. Informational asymmetry

Definition 6 (Info-asymmetry). Let K : M = N be a wb
consistency framework. We say that space M is dominated
by N via K, and write M ≤K N (or N ≥K M), if the only
private updates on the M-side are identities.

Proposition 1. Let M ≤K N. Then for any B∈N•, there
is a uniquely defined model A∈M• called the (abstract)
view of B, such that (a) K(A, B) is a singleton whereas (b)
K(A′, B) = ∅ for any A′ , A.
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Proof. Let r∈K(A, B) and r′∈K(A′, B). Then there is a
private update arr′ : A→ A′ such that arr′ ∗ r = r′ by the
definition of consistency framework. However, M ≤K N
implies that a is identity, i.e., A = A′, and r = r′ by the
IdAln law. 2

Corollary 1. If M ≤K N, then function f K : M• ← N• is
defined such that (a) set K( f K.B, B) is a singleton for any
model B∈N•, while (b) K(A′, B) = ∅ for any A′ , f K.B.

Model f K.B is called the view of model B determined by
consistency framework K, and f K is the view computa-
tion function; following the terminological tradition of
lenses, we call this function get-the-view and denote it by
getK• . Condition (b) formalizes the requirement that any
non-idle view update makes the view inconsistent with its
source. Condition (a) states that the view is given with its
unique traceability mapping — the unique element of set
K(getK• .B, B), which we will denote by getK↔.B. As a rule,
we will omit superindex K if it is clear from the context.
Note also that function get• is surjective due to Totality
condition in Definition 4.

Proposition 2. If M≤KN and N≤KM, then the respec-
tive view computation functions get•1 : M• ← N• and
get•2 : M• → N• are mutually inverse: (get•1.B).get•2 =

B for any B∈N•, and A = get•1.(A.get•2) for any A∈M•.
Hence, both get•-functions are bijections. Conversely, if
M ≤K N and the respective get•1 : M• ← N• is bijective,
then N ≤K M and the respective get•2 : M• → N• is the
inverse of get•1. 2

2.3. Info-symmetry types

Our goal is to specify a set of properties of consistency
frameworks, which would set their (complete and dis-
joint) taxonomy. We call these properties info-symmetry
types. We will begin with setting some general terminol-
ogy about types, then consider dualization, and finish this
subsection with a formal definition of the taxonomy.

Let CFwkCFwkCFwk be the class of all consistency frameworks. If
π is a property of consistency frameworks, then we write
K |= π to say that a framework K satisfies the property,
and we thus have a set [[ π ]] = {K ∈ CFwkCFwkCFwk : K |= π} of
all frameworks satisfying the property. If K ∈ [[ π ]], i.e.,
K |= π, we will say that framework K is an instance of type
π, or K is of type π. Thus, we loosely use the term type
both syntactically — as a synonym for the term property,

and semantically — to refer to the corresponding set of
instances.

Having a set of types/properties {π1 . . . πn}, we can form
a type π = π1 ∨ . . . ∨ πn so that [[ π ]] = [[ π1 ]] ∪ . . . ∪
[[ πn ]]. Then we call type π abstract because instantiating
this type means instantiation of one of the subtypes [[ πi ]]:
K ∈ [[ π ]] iff K ∈ [[ πi ]] for some i. We call a set of types
{π1 . . . πn} (taxonomically) complete if CFwkCFwkCFwk = [[ π1 ]] ∪
. . .∪[[ πn ]]. We call types disjoint if K |= πi implies K 2 π j

for all j , i; then sets [[ πi ]] are disjoint.
Two types are logically equivalent, π1 ⇔ π2, iff they

have the same extension [[ π1 ]] = [[ π2 ]]. 2

For considering informational and organizational sym-
metries, the following notion will be central.
Definition 7 (Dualization). Any consistency framework
K : M = N determines its dual framework K◦ : N = M
in the following way. We first dualize the underlying
alignment framework: (i) the source space is N and the
target space is M; (ii) for any corr r, r.s◦ def

= r.t and
t◦.r def

= s.r; (iii) operations are fAlnR◦ (b, r) def
= bAlnR(b, r)

and bAlnR◦ (a, r) def
= fAlnR(a, r). Then we dualize the

consistency structure: K◦(B, A) def
= K(A, B), K◦(B, B′) =

K(B, B′) = Nprv
∆

(B, B′) and K◦(A, A′) def
= K(A, A′) =

Mprv
∆

(A, A′).

Definition 8 (Symmetric and asymmetric types). Any
type/property π gives rise to a dual type π◦ such that
K |= π◦ iff K◦ |= π. We denote type ≤◦K (see Definition 6)
by ≥K, and write N ≥K M for (K : M = N) |=≤◦. A type
π is called almost concrete if π ⇔ π1∨π

◦
1 (and hence

[[ π ]] = [[ π1 ]] ∪
[[
π◦1

]]
) for some concrete type π1. A

type is called symmetric if π ⇔ π◦. We call types π1, π2
mutually dual if π1 ⇔ π◦2 (and hence π◦1 ⇔ π2).

Proposition 3. For any K : M = N, (K◦)◦ = K. For any
type π, (π◦)◦ ⇔ π.

Proposition 4 (Dualization and consistency). A con-
sistency framework K : M = N is well-behaved(wb)
iff its dual K◦ : N = M is wb too. Thus, the notion of
consistency is symmetric and not affected by dualization.

