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ABSTRACT
Features are commonly used to describe functional and non-
functional aspects of software. To effectively evolve and
reuse features, their location in software assets has to be
known. However, locating features is often difficult given
their crosscutting nature. Once implemented, the knowledge
about a feature’s location quickly deteriorates, requiring ex-
pensive recovering of these locations. Manually recording
and maintaining traceability information is generally consid-
ered expensive and error-prone. In this paper, we argue to
the contrary and hypothesize that such information can be
effectively embedded into software assets, and that arising
costs will be amortized by the benefits of this information
later during development. We test this hypothesis in a study
where we simulate the development of a product line of
cloned/forked projects using a lightweight code annotation
approach. We identify annotation evolution patterns and
measure the cost and benefit of these annotations. Our
results show that not only the cost of adding annotations,
but also that of maintaining them is small compared to the
actual development cost. Embedding the annotations into
assets significantly reduced the maintenance cost because
they naturally co-evolve with the assets. Our results also
show that a majority of these annotations provides a benefit
for feature-related code maintenance tasks, such as feature
propagation and migrating clones into a platform.

1. INTRODUCTION
The notion of feature is commonly used in software devel-

opment to refer to an increment of functionality [1]. Features
are often only used informally; however, many approaches
emphasize the explicit and formal use of features, such as,
feature-oriented software development (FOSD) [2], feature-
driven development (FDD) [3], software product line engi-
neering (SPLE) [4, 5, 6], and virtual platform [7]. In these
approaches, features are identified, declared, and used as the
primary unit of maintenance and reuse as well as a unit of
characterization and comparison between software variants.
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In SPLE and FOSD, all possible variants of the software are
also integrated in a platform, sharing assets among variants
by realizing variability. Features are described in a feature
model [8], and the mapping between features and assets is
completely recorded, such as by variability annotations (e.g.,
preprocessor directives). The models are used for product
variant configuration and derivation. However, creating such
a platform from scratch is unrealistic for many organizations.
Instead, they often start with cloning [9, 10, 7, 11] and use it
as their preferred reuse strategy as long as they can maintain
the clones. When facing scalability problems, they need to
migrate all the clones into an integrated platform.
Before the migration, performing tasks on features, such

as fixing bugs, modifying, refactoring, disabling, and reusing,
requires knowing the location of the features in the code,
which is often difficult given their crosscutting nature [12]. In
fact, feature location is considered one of the most common
activities of developers [13, 14, 15, 16]. Later, during the
migration, all features and their locations in the code need to
be known, in order to re-integrate clones into the platform, to
establish a mapping between features and the shared assets,
and to introduce variability for optional features.
Thus, organizations that rely on features are faced with the

difficult question: “How to effectively maintain traceability
between the features and the corresponding software assets?”
Two strategies are possible: either organizations record fea-
ture traceability information during the development of the
features (the eager strategy), or they retroactively recover
such information when needed (the lazy strategy). In the
eager strategy, developers record the location of features
when they perform tasks related to these features or shortly
thereafter, when the knowledge is still fresh in their memory.
In the lazy strategy, if memory has deteriorated, developers
recover the location of features by reading the code or by
applying semi-automated feature location techniques.
When choosing the eager strategy, organizations face an-

other question: “Where to store the feature traceability in-
formation?” Again, two strategies are possible: either the
information is stored externally to the corresponding soft-
ware assets (the external storage strategy), or internally as
part of the assets (the internal storage strategy). The exter-
nal storage strategy requires a universal way of addressing
locations inside the heterogeneous assets and updating the
locations when the assets evolve. It also relies on tools (e.g.,
FEAT [17]) to reduce the burden of constantly maintain-
ing feature locations during evolution. The internal storage
strategy requires a feature annotation system for embedding
the traceability information into assets.
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While significant research exists about the lazy strategy
relying on feature location recovery [14], all works lament
the lack of precision and the high effort of the task, even if
using a semi-automated technique [16] (e.g., FLAT3 [18]).
Eagerly recording traceability and storing it externally is
also considered expensive, requiring significant effort and
heavy-weight tooling to co-evolve the external traceability
information with the changing assets [19]. However, no study
has been published on the cost and benefit of applying the
eager and internal storage strategies.

We present an empirical investigation of applying an eager
annotation approach. We retroactively embed feature anno-
tations into an existing clone-based product line comprising
three projects, whose parts are subsequently re-integrated
(i.e., merge-refactored) into a shared platform. We simulate
the actual development as if annotations were maintained
originally. We analyze the evolution of features, their anno-
tations, and qualitatively and quantitatively assess the costs
in relation to the benefits of our approach. We compare the
cost savings of eager annotations with lazy feature location.
In summary, our contributions comprise:

• Feature evolution patterns together with their costs and
benefits (Sec. 3) derived from a simulation study (Sec. 2).

• Quantitative empirical data on these patterns and their
actual costs and benefits based on the study (Sec. 4).

• An online appendix [20] with additional statistics and
source code repositories of four projects with feature an-
notations and evolution history, to replicate our results
and as a benchmark for future traceability tools.

As we will show, introducing and tracing features early
has in fact the potential to support organizations developing
a portfolio of systems using clone-based projects. Using our
results, organizations can decide whether the investment into
an eager feature annotation strategy will pay off for evolving,
maintaining, and reusing features across individual software
projects that are not integrated in a platform, or for sup-
porting a later migration of these projects into a platform.
For researchers, our results show what kinds of activities
(illustrated by the patterns) could be supported by tools and
processes when using our approach. Our results also create
awareness of a surprisingly cheap way of maintaining trace-
ability using embedded annotations, while the majority of
existing approaches tries to store this information externally.

