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What are feature models?

Feature models describe the common and variable
characteristics of products in a product line.

.
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What are feature models?

Feature models describe the common and variable
characteristics of products in a product line.

.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

powersave∧ acpi → cpu_hotplug

FODA feature model [Kang et al. 1990]
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Feature model syntax.

pm

powersave∧ acpi → cpu_hotplug

Root feature.
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Feature model syntax.

cpu_freqacpi

pm

powersave∧ acpi → cpu_hotplug

Optional features.
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Feature model syntax.

cpu_hotplug

cpu_freqacpi

pm

powersave∧ acpi → cpu_hotplug

Child features / feature hierarchy.
In feature models, child→ parent

... Steven She.. Reverse Engineering Feature Models.. 3 / 33



Feature model syntax.

cpu_hotplug

cpu_freqacpi

pm

acpi_system

powersave∧ acpi → cpu_hotplug

Mandatory feature.
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Feature model syntax.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

powersave∧ acpi → cpu_hotplug

xor-group.
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Feature model syntax.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

powersave∧ acpi → cpu_hotplug

Implies edges.
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Feature model syntax.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

powersave∧ acpi → cpu_hotplug

Excludes edges.
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Feature model syntax.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

powersave∧ acpi → cpu_hotplug

Additional cross-tree constraints.
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Legal conågurations.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

{
pm, acpi, acpi_system, cpu_freq, powersave

}
Valid Conåguration.
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Legal conågurations.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

{
pm, acpi, acpi_system, cpu_freq, powersave, performance

}
Invalid Conåguration: violates xor-group.

... Steven She.. Reverse Engineering Feature Models.. 4 / 33



Legal conågurations.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

{
pm, acpi, cpu_freq, powersave

}
Invalid Conåguration: violates mandatory feature.
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Why reverse-engineer a feature model?

• Many product lines manage variability in an ad-hoc manner.
e.g. FreeBSD, vim, Mplayer, etc.

• For these systems, features and dependencies are hidden in
documentation, code and build system.

• Feature models make features and dependencies explicit.

• Feature models are well-understood with tool support (e.g.
conågurators) and automated analysis.
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FreeBSD.

Conåguring FreeBSD:

# IPI_PREEMPTION relies on the PREEMPTION option

# Mandatory:
Device apic # I/O apic

# Optional:
options MPTABLE_FORCE_HTT #enable HTT CPUs ...
options IPI_PREEMPTION

Code:
MODULE_DEPEND(at91_twi, iicbus, …);
#ifdef A … #endif

Features and dependencies are scattered through code and
documentation.
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Reverse-engineering steps.

.

..

.Codebase..

#ifdef A
#ifndef B

#error …
#endif

#endif

. Feature names.

Descriptions

.

Dependencies

.

scheduler ↔ os_kernel
networking → os_kernel
bluetooth → networking

bluetooth is a network driver.

. Feature Model.

scheduler

os_kernel

networking

bluetooth

.

Feature names are needed to build a feature model.

.

Let’s årst try to reverse-engineer a feature model using
just names and dependencies.

.

Leverage both names and descriptions for additional
domain knowledge.

.

We rely on existing and ongoing work to extract necessary
input from code and documentation. [Berger et al. 2010]

.

This work uses feature names, descriptions and
dependencies to build a feature model.
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Using just names and dependencies.

Given these features:{
os_kernel, scheduler, networking, bluetooth

}
…and these dependencies:

1. (bluetooth ∨ networking ∨ scheduler → os_kernel)
2. ∧ (os_kernel → scheduler)
3. ∧ (bluetooth → networking)

• What are the legal conågurations of features?
• What is the feature model that describes these legal

conågurations?
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Many possible models.

.

.

.scheduler

os_kernel

networking

bluetooth

. scheduler

os_kernel

networking

bluetooth implies

.

os_kernel

networkingbluetoothscheduler

implies

· · ·

• All these models are refactorings.
• All describe the same features and dependencies.
• We need domain knowledge to identify the best model.
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Goal.

Provide support for reverse-engineering a large-scale
feature model from existing project artifacts.

• A project (e.g. FreeBSD) could beneåt from a FM for
conåguration and analysis.

• Many possible FMs describe the same features and
dependencies—exponential!

• Our work provides assistance for building feature hierarchy
by signiåcantly reducing choices for the model builder.

• Other FM elements, such as groups, are detected
automatically.
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Outline.

1 Introduction

2 Procedures

3 Evaluation

4 Conclusions
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Conåguration semantics.

The conåguration semantics of a feature model is a
set of legal conågurations.

..
powersave

cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

.
powersave

cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

.

Legal conåguration.

.

Illegal conåguration.
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Reverse-engineering.

A set of legal conågurations can be represented
by many possible feature models.

..a set of legal
conågurations

.

FM1

.
FM2

.
...

.

FMn

• The conåguration semantics alone are not enough to
identify a unique FM.
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Domain semantics.

The domain semantics are the meaning of the features
and are reýected in the names and hierarchy.

.

.

.scheduler

os_kernel

networking

bluetooth

. v.s.. scheduler

os_kernel

networking

bluetooth implies

bluetooth is a network driver.
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Domain semantics (cont.)