Definition 9 (Info-symmetries). Let K : M = N be a
consistency framework.

(a1) If neither side has non-idle private updates, we call
K poorly info-symmetric and write M≈KN or K≈ : M = N.
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(a2) If both sides have non-idle private updates,
we call K richly info-symmetric, and write M><KN or
K>< : M = N

We say a consistency framework K is info-symmetric if
it is either poorly or richly symmetric.

(b) If only one side has non-idle private updates, we we
call the consistency framework info-asymmetric. If this
side is the target space, we write M <K N or K< : M = N.
If it is the source space, we write M >K N or K> : M = N.

Theorem 1 (Info-symmetry taxonomy). Let
K : M = N be a consistency framework. There are
four mutually exclusive and jointly complete logical
possibilities (concrete info-symmetry types): (a1) M≈KN,
(a2) M><KN, (b1) M <K N, and (b2) M >K N, which
can be grouped in two abstract types: info-symmetry (a)
= (a1)∨(a2), and info-asymmetry (b)=(b1)∨(b2). The
latter type is almost concrete as types (b1) and (b2) are
mutually dual. 2

Two important remarks are in order.
Remark 3 (Implicit metamodel mappings). Each of the
four relationships above is a property of a triple (M,K,N)
rather than a pair (M,N). When we talk about the info-
symmetry relation between UML models and Java code,
or between class diagrams and relational schemas, we im-
plicitly assume some mapping between the metamodels is
given, and this mapping determines a corresponding con-
sistency framework between the model spaces (see [3, 10]
for details). In this sense we can use a loose notation and
write M><infN meaning that we have a consistency frame-
work K such that M><KN.
Remark 4 (Spaces vs. models). Info-symmetry is a re-
lationship between model spaces rather than individual
model states. Suppose, for example, that we have a richly
symmetric situation M><KN, and two synchronized mod-
els A and B evolving in their respective spaces (we will
consider this in detail later in 4). A specific state A0 of
model A can lack private updates because A0 is a poor
model that does not have private data, and hence any up-
date a : A0 → A1 is public. But state A1 (or consecutive
states) can well have private data and hence private up-
dates. When we have been writing A><inf B in the pa-
per, we actually meant the respective relationship between
model spaces defined by the metamodels of A and B (w.r.t.
some implicit mapping between the metamodels as ex-
plained in Remark 3 above).
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a
?
� r′ - B′

b
?

A � r - B

:fPpg↘↘

A

[prv]
?
� r - B

idB

?

A � r - B

:bPpg↙↙

A′

a
?
� r′ - B′

b
?

A � r - B

:bPpg↙↙

A

idA

?
� r - B

[prv]
?

(a) arities (b) (IdPpg) laws

Figure 2: Operations of update propagation

3. Formalizing Incrementality: Delta Lenses

We will describe a family of algebraic structures called
(delta) lenses, which model non-incremental and incre-
mental model synchronization. Each such a structure
will be defined over some underlying consistency frame-
work K : M = N, and comprises two operations of for-
ward (from M to N) and backward (from N to M) update
propagation.

3.1. Incremental update propagation and lenses
Definition 10 (Lenses). Let K : M = N be a consistency
framework. An a (delta) lens) over K is a pair of opera-
tions over corrs and updates, fPpg and bPpg, which are
called, resp., forward and backward update propagation.
The arities of the operations are specified in Fig. 2(a) with
output arrows dashed and output nodes not framed.

We will often use a linear notation and write
a.fPpg(r) = b (read “update a is propagated over corr r
to b”) and a = bPpg(r).b (“a is obtained by backward
propagation of b over r”) for the cases specified in the
diagrams. Similarly, we will write r′ = r.fPpg(a) (read
“r′ is the result of re-alignment caused by update a”) and
r′ = bPpg(b).r (“r′ is re-alignment caused by b”).

We denote a delta lens by a double arrow λ : M� N to
recall two operations.
Definition 11 (Dual lenses). Given a consistency frame-
work K : M = N and a lens λ : M� N over it, the dual
lens, λ◦ : N� M consist of the operations (bPpg, fPpg)
over the dual consistency framework K◦ : N = M.

6



Definition 12 (Well-behaved lenses). A lens λ : M� N
is called well-behaved (wb) if it satisfies several laws
specified below.

Correctness. If (r : A↔ B) ∈ K(A, B) and (b, r′) =

fPpg(a, r) for some update a : A→ A′, then r′ ∈ K(A′, B′)
where b : B→ B′. Similarly for operation bPpg. That is,
update propagation ensures consistency restoration. 2

Privacy no-op. For any update a : A→ A′ the follow-
ing two conditions are equivalent: (i) a is private, (ii)
a.fPpg(r) = idB for any consistent corrs r : A↔ B. Sim-
ilar equivalences are required for any update b : B→ B′

(the lower diagram). That is, private updates defined by
the underlying consistency framework are exactly updates
mapped to identity, i.e., in fact, not propagated to the other
side. 2

Recall that private updates determined by the underly-
ing consistency framework are updates that do not affect
consistency, and hence, need not be propagated. Stevens
[11] called this property Hypocraticness. Hence, Privacy
no-op implies Hippocraticness, but also requires the con-
verse implication.