2. SIMULATION STUDY
While it is generally accepted that manually recording

and maintaining traceability information is costly and error-
prone [19], we argue to the contrary.

2.1 Rationale
We hypothesize that the cost of recording and maintaining

traceability information embedded into assets is low, since:
H1: the knowledge of the feature and its location is fresh in
the developer’s memory during implementation, and there-
fore the cost of feature location is close to zero,
H2: adding a feature annotation is trivial and cheap,
H3: the embedded traceability links naturally co-evolve as
the assets evolve and they are much less brittle as compared
to the externally stored ones, thus, largely eliminating the
maintenance cost, and
H4: the cost of storing traceability information internally is

amortized over multiple uses of such information, whereas,
in the lazy strategy, the information must be recovered every
time it is needed.
We also hypothesize that the value of the embedded trace-

ability information increases over time, since:
H5: the original developers’ memory deteriorates with time
or when they leave the team,
H6: the precision of such manually recorded information is
much higher as compared to traceability information recov-
ered by automated feature location approaches or manually
in the future, and
H7: the developers benefit during every task that requires
knowledge of feature location, since it is readily available.
In this paper, we take hypotheses H1, H2, H4, H5, H6

as assumptions since they are, in our opinion, reasonable
to make given the design of our annotation approach (and
testing these hypotheses would require separate studies). We
address H3 and H7.

2.2 Research Questions
To gain insights into the applicability of the eager and

internal storage strategies as well as the costs and benefits
of embedded feature annotations, we conducted a simulation
case study in which we retroactively applied an embedded fea-
ture annotation approach by simulating annotation through
an actual development history of a set of software projects.
The simulation allowed us to investigate the application pro-
cess of the annotations and identify the evolution patterns
necessary for eager annotation and annotation maintenance.
These patterns describe the observed cost and benefit cases
of using the approach. Finally, the simulation provided data
on the occurrence frequency of the patterns, and contributed
supporting evidence towards hypotheses H3 and H7.
The return on investment in recording feature annotations

occurs when features are maintained (extended, fixed, re-
moved) and reused (cloned, propagated into platform) later
on. When only a subset will be maintained or reused, the in-
vestment may be higher than the pay off. Thus, we formulate
the following research questions:
RQ1: What are the annotation recording and editing costs?
The former arise from adding assets, and the latter from
evolving assets. We also investigate their ratio to understand
the relative evolution costs (to maintain annotations) in our
case study. To measure these costs, we rely on a simple
metric (number of annotation lines).
RQ2: What percentage of annotation recordings and edits
required additional feature location effort? We assume that
the effort of feature location is zero when the annotations
are recorded immediately; however, sometimes the recording
can be delayed due to (i) annotation mistakes, (ii) lower
eagerness, or (iii) incomplete location knowledge.
RQ3: What percentage of the invested annotation recording
and editing costs saved feature location costs during reuse
cases? We investigate how many of the recorded annotations
were beneficial for reuse cases.
RQ4: What percentage of feature location costs during reuse
could be avoided? We investigate how many of the feature
locations needed for reuse cases were covered by the recorded
feature annotations.
In our study, we simulated the application of an embedded

feature annotation approach—as if it had been used origi-
nally during the development of our subject projects. We
analyze the behavior of the human simulator, qualitatively



Table 1: Summary of the subject projects
release 01/2014 visualizer configurator IDE platform
started 10/2012 03/2013 10/2013 12/2013
developers 3 3 2 1
features 67 49 38 51
lines of text 5546 2011 1623 5614
lines of code (JavaScript) 1974 908 509 3774

before platform visualizer configurator IDE -

lines of text 8283 3708 3960 -
lines of code (JavaScript) 3746 2554 2228 -

and quantitatively reflected in the annotations, and investi-
gate whether and to what extent the introduced annotations
were beneficial for feature maintenance, evolution, and reuse.
We now introduce our subjects and describe our detailed
methodology.

2.3 Subject Systems
We study a clone-based product line of web-based tools

called Clafer Web Tools [21], which support various use cases
of the Clafer modeling language. We selected them, because
we were familiar with them and had access to the original de-
velopers allowing us to ask about design and implementation
details, and their rationale behind some of our observations.
Table 1 summarizes the projects, comprising:

• ClaferMooVisualizer (“visualizer”) accepts a Clafer model
with optimization objectives, runs multi-objective opti-
mization, visualizes the resulting set of optimal configu-
rations, and offers the users an interactive interface for
the exploration of the results and comparing solutions for
tradeoff analysis.

• ClaferConfigurator (“configurator”) accepts a Clafer model,
runs a chosen instance generator, and offers the users an
interactive interface for the exploration of the results and
comparing solutions.

• ClaferIDE (“IDE”) offers basic editing, compilation, and
instantiation services for Clafer models.

The development of the three projects relied on a clone-
and-own approach; later, large parts were migrated into a
platform project. Fig. 1 summarizes the development history
of these four projects (each represented by a horizontal line).
The visualizer was developed first; later, major parts were
cloned (propagated) into the configurator. The IDE was
developed similarly: most of its features came from the pre-
vious two projects. Feature propagation during a migration
process later led to a platform that contains common features
and shared assets of the projects, used as a shared framework
for all of them. Note that propagations in both directions
occurred between the projects (indicated by double-arrows).