..feature model .

a set of legal
conågurations

.

feature
hierarchy

.

feature names

.

conåguration
semantics

.

domain
semantics
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Reverse-engineering II.

Given a set of legal conågurations, feature names
and a hierarchy, a precise FM can be

reverse-engineered.

..a set of legal
conågurations

.

feature
hierarchy

.

feature names

.
FM1

.

FM2

.

...

.

FMn
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Reverse-engineering II (cont.)

..a set of legal
conågurations

.

FM components

.

feature
hierarchy

.

feature
hierarchy

.

feature names

.

FM

.

Input

.Dependencies .

Descriptions

.

Feature names

• When reverse-engineering a FM, the feature hierarchy
doesn’t exist yet.
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Reverse-engineering II (cont.)

..a set of legal
conågurations

.

FM components

.

feature
hierarchy

.

feature names

.

FM

.

Input

.Dependencies .

Descriptions

.

Feature names

• We can build the feature hierarchy using dependencies,
names and descriptions.
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Building the feature hierarchy.

..1 Determine a parent for every feature:

• We use the names and descriptions to propose a hierarchy
that reýects domain semantics.

• An interactive, tool-assisted procedure.

• Given a feature, rank choices for its parent by similarity.

..2 A child must imply its parent:

• The meaning of the hierarchy in a feature model.

• Generate an implication graph from dependencies.
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Feature similarity.

Feature names and descriptions

os_kernel Operating system.

scheduler I/O scheduling.

networking Networking drivers.

ethernet Type of local area networking.

Selecting a parent for:

bluetooth, a network driver.
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Feature similarity.

Feature names and descriptions

1. networking Networking drivers.

2. ethernet Type of local area networking.

3. os_kernel Operating system.

4. scheduler I/O scheduling.

Selecting a parent for:

bluetooth, a network driver.
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Implication graph.

A child must imply its parent in the feature hierarchy.

scheduler
os_kernel

bluetooth
ethernet

networking

Selecting a parent for:

bluetooth, a network driver.

• ethernet is not shown—not a choice for parent.
• Implications signiåcantly reduce the number of choices.
• But, in a practical setting, dependencies may be

incomplete.
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Two lists: RIFs and RAFs.

Ranked Implied Features Ranked All-Features

Selected: cpu_hotplug

1.

2.

3.

4.

5.

powersave

acpi

acpi_system

cpu_freq

pm

CPU frequency

scaling.

1.

2.

3.

4.

5.

cpu_freq

powersave

performance

acpi

acpi_system

...

• Ranked Implied Features (RIFs)
implied features sorted by similarity to the selected feature.

• Ranked All-Features (RAFs)
all features sorted by similarity to the selected feature.
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Other FM constructs.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

→
powersave

cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

• User selects a parent for every feature.

• Once a hierarchy is built, other constructs, such as
mandatory features and groups, are automatically detected.

• If feature groups overlap, user selects groups to retain.
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Outline.

1 Introduction

2 Procedures

3 Evaluation

4 Conclusions
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Evaluation questions.

Our similarity measure should reduce the number of choices
to only a few when determining a parent for a feature.

..1 How many features have their reference parents ranked in
the top 5 of our RIFs?

• Evaluated on complete and incomplete input.

..2 How many features are needed for ånding 75% of reference
parents using the RAFs?
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Evaluation subjects.

Complete input:

• Reference feature models: Linux and eCos.
• Linux has roughly 5000 features; eCos 1200 features.

Incomplete input:

• A portion of FreeBSD.
• Domain analysis to create reference model of 90 features.
• Extracted input dependencies by analyzing preprocessor

usage, documentation, etc.
• Simulated incomplete input on Linux and eCos by randomly

removing dependencies and words.
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Evaluation results for RIFs.

..1 How many features have their reference parents ranked in
the top 5 of our RIFs?

• Linux: 76% of features, eCos: 79% of features.

• Ignoring root features, 90% for Linux and 81% for eCos.

• For incomplete descriptions, At least 50% of words needed
for good results (roughly 10 words in Linux).
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Evaluation results for RAFs.

..2 How many features are needed for ånding 75% of reference
parents using the RAFs?

• Linux: 3% of features, eCos: 6% of features.

• For incomplete descriptions, 50% of words needed for good
results.

More details in paper.
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Outline.

1 Introduction

2 Procedures

3 Evaluation

4 Conclusions
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Related work.

• Past work looked at only dependencies and didn’t deal with
multiple possible models.

[CW 2007]

• Other works have applied textual similarity metrics, but
don’t take dependencies into account.

[Alves et al. 2008, Niu et al. 2008]

• Past work attempts to create models automatically and not
interactively.
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Conclusions.

Future Work.

• Further develop the extraction of dependencies from a
codebase.

• Integrate techniques into an existing FM editor.

Conclusions.

• Our procedure deals with incomplete input.
• Combine the use of dependencies and textual similarity.
• Problem requires domain knowledge—tool-assisted.
• Provide empirical data on how effective this technique is on

three projects: Linux, eCos and FreeBSD.

... Steven She.. Reverse Engineering Feature Models.. 33 / 33


	Introduction
	Procedures
	Evaluation
	Conclusions