As idle updates are private, they are propagated to idle
updates and we say that the lens is stable: if nothing
changes on one side, nothing happens on the other side
as well [5] (a very special case of Hippocraticness).
Proposition 5 (Conjecture). Is condition (ii) in Pri-
vact no-op equivalent to the following weak version:
a.fPpg(r) = idB for some consistent corr r : A↔ B (see
the upper diagram in Fig. 2(b))

Compatibility with alignment. If a.fPpg(r) = idB for
a : A→ A′ and r : A↔ B, then a ∗ r = r.fPpg(a). Dually
for bPpg. That is, a wb delta lens can re-align a corr if
the change was caused by a private update. Re-alignment
along a public update is, in general, not possible as the
lens must first propagate, and only then re-align the up-
date. 2

Compositionality. Consider two consecutive up-
dates a1 : A→ A1, a2 : A1 → A2 and their composition
a12 = a1; a2 : A→ A2. In reasonable synchronization sce-
narios, if both updates ai are insertions, or if both are
deletions, then a12.fPpg(r) = a1.fPpg(r); a2.fPpg(r1) for
any consistent corr r : A↔ B and r1 = r.fPpg(a1) (Fig. 3
shows how arrows fit together, but the marker :fPpg to be
labeling the outer rectangle ABB2A2 is not shown).

In general, for a corr r : A↔ B, the equality
a12.fPpg(r) = a1.fPpg(r); a2.fPpg(r1) with r1 =

A � r - B

:fPpg↘↘

A1

a1
?
� r1 - B1

b1
?

:fPpg↘↘

A2

a2
?
� r2 - B2

b2
? δa1a2r- B12

b
12

-

Figure 3: Compositionality for fPpg

r.fPpg(a1) does not hold if update a1 involves deletion of
some public data (say, A−) of model A whereas update
a2 restores these data so that the composed update a does
not actually change A. However, the story on the B-side
is more complex.

Update b1 = a1.fPpg(r) must delete the r-image of data
piece A− in model B, , say, B−, and the respective part
of private data based on B−, say, B−prv, as well. Thus,
we have b1 : B→ B1 with B− and B−prv deleted from B1.
Then update b2 = a2.fPpg(r1) : B1 → B2 must restore data
B− in model B2, but as the respective private component
B−prv is lost, b2 replaces it with some standard minimal set
of N-private data, say, B0. Thus, model B2 is built from B−

and B0. In contrast, update b12 = a12.fPpg(r) : B→ B12
keeps data B− unchanged in B12, and hence the latter is
built from B− and B−prv. Minimality of B0 is specified
by a uniquely determined delta δ−0 : B0 → B−, and then
we should have a delta δ : B2 → B12 obtained by pairing
idB− and δ−0 such that b1; b2; δ = a12.fPpg(r). This delta
is private (as its public component is idle). These consid-
erations motivate the following formal law: For any two
consecutive updates, a1 : A→ A1, a2 : A1 → A2 and a corr
r : A↔ B, there is a private delta δa1a2r : B2 → B12 such
that b1; b2; δa1a2r = (a1; a2).fPpg(r) as shown in Fig. 3

If both updates are insertions, or both are deletions,
then δa1a2r is required to be an identity, and, hence,
a1.fPpg(r); a2.fPpg(r1) = (a1; a2).fPpg(r). Moreover, if
at least one of the updates is private, then δa1a2r is required
to be an identity too.

A similar law is stated for a corr and two consecutive
updates on the N-side. 2

Invertibility. We begin with an informal dis-
cussion. Given an update a : A→ A′ and a consis-
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tent corr r : A↔ B, let arr : A→ A′rr denotes the update
a.fPpg(r).bPpg(r) resulting from forward and then back-
ward propagation (see the left and central squares in di-
agram Fig. 4a). In general, arr , a because when a is
propagated to the N-side, the private part of a ia lost and
cannot be restored. In more detail, we can consider up-
date a : A→ A′ as a pair (aprv, apub), whose components
update, resp. the private, say, Aprv, and the public, Apub,
parts of A. Then update arr is also a pair (idAprv , apub),
and there should be a delta δar = (aprv, idApub ) : A′rr → A′

so that arr; δar = a. These considerations motivate the
following formal law: for any a : A→ A′ and con-
sistent corr r : A↔ B, there is defined a private delta
δar : A′rr → A′ such that arr; δar = a with symbols A′rr and
arr explained in Fig. 4(a). Dually, for any b : B→ B′ and
consistent corr r : A↔ B, there is defined a private update
δbr such that b; δbr = brr as shown in diagram Fig. 4(b).
We call δar and δbr invertibility deltas.

Corollary 2. An immediate consequence of the ex-
istence of invertibility deltas are the following
laws: a.fPpg(r).bPpg(r).fPpg(r) = a.fPpg(r) and
b.bPpg(r).fPpg(r).bPpg(r) = b.bPpg(r) described by
Fig. 4(a’)(b’) and called weak invertibility in [5], Thus,
invertibility deltas imply weak invertibility. 2

We present two results about lenses.

Theorem 2. For a wb-lens, if update a : A→ A′ is public,
a ∈ Mpub

∆
, then for any consistent corr r : A↔ B, update

a.fPpg(r) is also public and belongs to Npub
∆

. Dually, if
b : B→ B′ is public, then bPpg(r).b is also public.