2.4 Methodology
We simulated the development history of Clafer Web Tools

from the very beginning until its 0.3.5 release from January
2014 (cf. Fig. 1), comprising a total of 779 commits and 1.5
years of development. The first author (henceforth called
“simulator”) inspected commits and annotated code. The
simulator was intentionally very free in deciding what and
where to annotate, based on his understanding of the code-
base and the change history. In case of doubt (e.g., about
the rationale behind changes), he was encouraged to consult
the original developers.
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Figure 1: Excerpt of Clafer Web Tools history

2.4.1 Identifying Features
Identifying feature-related development tasks requires iden-

tifying features. Therefore, the simulator manually looks at
the code or other assets that are added, deleted, or modified
in original commits. He decomposes them into features rely-
ing on the following information: first, the project wikis
contain feature models written by one of the original devel-
opers between the 0.3.4 and 0.3.5 release, before our study.
We use them as an initial understanding of features, as they
represent features that are in the original developer’s mind.
Second, we observe that features were often referred to in
commit messages, such as “Polling implemented on both
sides.” Third, although labor-intensive, the simulator also
investigated code and commit diffs based on his under-
standing. Candidates were, for instance, adding a new class
or method if they looked like a unit of later reuse, or con-
tained a potential variation point. Fourth, project issue
trackers and original developers were consulted.

2.4.2 Simulating Annotations
For each project, the simulator created a new “simulation”

branch from the first project commit and added a feature
model with a root feature (project name). Fig. 2 illustrates
this process. Black dots represent commits, and horizontal
lines between them represent the branches and the timeline
(e.g., commit O3 is the parent commit of O4 because it was
done before it; O4 and E1 are both parent commits of M1).
Commit O1 represents the first commit on the original branch
from which the simulation branch was created. Commit E1
represents the addition of the initial feature model.
The simulator then gradually explored and merged consec-

utive periods of original commits into the simulation branch,
and after each merge, evolved the feature model and the
annotations, without making changes to the code itself. In
case he later observed that he made an annotation mistake
(e.g., missing an annotation), he fixed it in the simulation
branch at the time of the observation (not retroactively).
In the example in Fig. 2, the simulator merged three origi-

nal commits O2, O3, and O4 into the simulation branch (M1),
he then evolved the feature model and added annotations
according to changes made by these merged commits. Then,
the simulation was committed (E2). This procedure was
repeated until all commits until release 0.3.5 (January 2014)
were merged into the simulation branch.
Based on the simulator’s understanding of the original

development, he sought for development tasks related to



Figure 2: Simulation process

features, such as the implementation of a feature, the evolu-
tion of a feature, or feature change propagation. An original
commit1 was merged into the simulation branch when:

• a feature-related development task occurred (identified
by the simulator’s judgement based on commit messages,
issue tracker, and asking the original developers), which
requires to evolve feature model or annotations;

• an “interesting” evolution of software assets occurred (e.g.,
refactoring of the annotated code) without the need to
evolve the model or the annotations;

• a project milestone, such as a release, was reached;
• a significant evolution happened and the simulator saw
the need to synchronize the simulation branch—to limit
the divergence between both branches and to obtain a
constant commit granularity.

This strategy aims to abstract over the original commits,
which often do not correlate with actual development tasks.
Instead, we decompose the history into periods that strive
to be correlated with development tasks related to features.
During the process, the simulator explored the application
of annotations. The result was a set of identified evolution
patterns which represent re-occurring (at least three times)
observations. The patterns were identified by manually inves-
tigating and classifying all the software development activities
that happened in the simulated development history.
The simulation resulted in 210 periods (i.e., merges to

the simulation branch), each comprising between one and 18
original commits, and nine evolution patterns.

2.4.3 Embedded Feature Annotations
The simulator applied a simple embedded feature anno-

tation approach to establish traceability links between the
feature declarations and the corresponding assets: (i) he cre-
ated a textual feature model for each project, which contains
one feature declaration per line; (ii) he inserted comments
to mark source code fragments (blocks of consecutive lines)
and single lines with the names of the features they corre-
spond to; and (iii) he mapped entire folders by adding a file
(.vp-folder) containing a list of features; (iv) he mapped
entire files by adding a file (.vp-files) listing the files and
their corresponding features. In the remainder, we use an-
notation marker to refer to one line of annotation. There
1Git commits are snapshots; thus, all changes since the
previous merge were copied into the simulation branch—but
the merge commits are more coarse-grained than in the
original branch.

Figure 3: Example of embedded feature annotations

are always two annotation markers for a code block, one per
code line, one per folder, and two per file.
Fig. 3 shows an excerpt of the feature model (left) from one

of our subject projects (ClaferMooVisualizer, see Sec. 2.3)
and illustrates references to some of the features (right).
In the model, all features implemented in the project are
declared (by adding the feature name in a new line) and
organized in a hierarchy (using indentation). Fig. 3 (middle,
lower half) shows fragment annotations. In the first one, a
JavaScript code fragment is mapped to the feature timeout
by two annotation markers in comments. In the second one,
a single line is mapped to the same feature. The contents of
the files .vp-folder and .vp-files are also shown (middle).

3. EVOLUTION PATTERNS
In our study, we identified the following nine evolution

patterns that represent re-occurring observations related
to the recording and editing of feature annotations. They
provide insights into which common development activities
(e.g., adding features) require adding or actively maintaining
annotations; which additional annotation-related activities
(e.g., fixing annotations) are necessary; and which common
development activities (e.g., cloning projects) benefit from
annotations and how. We explain the patterns using an
example if necessary. Thereafter, we discuss the occurrence
frequency of each pattern, including sub-patterns. These are
summarized in Table 2 based on the number of identified
development periods in which they occurred.

3.1 Adding Features
P1: Adding or extending a feature. Features were
added or extended by either implementing them from scratch
(P1.1, P1.2) or by using already existing assets (P1.3,
P1.4). In both cases, new assets had to be annotated. The
assets were then either mapped to a new feature or an exist-
ing one in the model, the former requiring adding a feature
declaration. Thus, we define four sub-patterns:

• Adding new assets as a new feature (P1.1)
• Adding new assets to an existing feature (P1.2)

In our subject, one quarter (55) of the periods comprised
the addition (P1.1) or the extension (P1.2) of features by
developing new assets. Not surprisingly, most features were
added at the very beginning of the first project (visualizer).
The other two sub-patterns, which occurred much less

frequent (4% of the periods), are:



• Adding evolved/re-introduced assets as a new feature (P1.3)
• Adding evolved/re-introduced assets to an existing feature
(P1.4)

In contrast to the previous two sub-patterns, assets added
are not new, but are either refactored from existing as-
sets (e.g., when scattered aspects are consolidated), or re-
introduced because they were temporarily removed. The
assets are then either mapped to a new feature (P1.3) or to
an existing one in the model (P1.4).
In our study, an example of P1.3 was introducing a new

feature after merging a specific function (part of another
feature) and one of its identical clones as an attempt to reduce
duplication. The re-consolidated function was mapped to an
existing feature with further assets. An example for P1.4
was that assets of a feature unique to the visualizer project
were removed during the platform migration and later added
back to the project. These two sub-patterns occurred in eight
periods, comprising the introduction of five new features and
a total of twelve assets added. In five of the eight periods,
previously removed assets were re-introduced, while in three
periods, assets were evolved and added as new features.

3.2 Removing Features
P2: Removing or disabling a feature. In this pattern,
assets of an existing feature are removed. Interestingly, we
observed that sometimes features are not entirely removed,
but temporarily disabled (by commenting out). This pattern
has one main variation—whether the feature declaration is
also removed, which depends on any anticipated future use.
The pattern involves removing the feature declaration and,

if assets are removed, also the corresponding folder and file
annotations. While all these removals could be automated,
we assume that developers prefer to verify and remove as-
sets manually, since annotations could be inaccurate. Yet,
developers still benefit from the feature locations provided
by the annotations.
This pattern occurred in seven periods: in six, features

were removed, while in one features were temporarily dis-
abled by commenting out. We observed three interesting
cases. First, features were moved into a temporary folder
and later re-introduced when consolidating common features
of projects into the platform. The rationale was to quickly
have a running and testable system, since these features
(partly developed by another developer) needed integration
effort. These disabled features were then either added to
the platform or back to their original project. Second, fea-
ture removal happened because the developer accidentally
thought the functionality of the feature was already covered
by another one. It was added back later. Third, in one
period, sub-features of cloned features (cf. P7) were not
needed by the new project and removed.

3.3 Refactoring Features
Without extending functionality, commonly the structure

of feature implementations had to be changed.
P3: Structural change within a feature. The feature
implementation is re-factored in a way that requires editing
feature annotations. We observed this pattern as a result
of improving the structure, or as a result of extending or
modifying other features in a way that had impact on the
structure of the feature. We identified three sub-patterns,
each of which causes extra cost, comprising adding, removing,

Table 2: Occurrence frequency of evolution patterns.
pattern frequency1 sub-pattern frequency1

P1: Adding or extending a feature 62 P1.1 41
P1.2 14
P1.3 4
P1.4 4

P2: Removing or disabling a feature 7
P3: Structural change within a feature 7 P3.1 4

P3.2 2
P3.3 2

P4: Adjusting file or folder mapping 9
P5: Evolving the model and the anno-
tations in isolation

16 P5.1 6

P5.2 3
P5.3 3
P5.4 4

P6: Fixing an asset annotation 11 P6.1 3
P6.2 9

P7: Cloning a project 2
P8: Propagating a feature 14
P9: Evolving annotated assets 210

1 number of periods of all 210 periods in which the (sub-) pattern occurred

or converting annotation markers. Since the last sub-pattern
is feature- rather than asset-centric, only this one of the three
benefits from existing annotations, saving feature location
costs.

• Asset splitting (P3.1), where a fragment, file, or folder
is split into two non-adjacent parts. We observed only
one reason: part of a fragment is re-factored out into a
new fragment (e.g., to extract a method). Consequently,
the annotation needs to be updated. The majority of
these cases happened during the platform migration. For
instance, a very core feature implemented in one file had
to be split into several files.

• Asset merging (P3.2), where several assets are merged into
one. We observed two occurrences: when code between
two fragments of a feature was moved to another place,
and when refactoring a scattered feature into one asset.

• Feature modularization (P3.3), where fragments of a fea-
ture are modularized into their own file. Fragment anno-
tations are converted into file or folder annotations. This
happened twice, both when the developers aimed at im-
proving modularity.

P4: Adjusting file or folder mapping. File annotations
needed to be updated to reflect moves, renames, and removals
of files. Cost arises from modifying the respective mapping
file (.vp_files). For example, when a file is moved to an-
other folder, then the feature references from the .vp_files
in the old folder need to be moved to the .vp_files in the
new folder. Folder annotation changes (affecting .vp_folder
files) were less frequent; in only one case a folder was moved
into a newly created folder that maps to the same feature.
Both cases show that files that can be modified should be
annotated using fragment annotations surrounding the entire
contents and only files that cannot be modified (e.g., binary
files) should be annotated in .vp_files.