Proof. Follows from the definition of privacy/publicity
and the privacy of invertibility deltas. 2

Theorem 3. A lens λ : M� N is wb iff its dual
λ◦ : M� N is wb too. That is, well-behavedness is a sym-
metric notion. 2

3.2. Info-Asymmetry and Lenses

The consistency framework underlying a lens influ-
ences its properties.

Definition 13 (Asymmetric lenses). [ZD: insert the def
from the jot11 paper [4].] We denote an asymmetric lens
by λ≤ : M� N with the superscript pointing to the domi-
nated side (the view).

A � r - B �
r - A

:fPpg↘↘ :bPpg↘↘

A′

a
?
� r′ - B′

b
?
� r′rr - A′rr

arr

? δar- A′

a
-

(a) fbPpg invertibility delta

B �
r - A � r - B

:fPpg↙↙ :bPpg↙↙

B′ �
δbr

�

b

B′rr

brr

?
� r′rr - A′

a
?
� r′ - B′

b
?

(b) bfPpg invertibility delta

A � r - B �
r - A � r - B

:fPpg↘↘ :bPpg↘↘ :fPpg↘↘

A′

a
?
� r′ - B′

b
?
� r′rr - A′rr

arr

?
� r′′ - B′

b
?

(a’) fbfPpg law

A � r - B �
r - A � r - B

:bPpg↙↙ :fPpg↙↙ :bPpg↙↙

A′

a
?
� r′′ - B′rr

brr

?
� r′rr - A′

a
?
� r′ - B′

b
?

(b’) bfbPpg law

Figure 4: Round-tripping laws. (a) and (b) are Invertibil-
ity deltas. (a’) and (b’) are weak invertibility. Scenario in
diagrams (b,b’) “run” from the right to the left.



get•.B �
get↔.B- B

:bPpg↙↙

A′

a
?
� r′ - B′

b
?

A = get•.B �
r = get↔.B- B

:fPpg↘↘

A′

a
?

arr
?
� r′ - B′

b
?

(a) defining get∆ (b) defining put

Figure 5: Extracting an asymmetric lens for info-
asymmetric triple space

Theorem 4 (Info-asymmetry and lenses). Any delta
lens λ : M� N over an asymmetric alignment framework
K≤ : M = N (i.e., M ≤inf N holds), gives rise to an
asymmetric delta lens as defined in [4].

Proof. We will employ functions getK• : M← N and
getK↔ : R← N• provided by the asymmetry of K : M = N,
and show how they can be used to define functions get∆
and put such that the PutGet law holds.

Diagram Fig. 5(a) shows how to define get∆ for a given
update b : B→ B′. We first compute A = getK• .B and r =

getK↔.B, then apply bPpg and obtain arrows a and r′ as
shown in the diagram. Because •K.B is a singleton by
the info-asymmetry condition, we necessarily have A′ =

getK• .B
′ and r′ = getK↔.B

′. We now define get∆(b) = a. It
preserves identities as bPpg does.

Definition of put is shown by diagram Fig. 5(b). Re-
call that getK• is surjective; having an update a and model
B such that A = getK• .B as shown in the diagram (b), we
compute r = getK↔(B) and apply fPpg, which produces

arrows b and r′ as shown. We define put(a, B) def
= b. Be-

cause •K.B′ is a singleton, we conclude that A′ = getK• .B
′,

and it remains to prove the PutGet law. Let arr
def
=

get∆.b = bPpg(r).(a.fPpg(r)) (see diagram Fig. 4(a)), and
δar is the respective invertibility delta. The latter is always
private, and by asymmetry of the alignment framework,
δar must be an identity, hence, a = arr. 2.

Theorem 5 (Info-bijectivity and lenses). Let
λ : M� N be a lens over a bijective consistency
framework K� : M = N Then categories M and N are
isomorphic via mutually inverse functors get1 : M← N
and get2 : M→ N.

0M � r0 - 0N

:fPpg↘↘

A

oA
?
� r - B

oB

?

0M � r0 - 0N

:bPpg↙↙

A

oA

?
� r - B

oB
?

a) Definition

A � r - B A �
r - B

b1) fGen arity b2) bGen arity

Figure 6: Non-incremental propagation

3.3. Non-incremental update propagation.

We will begin with an important addition to the notion
of model space.
Definition 14 (Initial models). Let M be a model space.
A model 0M is called initial, if for any model A∈M• there
is a unique delta oA : 0M → A. It can be proven by stan-
dard categorical means that all initial models are isomor-
phic.
Intuitively, the initial model comprises all data that must
be in any M-model and so is the minimal model possible;
delta oA embeds model 0M into A. For many structural
model spaces, e.g., class diagrams, the initial model is
empty. In contrast, behavior models often must have cer-
tain states and transitions initializing the behavior, e.g.,
initial states.
Definition 15 (Well-behaved lenses and initial models).
A consistency framework K : M = N is called wb, if in
addition to laws stated in Definition 5, K(0M, 0N) is a
singleton {r0}.