3.4 Improving Feature Representation
While all previous patterns were driven by the ordinary

development, which had impact on the application of our
annotation approach, we also found cases where the rep-
resentation of features in the model had to be improved.
Thus, these cases were driven by the need to modify features,
instead of being a consequence of the ordinary development.
P5: Evolving the model and the annotations in isola-
tion. It was often necessary to evolve the feature declarations



in the model without changing the code. In some cases, this
required adapting the annotations correspondingly:

• Identifying a new feature (P5.1), where a new feature
declaration is added to the model and existing assets are
mapped to it. In almost all cases, a feature was refined
into sub-features. In one exception, a parent grouping
feature was introduced after the addition of a new feature
that provides an alternative to an existing one.

• Adjusting the position of a feature (P5.2), where a feature
in the model is moved to another location in the feature
hierarchy. Related annotations may need to be adjusted.

• Renaming a feature (P5.3) in the model, which requires
modifying annotations.

• Adding feature declaration (P5.4), where the assets are
added and annotated later. The early declaration aimed
at indicating future implementation of the feature.

In all cases, cost arises from adding or changing feature
declarations in the model. P5.1 also imposes costs to anno-
tate assets and costs to locate features, requiring to identify
assets that should be mapped to the new feature. In P5.2
and P5.3, however, updating the annotations could be eas-
ily automated. In contrast to P2 (Removing or disabling
a feature), we assume that developers would always pre-
fer automated updates. Thus, for P5.2 and P5.3, we will
only measure the cost of adjusting or removing the feature
declaration in the model.

3.5 Fixing Annotations
P6: Fixing an asset annotation. Sometimes, annota-
tions were incorrect or missing, which required fixing the
model or annotations. We observed syntax errors and mistak-
enly annotated assets (P6.1) and, more frequently, missing
annotations (P6.2). Most of these bug fixes were triggered
by modifications to features—specifically when commit mes-
sages indicated that. For instance, a commit message indi-
cated that comments were added. Inspecting them led to
the annotation of fragments belonging to an existing feature,
which simulates fixing an annotation. However, annotation
omissions primarily arose from the unfamiliarity of the simu-
lator with the code; thus, such mistakes might be less likely
in practice; yet, such fixes will involve feature location costs.

3.6 Cloning and Maintaining Consistency
P7: Cloning a project. A new project is created by
cloning assets from an existing project. We observed that
usually, the basic infrastructure (framework, mandatory as-
sets, including libraries and documentation) was copied first.
After that, individual or all features were propagated. Later,
some undesired sub-features of those propagated features
were removed or commented out. The benefits arise from
having (i) an overview of implemented features in the source
project captured in feature models, and (ii) the feature anno-
tations, which provide the same benefit as in P2 (Removing
or disabling a feature).
P8: Propagating a feature. A feature (or part of it)
is propagated from one project to another, based on asset
cloning and manual integration.
These propagations played a major role when cloning the

projects (P7) and when consolidating common features of
the three projects into the platform. Interestingly, when
feature propagations occurred after P7, often several features
were propagated together in one commit, as well as the

Table 3: Aggregated costs of patterns (number of markers)
pattern Cpattern(pi) Cmdl(pi) Cannot(pi)
P1: Adding or extending a feature 317 (48%) 61 256
P2: Removing or disabling a feature 45 (7%) 3 42
P3: Structural change within a fea-
ture

25 (4%) 0 25

P4: Adjusting file or folder mapping 45 (7%) 0 45
P5: Evolving the model and the
annotations in isolation

63 (10%) 38 25

P6: Fixing an asset annotation 46 (7%) 0 46
P7: Cloning a project 0 (0%) 0 0
P8: Propagating a feature 115 (17%) 30 85
P9: Evolving annotated assets 0 (0%) 0 0
(TOTAL) 656 (100%) 132 524

basic infrastructure of the project. More precisely, in eight
commits, more than one feature was propagated, as opposed
to ten commits with only one feature.
The clear benefit is that feature location costs can be

avoided. Yet, costs arise. First, while fragment and folder
annotations are propagated together with the assets, feature
declarations and file annotations need to be propagated
separately. Second, since annotations might be inaccurate,
we assume that developers prefer to check annotations and
propagate a feature manually.

3.7 Evolving Assets
P9: Evolving annotated assets. Most frequently, a fea-
ture’s assets are changed in a way that does not affect an-
notations or the model. We observed many such activities
without imposing annotation costs, including bug fixing and
extending or re-factoring assets. For instance, adding code
within a fragment indirectly shifts annotation markers. All
these activities require knowing a feature’s location and,
therefore, benefit from annotations. Recall that features
are organized in a hierarchy, and that annotations are often
nested. Thus, this pattern occurs in all development periods,
since the whole project is mapped to the root feature. Yet,
the benefit arises only for non-root features. It increases
with the scattering degree of a feature, but is independent
of the position of the feature in the feature model hierarchy.

4. COST AND BENEFIT
We now quantify costs and benefits of the embedded anno-

tations with respect to the research questions RQ1–RQ4.

4.1 Cost
The costs of the eager approach comprise annotation

recording (Crec) and maintenance costs. The latter involve
annotation editing (Ced) and feature location costs (Cfl) for
delayed annotations (when the need is recognized late). We
now analyze Crec and Ced in RQ1, followed by Cfl in RQ2.

RQ1: What are the annotation recording and editing costs?
We measure recording (Crec) and editing (Ced) costs by

resembling the lines of code (LOC) metric. We use it, as
it accounts for the varying granularities of different kinds
of assets and is highly correlated with development and
maintenance effort [22] (cf. our discussion in Sec. 5 and 6).
For each pattern pi, the costs arise from adding, deleting, or

modifying feature declarations in the feature model (Cmdl(pi))
and annotation markers (Cannot(pi)). We count the number
of feature declaration lines and annotation marker lines af-
fected by the activities, so Cpattern(pi) = Cmdl(pi) + Cannot(pi).



Using this strategy, we can simply calculate annotation
recording and editing costs by aggregating the costs of the
patterns in which they occur: Crec = Cpattern(P 1) = 317 and
Ced =

∑
pi∈{P 2,P 3,P 4,P 5,P 6,P 8} Cpattern(pi) = 339. Thus,

throughout the simulated development history, 656 lines
of feature declarations or annotation markers were added,
deleted, or modified. Table 3 shows the aggregated costs per
pattern.
Table 3 also shows the relative cost of individual patterns.

Not surprisingly, the most frequent pattern (P1: Adding or
extending a feature) also imposes the highest costs, due to
the number of annotation recording and editing costs.
Opposed to the 656 lines of annotations, 1,798,772 lines

of text (including all kinds of text, such as source code or
documents) were added, and 1,251,742 lines removed over
the whole simulated development history. The latest (0.3.5)
release of the four subject repositories has 547,030 lines of
text in total; 14,794 of these are JavaScript code, excluding
libraries (cf. Table 1).
Let us revisit our hypothesis from Sec. 2.1, H3: the embed-

ded traceability links naturally co-evolve as the assets evolve
and they are much less brittle as compared to the externally
stored ones, thus, largely eliminating the maintenance cost.
The ratio of recording to editing costs Crec/Ced = 107%

indicates that at least as much—but not much more—effort
arises from maintaining annotations as a result of asset evo-
lution. This supports our hypothesis H3, because the an-
notation maintenance cost does not grow linearly with the
amount of evolution in the annotated assets. When storing
the traceability information externally instead, adding or
removing a single line in a file would shift the locations of all
feature fragments that follow the line, which would require
updating the corresponding traceability links.
RQ2: What percentage of annotation recordings and edits
required additional feature location effort?

We define the number of annotation omissions Cao as
the number of annotations that were initially omitted when
the simulator forgot to annotate or did not anticipate the
need to reuse the feature, but which were added later on.
Adding each omitted annotation requires some additional
feature location effort. In our case study, it arose in pat-
terns P5.1 (Identifying a new feature: 25 annotation lines),
P6.2 (Fixing missing annotations: 36 annotation lines), and
P8 (Propagating a feature: 14 annotation lines); in total
Cao = 75. Thus, in summary, 12% of all annotation-related
activities incur feature location costs, in addition to record-
ing and editing annotations. Recall that the former two
(P5.1 and P6.2) had feature location costs aiming at having
complete annotations; however, in our case study, adding
these annotations was not necessary for feature propagation,
only those that were added in P8. Yet, we sum up these
costs, since our approach strives for complete annotations.

4.2 Benefit
In our study, the identified patterns confirm that annota-

tions support both maintenance (P2, P9) and reuse (P7,
P8). We now look deeper into feature propagation as the
most frequent kind of feature reuse, to investigate RQ3 and
RQ4. Feature propagation occurred both to propagate fea-
tures among multiple projects and to migrate the features
to an integrated platform.
To obtain detailed statistics, we need to accurately identify

instances of P8, as opposed to the other patterns, where a

more coarse-grained occurrence frequency sufficed (cf. Ta-
ble 2). We identified feature propagations by inspecting
the original commits in each project—primarily the code
and annotations, but also the commit message and modified
documentations. When a feature addition was identified,
we investigated parallel commits of other projects to see
if it existed there at the same time. Recall that features
can be nested (which is often reflected in the feature hier-
archy [23, 24]). Thus, we match propagations to the most
coarse-grained feature, ignoring sub-features, which were
often propagated together with their parent feature as a side-
effect. In contrast, when several features were propagated
together in one original commit, we treat them separately.

RQ3: What percentage of the invested annotation recording
and editing costs saved feature location costs during reuse
cases?

We identified 55 feature propagations in the simulation,
comprising 26 features, whereas 15 of them were propa-
gated multiple times. In each case, one feature was cloned
or moved to another project by the original developer. 40
feature propagations involved propagating whole files; 15
feature propagations involved propagating whole directories;
and only 10 feature propagations involved propagating an-
notated fragments. This indicates relatively coarse-grained
propagations.
Overall, 121 annotations markers were involved in prop-

agations (we do not count annotations inside propagated
files or fragments). Thus, 18% of the overall annotation
recording (Crec) and editing (Ced) costs in the end saved the
lazy feature location costs that would be needed to perform
the propagations.

RQ4: What percentage of feature location costs during reuse
could be avoided?