A lens λ : M� N is wb, if, in addition to laws stated
in Definition 12, the following holds: for any A∈M•,
oA.fPpg(r0) = oB for some B∈N•, and similarly, for any
B∈N•, oA = bPpg(r0).ob for some A∈M•. 2

Now we note that a wb lens λ : M� N provides also
non-incremental propagation operations defined as spec-
ified in Fig. 6(a). What we have defined are two opera-
tions, forward, fGen, and backward, bGen, generation,
whose arities are specified in Fig. 6(b): A.fGen = (r, B)
and (A, r) = bGen.B

Each of these operations actually comprises two ordi-
nary operations: fGen consists of fGen• : M• → N•
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and fGen↔ : M• → R; and bGen consists of
•bGen : M• ← N• and ↔bGen : R← N•. For exam-
ple, in diagram Fig. 6(b1), we have A.fGen↔ = r and
A.fGen• = B.

The following result shows how non- and incremental
update propagation are related (see [12] for details).

Theorem 6. Let λ : M� N be a wb lens, a : A→ A′ an
update, and r : A↔ B a consistent corr. Let (a, r).fPpg =

(r′, b) and A.fGen = (rq, Bq). Then there is a unique pri-
vate delta δar : Bq → B such that rq; δar = r′. 2

Thus, although a lens provides incremental update
propagation in both directions, we can choose to make
change propagation in one or both directions non-
incremental by employing operations fGen and bGen de-
fined above. In this way a lens determines several com-
putational frameworks depending on which (if any) di-
rections of update propagation are chosen to be non-
incremental.

Definition 16 (Incremental specilaization). Let
λ : M� N be a wb lens. Its incremental specializa-
tion is an algebraic structure λinc : M� N comprising
two operations (Op1,Op2) defined as follows.

(i) If Op1 = fGen and Op2 = bGen, i.e., neither
direction is incremental, we call the specialization non-
incremental and write λq : M� N.

(ii) If Op1 = fPpg and Op2 = bPpg, i.e., both direc-
tions are incremental, we call the specialization fully in-
cremental, and write λ>< : M� N.

(iii) If only one direction is incremental, specialization
is semi-incremental. If the incremental direction is from
the source to the target, i.e., Op1 = fPpg while Op2 =

bGen, we write λ> : M� N. If the incremental direction
is from the target to the source, i.e., Op1 = fGen while
Op2 = bPpg, we write λ< : M� N.

We will often call an incremental specialization
λinc : M� N of a lens just a lens.

Theorem 7 (Incrementality taxonomy). Let λ : M� N
be a wb lens. There are four mutually exclusive
and jointly complete logical possibilities (concrete in-
crementality types) for the incremental specialization
λinc : M� N with inc ∈ {q, ><, >, <}. The last two types
are mutually dual, and can be grouped into almost con-
crete type of semi-incrementality. 2

3.4. Lenses, incrementality and info-symmetry

Our work above demonstrates that the type of a lens
λ : M� N is determined by two indexes: one is its info-
symmetry type inf ∈ {≈, ><, >, <} (determined by the info-
symmetry type of the underlying consistency framework),
and the other is the type of its incremental specialization
inc ∈ {q, ><, >, <}. We will write a lens with double-
indexing λinc

inf , and call each of so double-indexed spe-
cialization a computational frameworks. The total is 16
types of computational frameworks. However, amongst
these 16 types, several are basically the same up to per-
mutation of the source and the target, e.g., lenses λ<< and
λ>> possess the same properties and dualization mutually
converts them each into the other. The same is true for
lenses of types λ<> and λ><. However, lenses λ>< and λ<< are
essentially different. The lower inf-index shows that both
lenses support view maintenance. The upper inc-index of
lens λ<> describes it as a pair (fPpg, bGen) that supports
non-incrementally computed (by bGen) and updatable
(by fPpg) view. In contrast, the inc-index of lens λ>> de-
scribes it as a pair (fGen, bPpg) that supports incremental
view computation but non-incremental view update prop-
agation; the latter makes this computational framework
non-applicable for databases (but it can still be used for
model compilation and incremental reverse engineering).
As Fig. ?? shows, there are 10 really different lens types.

4. Formalizing Organizational symmetry: Synchro-
nization Cases and Types

Organizational symmetry is about change propagation,
and in this section we first introduce a key notion of a
changing model as a trajectory in the respective model
space. Then we define a synchronization case as a pair
of trajectories satisfying certain mutual synchronization
conditions. Finally, we define organizational polices as
special constraints on synchronization cases, which can
be classified by their symmetry w.r.t. the source and the
target models.

4.1. Models as trajectories
We consider a changing model as a trajectory in the

respective model space. Let M be a metamodel, and
M = (M•,M∆) be the space of its instances and deltas
as described above. A model-as-trajector is a mapping
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A : I → M•, whose domain I is a finite linearly ordered set
{i0 < i1 < . . . < in} of version numbers or indexes. Thus,
A appears as the model’s immutable identity whereas its
state A(i) changes as index i runs over I. To simplify no-
tation, below we will write Ai for A(i), and by the abuse
of terminology often call model’s states just models.

To traverse set I, we will use operations i−1, i−2, ... and
i+1, i+2, ... with the evident meaning (i0 − 1 and in + 1 are
not defined).

If i∈I is a version number and i−1 is its predecessor,
we have a (directed) delta ai : Ai−1 → Ai specifying the
change. We may consider the pair (i−1, i) as an arrow
from i−1 to i, and delta ai as the A-image of this arrow
in M∆. This makes I a directed graph, and A a graph
mapping. Moreover, we can make I a category I with
nodes I• = I and arrows I∆ = {(i1i2) ∈ I×I : i1 < i2},
arrow composition (i1i2); (i2i3) = (i1i3) and identities
ii. Then a model trajectory is a functor (a mapping of
categories) A : I→ M, i.e., a graph mapping such that
A(i1i3) = A(i1i2); A(i2i3) and A(ii) = idAi . For any non-
initial index i, we write ai for delta A(i−1, i) : Ai−1 → Ai

to be read “the update that created model Ai”.

4.2. Synchronization cases

Synchronization of two models is about maintaining
certain correspondences between two trajectories, say,
A : I→ M and B : J→ N, in two computationally related
model spaces. We will assume the spaces are related
by a wb delta lens λ : M� N comprising operations of
forward and backward delta propagation as described in
Def. 10.

Partitioning of model deltas into private and public de-
termines a similar partitioning of indexes I = Iprv ] Ipub

with

Iprv =
{
i ∈ I : ai ∈ Mprv

∆

}
, and Ipub =

{
i ∈ I : ai ∈ Mpub

∆

}
,

and similarly J = Jprv ] Jpub. Thus, i∈Iprv (or i∈Ipub)
means that model Ai is the result of a private (resp. public)
update ai : Ai−1 → Ai.

Since public updates destroy consistency, as soon as a
public update is committed on one side, it must be prop-
agated to the other side to restore consistency. According
to Theorem 2, the propagated update is also public, but
we call it passive, whereas the original update is active.

For example, suppose that we have registered a public
update ai : Ai−1 → Ai ∈ Mpub

∆
on the A-side, and hence

i ∈ Ipub. There are two possibilities for the case.
(a) Update ai was initiated on the A side (we say ai

is active) and then was propagated to the B side. This
means that there is a version number i� ∈ J and up-
date bi� : B(i�)−1 → Bi� produced by this propagation
(we then say that bi� is passive), so that the corr resulted
from this propagation, ri,i� : Ai ↔ Bi�, restores consis-
tency. Considering all such updates gives us an order
preserving bijection � : Iact → J for some ordered sub-
set Iact ⊆ Ipub.

(b) Update ai is the result of propagation from the
other side (now a is passive) of some (active) update
biI : B(iI)−1 → BiI for some version number iI ∈ J, and
we again have a consistent corr ri,iI : Ai ↔ BiI resulted
from this backward propagation. Considering all such up-
dates gives us an order preserving bijection I : Ipas → J
for some ordered subset Ipas ⊆ Ipub. Clearly, sets Iact and
Ipas are disjoint and their union is Ipub, Ipub = Iact ] Ipas.

Viewing the same pair of trajectories from the B-
side, gives us partitioning Jpub = Jact ] Jpas and order-
preserving bijections � : I ← Jact and J : I ← Jpas.
Moreover, for a correct synchronization case, we should
have bijections � and J to be mutually inverse and set an
isomorphism Iact � Jpas. Similarly, bijections I and �

are to be mutually inverse as well, and Ipas � Jact.
Thus, for a pair of correctly synchronized trajectories as

above, we have a partitioning Ipub = Iact] Ipas, a partition-
ing Jpub = Jact ] Jpas, and two pairs of order-preserving
bijections,

� : Iact → Jpas and I : Ipas → Jact,

and
� : Ipas ← Jact and J : Iact ← Jpas,

such that � = J−1 and I−1 = �. Hence, we have an
isomorphisms �� ⊂ Ipub×Jpub ( we could denote it byIJ
as well) such that for any pair i�� j ∈ Ipub×Jpub, models
Ai and B j are consistent via a corr ri�� j computed during
update propagation.

Figure 7 provides more details for the mechanism. Sup-
pose that models Ai and B j have been synchronized, and
after that each of the models evolved with its own se-
quence of private updates (labeled with [prv] in the fig-
ure). Suppose that a public update ai⊕1, where i⊕1 denotes
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Ai � ri�� j - B j

Ai+1

[prv] ai+1?

B j+1

b j+1 [prv]?

. . .

[prv]
? :fAln↘↘ :bAln↙↙ . . .

[prv]
?

A(i⊕1)−1

[prv] a(i⊕1)−1?
� r′i j

- B( j⊕1)−1

b( j⊕1)−1 [prv]?

:fPpg↘↘

Ai⊕1

[pub/act] ai⊕1

?
� r(i⊕1)��( j⊕1) - B j⊕1

b j⊕1 [pub/pas]

?

. . .

[prv]
? :fAln↘↘ :bAln↙↙ . . .

[prv]
?

A(i⊕2)−1

[prv] ?
� r′′i j

- B( j⊕2)−1

[prv]?

:bPpg↙↙

Ai⊕2

[pub/pas] a j⊕1

?
� r(i⊕2)��( j⊕2) - B j⊕2

b j⊕2 [pub/act]

?