In our simulation, annotations were surprisingly beneficial
for the propagations. For only two features, annotations
were missing and had to be added—10 and 4 annotations,
respectively. We did not observe any inaccurate annotation
in the feature propagation cases. Given that 135 annotations
were involved (including the fixed ones), in total 90% of
feature location costs during reuse were saved, while such
cost was still required for 10% (14) of the propagated markers.
Let us revisit our hypotheses from Sec. 2.1: H7: the de-

velopers benefit during every task that requires knowledge
of feature location, since it is readily available. In the lazy
strategy, developers need to perform feature location every
time they perform maintenance or reuse of a feature. In
our simulation, we only looked at feature reuse cases, and
having embedded feature annotations saved 90% of the re-
quired feature location effort in feature reuse cases. This
partially supports H7. We did not look deeper into feature
maintenance cases due to the large quantity of them and
the difficulty of measuring the benefit (it is difficult to know
which annotations would be beneficial in a certain feature
maintenance case).

5. DISCUSSION
While we used a simple measurement to quantify invest-

ments in feature recording and editing (656 lines), and to
obtain that 18% of these saved 90% of lazy feature loca-
tion costs, the actual costs will be different. More precisely,
our eager approach incurs an actual time investment of
(Crec + Ced) · AR + Cao · AL, where AR (average annotation



recording cost) and AL (average cost of finding a location
for adding a missing annotation) are constants that need to
be tailored to the project context. While concrete values
for both constants require additional measurements, we can
argue about their relation.
Lazy feature location is commonly considered expensive.

It usually comprises source code inspections, together with
running and interacting with the systems in order to locate
a feature. Recent controlled experiments [13] of feature loca-
tion in systems with 73k, 2k, 43k, and 19k LOC identified
different phases that are commonly performed by developers:
“seed search” (find entry points to a feature by interact-
ing with it), “extend” (explore entry points to find related
elements, usually by code inspection), “validate” (double-
check the locations, usually via debugging), and “document”
(record relevant functions in a text document). Three quar-
ters of the 32 participants, who were not familiar with the
systems and its source code, completed their three feature lo-
cation tasks within 45-55 minutes. Given such experimental
evidence, we can assume that a typical feature location task
is in the order of 15 minutes in systems with similar charac-
teristics. In our study, a feature requires 1.5 annotations on
average; thus, we assume an AL of 10 minutes.
This allows a simplified calculation of the break-even point.

When investing a number of annotation recording and editing
effort (Crec + Ced) · AR, the benefit is the number of anno-
tations used in propagations (135) multiplied by the saved
location time per annotation, which is diminished by omitted
annotations (10%). Thus, AR = 135/656 · 10min · 90%, so
break even is achieved when AR is lower than 1.85 minutes.
This clearly shows a big asymmetry in the cost and, thus, a
benefit of eager annotation in our case study.

6. THREATS TO VALIDITY
External validity. Our simulation study is based on one
set of projects only. However, the identified patterns showed
that it has a rich set of feature-related activities, and the
size of our projects is similar to other feature location study
objects [13]. In fact, we strive to gain in-depth knowledge
(patterns and activities) and finding ways to measure cost and
benefits. Our methodology is repeatable on other projects.
The subject projects were developed in a research lab of a

university, mainly by graduate and co-op students, and they
may not be representative of industrial projects. We still
believe that many of the identified patterns and insights are
applicable to many other code-centric projects. Activities
such as feature splitting or feature change propagation likely
occur in other projects.
Internal validity. While our research method—retroactive
simulation—allowed us to gain in-depth insight into strategies
to apply the annotation approach, and to identify and define
costs, it may have also limited observations. Our results
should be complemented with action research and controlled
experiments, which are subject to future work.
The simulator was not an original developer of the sub-

jects. Missing in-depth code knowledge in fact caused some
annotation omissions (cf. Sec. 4.1). Yet, these were negli-
gible, and even support our main finding that in practice,
annotation recording and editing costs are low. Identifying
feature propagations was intricate. Among the 55 identified
cases, for some it was in fact hard to tell whether a feature
was cloned and customized at the same time, or a similar
feature was implemented from scratch. We verified such

cases with the original developer. This problem would not
occur when using annotations during development, since a
developer has the knowledge to differentiate these cases.
Finally, it is possible that using annotations in the original

project (not in the simulation) could have influenced future
commits. However, our results—that is, the measurements
(periods and counting annotation markers) are independent
of the actual commit granularity.
Construct Validity. Measurement of pattern frequencies
relies on the granularity of commits made to the simulation
branch. When no identifiable feature-related development
was done, the selection of periods was subjective. However,
since it is very costly to identify exact instances of all patterns,
and since our main conclusions rely on measuring annotation
markers, this simplification is justifiable to estimate the
occurrence frequency of patterns. Yet, we identified all
instances of feature propagation (P8) exactly to identify the
exact benefit of annotations for feature reuse. Further, as
discussed (Sec. 5), our primary metric (number of annotation
markers) is only indirectly related to the economic cost or
benefit. Measuring actual development (i.e., to calibrate
the constants AR and AL) requires a controlled experiment,
which is out of our scope, but would be valuable future work.

7. RELATED WORK
Traceability of features, requirements, and models.
Establishing and maintaining traceability links, especially
in the areas of model-driven development and requirements
engineering, is a common issue [19, 25, 26]. It usually requires
human interaction for meaningful traces, which is considered
laborious and error-prone. Many approaches exist to map
various kinds of concerns (e.g., features, requirements) to
software assets. Robillard et al. [17] propose a continuously
maintained concern graph, which is similar to our eager
annotation strategy. Their tool FEAT supports developers
with building such a graph, which was evaluated as being
robust and cost-effective to create and use. Many other tools
specific to features exist to map these to assets, such as
CIDE [27] (features to code), FeatureMapper [28] (features
to models), FeatureIDE [29], or KBuild [30].
Most of the existing approaches all record traceability