Figure 7: A general sync case

the next index in the set Ipub (which is different from the
next index, i+1, in the entire set I,) was committed on the
A-side and destroyed consistency. Hence, this update was
propagated to side B to restore consistency. In order to
preserve the results of private changes on the B side, this
propagation has been done for the last corr r′i j before the
public update ai⊕1 as shown in the figure. This corr r′i j is
computed by formula (1)

[ai+1; ai+2; ...; a(i⊕1)−1]∗ri�� j∗[b j+1; b j+2; ...; b( j⊕1)−1] (1)

where j⊕1 denotes the immediate successor of j in Jpub,
and * denotes the realignment operation specified in
Def. 2 and 3. Note that the set of I-indexes from i to i⊕1
and the set of J-indexes from j to j⊕1 can be of different
length. It is also possible that, e.g., (i⊕1) − 1 = i, which
means there were no private updates on the left side pre-
ceding the public one, in which case the left term in square
brackets above is an identity update. The same holds for
the right term in square brackets.

Now update ai⊕1 can be propagated to the right side by

applying operation fPpg to the pair (ai⊕1, r′i j), which re-
sults in update b j⊕1 and the new corr r(i⊕1)��( j⊕1). The
latter is consistent because r′i j is consistent (since previ-
ously only private update were made on both sides), and
a correct propagation preserves consistency.

In the next synchronization step of the case, public up-
date b j⊕2was first committed on the B-side, and hence
propagated to the left side with operation bPpg. The input
corr for the operation was again provided by the align-
ment framework, again computed by formula (1) with i
and j replaced by i⊕1 and j⊕1 (and, respectively, i⊕1 and
j⊕1 in formula (1) are replaced by i⊕2 and j⊕2). The re-
sult is a new pair of synchronized models r(i⊕2)��( j⊕2), and
the system is ready to yet another synchronization step as
above.

The next definition gives an accurate formalization of
the discussion above. As mappings denoted by black tri-
angles are derived from those denoted by blank triangles,
we can specify the required correspondences by only us-
ing blank triangle mappings.

Definition 17 (Synchronization case). Given a fully in-
cremental delta lens λ>< : M� N, a (consistent) synchro-
nization case is a pairs of trajectories, A : I→ M and
B : J→ N, with the following additional structure.

(a) Sets Ipub and Jpub are further partitioned, Ipub =

Iact ] Ipas and Jpub = Jact ] Jpas, and two isomorphisms
are given: � : Iact → Jpas and � : Ipas ← Jact. This es-
tablishes an isomorphism �� ⊂ Ipub×Jpub, and for each
pair of corresponding indexes i�� j, there is a consistent
corr ri�� j : Ai ↔ B j. Particularly, for the initial indexes
we have i0�� j0 and r0 = ri0�� j0 .

(b) Let i⊕1 denotes the next index in the linearly or-
dered set Ipub, which, in general, may be greater than the
next index i+1 in set I ⊃ Ipub due to several private update
indexes following i before i⊕1. Similarly, j⊕1 is the next
index in Jpub.

If i�� j and i⊕1 ∈ Iact, then j⊕1 ∈ Jpas and

ai⊕1.fPpg(r′i j) = b j⊕1 and r(i⊕1)��( j⊕1) = r′i j.fPpg(ai⊕1),

where r′i j is computed by (1).
If i�� j and i⊕1 ∈ Ipas, then j⊕1 ∈ Jact and

ai⊕1 = bPpg(r′i j).b j⊕1 and r(i⊕1)��( j⊕1) = bPpg(b j⊕1).r′i j.

where r′i j is again computed by the same formula (1).
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Modifications of this definition for the cases of a non-
incremental lens λq : M� N and a semi-incremental lens
λ> : M� N or λ< : M� N are straightforward. 2

We will denote a synchronization case as defined above
by a double arrow σ : A� B, and the set of all such cases
by S yncS yncS yncλ(A, B) with the subscript referring to the under-
lying lens providing the computational framework. Given
a synchronization case σ, we will sometime subscript its
constituting elements and write Aσ : Iσ → M etc.

4.3. Organizational Polices and Types

Class S yncS yncS yncλ(A, B) encompasses all possible synchro-
nizations of models A and B. If a special organizational
policy between the models is assumed, some synchroniza-
tion cases can be a priori prohibited. For example, we can
prohibit update propagation from A to B and thus make
A an entirely passive receiver of changes from side B, if
we require Iact

σ = ∅ for any case σ allowed by the pol-
icy. Dually, we make B a passive receiver of changes A
by requiring Jact

σ = ∅ for any legal case σ. To establish a
more refined organizational policy, we can prohibit prop-
agating some, but not all, updates from either side so that
both sets Iact and Jact are not empty. Thus, an org-policy
specifies a special subclass of class S yncS yncS yncλ(A, B).

Below we make these ideas formal.

Definition 18 (Org-policy). Let λ : M� N be a wb lens.
(i) An org-policy is a pair of sets Π = (P,Q) with

P ⊆ Mpub
∆

and Q ⊆ Npub
∆

, whose elements are called propa-
gatable deltas. We require Π to be complete in the follow-
ing sense. Let P.λ denotes all target updates propagated
from P with lens λ, P.λ def

= {a.fPpg(r) : a∈P, r∈K}, and,
dually, λ.Q denotes the set of all source updates propa-
gated from Q, i.e., the set {bPpg(r).b : b∈Q, r∈K}. Then
we require Mpub

∆
= P ∪ λ.Q and P.λ ∪ Q = Npub

∆
.

(ii) We say a synchronization case σ : A� B conforms
to policy Π = (P,Q) and write σ |= Π, if ai ∈ P for
all i ∈ Iact

σ , and b j ∈ Q for all j ∈ Jact
σ . In other

words, in order to claim conformance σ |= Π, we require{
ai∈M∆ : i ∈ Iact

σ

}
⊂ P and

{
b j∈N∆ : j ∈ Jact

σ

}
⊂ Q.

In this way, an org-policy Π determines a correspond-
ing synchronization type, i.e., a class of synchronization
cases [[Π ]] = {σ∈S yncS yncS yncλ(A, B) : σ |= Π} conforming to
the policy.

Remark 5 (Organization vs. technology). Importantly,
sets P and Q constituting a policy are determined
organizationally rather than technologically in the
sense that propagation operations can be defined for
non-propagatable deltas. For example, when code is
generated from a UML model by a forward operation
fPpg or fGen, the backward operation bPpg is defined for
all code deltas, and is important for checking correctness
of code generated from the model wrt. its conformance to
the model as prescribed by the invertibility law. However,
only some (or none) of code deltas are allowed to be
propagated back to the model.

On the other hand, if some updates are not propagat-
able by technical reasons, e.g., in the database context,
there is no a reasonable update propagation policy ensur-
ing the uniqueness of the source database, these updates
obviously cannot be organizationally allowed. That is, an
organizational policy is built within the boundaries of the
technical restrictions.

Definition 19 (Org-symmetries). Let Π = (P,Q) is an
organizational policy as defined above.

(a1) If both directions propagate all possible updates:
P = M∆, Q = N∆, we call the policy richly org-symmetric
and write Π>< : A� B or A><ΠB.

(a2) If both directions only propagate some of the pos-
sible updates: ∅ , P  M∆, ∅ , Q  N∆, we call
the policy poorly org-symmetric and write Π≥≤ : A� B
or A≥≤ΠB.

We call the policy org-symmetric if it is poorly or richly
symmetric.

(b) If one direction propagates all, and the other some,
of the updates, we call the policy org-semi-symmetric.
That is, either (b1) P = M∆ and ∅ , Q  N∆, in
which case we write Π>≤ : A� B or A>≤ΠB, or (b2)
∅ , P  M∆ and Q = N∆, and we write Π≥< : A� B
or A≥<ΠB.

(c) If one direction propagates all, and the other
none, of the updates, we call the policy (strictly) org-
asymmetric. That is, either (c1) P = M∆ and Q = ∅, in
which case we write Π> : A� B or A>ΠB, or (c2) P = ∅
and Q = N∆, and we write Π< : A� B or A<ΠB.

Theorem 8 (Org-symmetry taxonomy). There are six
mutually exclusive and jointly complete logical possibil-
ities (concrete org-symmetry types): (a1) A≥≤ΠB, (a2)
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A><ΠB; (b1) A>≤ΠB, (b2) A≥<ΠB; (c1) A>ΠB and
(c2) A<ΠB. They can be grouped in three abstract
types: org-symmetry (a)=(a1)∨(a2), org-semi-symmetry
(b)= (b1)∨(b2), and org-asymmetry (c)=(c1)∨(c2). Types
(b) and (c) are almost concrete as types (b1) and (b2), as
well as (c1) and (c2) are mutually dual. 2

Remark 6. Each of the six types is a property of a triple
(A,Π, B) rather than a pair (A, B). However, we may use a
loose notation and write, say, A><orgB meaning that we
have a synchronization Π>< : A� B providing A><ΠB.
This loose notation is used in [1].

Remark 7. A very special subtype of this type is in-
terleaving, for which, in addition, the following holds:
Iprv = ∅ = Jprv. In other words, the two models actu-
ally share the same set of version indexes, and all changes
on either sides are at once propagated to the other side in
the interleaving mode.

5. Related Work

A majority of work on semantic foundations for model
transformations and bx assumes an operational rule-based
semantics, e.g., Maude’s term rewriting rules for ATL
[13], transformations of symbolic graphs for QVT-R (the
check-only mode) [14] and for general inter-modeling
patterns in [15], or TGG as a general bx engine [16].
A much more declarative approach to bx semantics, in
which update propagation procedures are considered as
abstract algebraic operations (along the lines of the lens
approach to the view update problem [17]), was proposed
by Stevens in her seminal papers [18, 11] and developed
in [19]. The original state-based lenses were later
modified and subsumed by asymmetric [4] and symmetric
[5] delta lenses; implementation of these delta lenses via
TGG is described in, resp., [7] and [6].

The formal semantics presented above is a major de-
velopment of the delta lens framework. We enrich the no-
tion ofconsistency framework with the constructs of pri-
vate and public updates, and show that asymmetry de-
fined in terms of private updates coincides with asym-
metry defined in terms of a view computation function.
Also, we refine compositionality and invertibility laws for
delta lenses by making them lax, and present some sim-
ple results about them. Accurate definitions of symmetry

and duality of delta lenses are novel, and organization of
the variety of delta lenses into a two-dimensional space is
novel too.

The org-symmetry dimension has been discussed in the
literature as unidirectional vs. bidirectional transforma-
tions [20, 16, 21]. We present a more fine-grained taxon-
omy by introducing organizational semi-symmetry, and
give the dimension a formal semantics via the notion of a
synchronization case.
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