information externally, with the usual maintenance issues [17].
Most also impose specific tools, such as an IDE. In contrast,
our design goal was a generic, lightweight (minimal), and
transparent annotation system, not requiring specific tooling.
In fact, only few works propose or evaluate embedding

traceability in source code. While Winkler et al.’s survey [19]
shows that most UML tools can automatically generate and
maintain traceability links between models and code (kept
as annotations in code), heavyweight tooling is required,
and whether it can be used to realize feature traceability, is
not known. Hegedus et al. [31] propose incremental model
queries to soft-link EMF model elements in different model
resources, as opposed to using hard references. Our approach
is not much different: since the traceability information is
not stored centrally (together with feature declarations), we
also need to query the code on-demand to find all assets of
a feature, while also exploiting the natural co-evolution.
Feature location. Rubin et al. [16] survey existing feature
location techniques and show that all automated techniques
have very low precision and recall, thus, having limited
applicability in practice. Manual feature location is studied
by Wang et al. [13], whose results show that it is a labor- and



knowledge-intensive task. We use these results to discuss the
overall costs of our eager approach (cf. Sec. 5).
Finally, we found no work on recording feature traceability

manually and eagerly, besides an introduction into trace-
ability [32], which classifies traceability maintenance into
“continuous” (i.e., eager) and “on-demand” (i.e., lazy).
Variability evolution. In highly configurable systems with
variability, features provide a configuration option. Feature
combinations can be selected in interactive configurators
to derive a variant. The evolution of such configurable,
feature-oriented systems has been investigated before. Passos
et al. [33] analyze the co-evolution of feature model, asset
mapping, and code in the Linux kernel over time. They
identify a catalog of re-occurring patterns, describing the nine
most-frequent ones in-depth. While their target are systems
that already have an integrated platform, a few patterns in
fact overlap with ours. Similarly, Neves et al.’s [34] study
identifies “evolution templates” (split asset, refine asset, add
new optional feature, delete asset, etc.), some of which are
also found in our study (e.g., splitting a software asset).
Yet, traceability differs from variability, as both serve dif-

ferent purposes. Feature traceability is used to locate features
and aims to support development processes. Variability aims
at the automated derivation of individual products, by defin-
ing variation points (where variants differ). While feature
traceability is relevant from the very beginning, variability
becomes relevant when creating an integrated platform—to
make a feature optional or to account for differences among
cloned feature implementations. While variability annota-
tions have to be exact and properly structured, our approach
tolerates overlaps, omissions, and small inaccuracies.
Cost/Benefit models. Cost and benefit is usually esti-
mated based on regression, such as in COCOMO [35]. As an
alternative, Martinez et al. [36] present a pragmatic economic
model to perform cost-benefit analyses of software architec-
ture adoption, relying on value-based metrics. Commonly,
costs are identified, but constants often remain as parameters
and they have to be tailored to a specific project or domain
context. We express our costs similarly.
We are not aware of a comprehensive cost/benefit model

of traceability, although various works propose such. Ingram
et al. [37] present an overview of traceability cost and benefit.
Heindl et al. [38] introduce a model of traceability cost and
benefit, and show that it is useful to estimate the return on
investment of tracing approaches. Egyed et al. [39] propose
a value-based approach that can be used to understand the
cost-benefit trade-off in traceability generation.
Attention investment. Performing the various kinds of
annotation recording and editing can be seen as attention
investment—developers invest additional attention, hoping
that it brings future benefits. Several studies apply this
concept. Blackwell et al. [40] propose to use it for analyzing
the cognitive dimensions of notations [41, 42] (design princi-
ples for languages syntaxes). Further studies of Blackwell et
al. [43] use the concept to investigate the aspects of both pro-
fessional programming and end-user programming, proposing
attention investment models. We strived to minimize the
required attention investment costs.

8. CONCLUSION
We presented a simulation study in which we applied an

embedded feature annotation approach to establish traceabil-
ity between features and assets throughout the development

history of a clone-based product line. We derived a set of
evolution patterns and presented empirical data on the costs
and benefits of using the eager and internal storage strate-
gies. Using the patterns, we also illustrated the practical
application of such annotations.
In our study, the cost of creating and—more importantly—

of maintaining the feature model and the annotations was
negligible. Embedding annotations into assets in fact pre-
vented most of the annotation maintenance costs, which were
surprisingly low—almost as low as the initial cost of adding
the annotations, since they naturally co-evolved together
with assets. The cost of lazy feature location is by an order
of magnitude greater than that of eagerly recording feature
locations using annotations embedded in assets. Although
it cannot be predicted which annotations will be beneficial
for some task in the future, the eager annotation cost was
largely amortized over the actual benefits. In fact, 18% of
the recorded feature locations as annotations saved 90% of
lazy feature location costs needed for feature reuse tasks,
which is better than the break-even point. The benefit of the
annotations is likely even higher, since they are also useful
in feature maintenance tasks, which we did not measure, but
which constitute the majority of developers’ work.
The presented work aimed at gaining in-depth insights

rather then generality. Future work includes validation of
the approach in a case study where the approach is used
during development. The study also revealed many opportu-
nities for automation, and we plan to develop tool support
for automatically proposing the placement of annotations
based on changesets; for consistency management between
the feature model and asset annotations; and for offering a
feature-oriented project dashboard.
Finally, recall that traceability annotations are different

from variability annotations. We also strive to utilize the fea-
ture traceability information to later realize variability (i.e.,
variation points) within an integrated platform. Studying
such merge-refactorings and providing techniques and tools
to support them is part of our future work [7].
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