
Reverse Engineering Feature Models.
..

S. She, R. Lotufo, T. Berger, A. Wasowski, K. Czarnecki
Generative Software Development Lab
University of Waterloo
University of Leipzig
IT University of Copenhagen

..

ICSE 2011. May 27, 2011.

What are feature models?

Feature models describe the common and variable
characteristics of products in a product line.

.

... Steven She.. Reverse Engineering Feature Models.. 2 / 33

What are feature models?

Feature models describe the common and variable
characteristics of products in a product line.

..

Car conågurator.

... Steven She.. Reverse Engineering Feature Models.. 2 / 33

What are feature models?

Feature models describe the common and variable
characteristics of products in a product line.

..

Installation wizards.

... Steven She.. Reverse Engineering Feature Models.. 2 / 33

What are feature models?

Feature models describe the common and variable
characteristics of products in a product line.

..

Linux kernel conågurator.

... Steven She.. Reverse Engineering Feature Models.. 2 / 33

What are feature models?

Feature models describe the common and variable
characteristics of products in a product line.

..

eCos kernel conågurator.

... Steven She.. Reverse Engineering Feature Models.. 2 / 33

What are feature models?

Feature models describe the common and variable
characteristics of products in a product line.

.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

powersave∧ acpi → cpu_hotplug

FODA feature model [Kang et al. 1990]

... Steven She.. Reverse Engineering Feature Models.. 2 / 33

Feature model syntax.

pm

powersave∧ acpi → cpu_hotplug

Root feature.

... Steven She.. Reverse Engineering Feature Models.. 3 / 33

Feature model syntax.

cpu_freqacpi

pm

powersave∧ acpi → cpu_hotplug

Optional features.

... Steven She.. Reverse Engineering Feature Models.. 3 / 33

Feature model syntax.

cpu_hotplug

cpu_freqacpi

pm

powersave∧ acpi → cpu_hotplug

Child features / feature hierarchy.
In feature models, child→ parent

... Steven She.. Reverse Engineering Feature Models.. 3 / 33

Feature model syntax.

cpu_hotplug

cpu_freqacpi

pm

acpi_system

powersave∧ acpi → cpu_hotplug

Mandatory feature.

... Steven She.. Reverse Engineering Feature Models.. 3 / 33

Feature model syntax.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

powersave∧ acpi → cpu_hotplug

xor-group.

... Steven She.. Reverse Engineering Feature Models.. 3 / 33

Feature model syntax.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

powersave∧ acpi → cpu_hotplug

Implies edges.

... Steven She.. Reverse Engineering Feature Models.. 3 / 33

Feature model syntax.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

powersave∧ acpi → cpu_hotplug

Excludes edges.

... Steven She.. Reverse Engineering Feature Models.. 3 / 33

Feature model syntax.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

powersave∧ acpi → cpu_hotplug

Additional cross-tree constraints.

... Steven She.. Reverse Engineering Feature Models.. 3 / 33

Legal conågurations.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

{
pm, acpi, acpi_system, cpu_freq, powersave

}
Valid Conåguration.

... Steven She.. Reverse Engineering Feature Models.. 4 / 33

Legal conågurations.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

{
pm, acpi, acpi_system, cpu_freq, powersave, performance

}
Invalid Conåguration: violates xor-group.

... Steven She.. Reverse Engineering Feature Models.. 4 / 33

Legal conågurations.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

{
pm, acpi, cpu_freq, powersave

}
Invalid Conåguration: violates mandatory feature.

... Steven She.. Reverse Engineering Feature Models.. 4 / 33

Why reverse-engineer a feature model?

• Many product lines manage variability in an ad-hoc manner.
e.g. FreeBSD, vim, Mplayer, etc.

• For these systems, features and dependencies are hidden in
documentation, code and build system.

• Feature models make features and dependencies explicit.

• Feature models are well-understood with tool support (e.g.
conågurators) and automated analysis.

... Steven She.. Reverse Engineering Feature Models.. 5 / 33

FreeBSD.

Conåguring FreeBSD:

IPI_PREEMPTION relies on the PREEMPTION option

Mandatory:
Device apic # I/O apic

Optional:
options MPTABLE_FORCE_HTT #enable HTT CPUs ...
options IPI_PREEMPTION

Code:
MODULE_DEPEND(at91_twi, iicbus, …);
#ifdef A … #endif

Features and dependencies are scattered through code and
documentation.

... Steven She.. Reverse Engineering Feature Models.. 6 / 33

Reverse-engineering steps.

.

..

.Codebase..

#ifdef A
#ifndef B

#error …
#endif

#endif

. Feature names.

Descriptions

.

Dependencies

.

scheduler ↔ os_kernel
networking → os_kernel
bluetooth → networking

bluetooth is a network driver.

. Feature Model.

scheduler

os_kernel

networking

bluetooth

.

Feature names are needed to build a feature model.

.

Let’s årst try to reverse-engineer a feature model using
just names and dependencies.

.

Leverage both names and descriptions for additional
domain knowledge.

.

We rely on existing and ongoing work to extract necessary
input from code and documentation. [Berger et al. 2010]

.

This work uses feature names, descriptions and
dependencies to build a feature model.

... Steven She.. Reverse Engineering Feature Models.. 7 / 33

Reverse-engineering steps.

.

..

.Codebase..

#ifdef A
#ifndef B

#error …
#endif

#endif

. Feature names.

Descriptions

.

Dependencies

.

scheduler ↔ os_kernel
networking → os_kernel
bluetooth → networking

bluetooth is a network driver.

. Feature Model.

scheduler

os_kernel

networking

bluetooth

.

Feature names are needed to build a feature model.

.

Let’s årst try to reverse-engineer a feature model using
just names and dependencies.

.

Leverage both names and descriptions for additional
domain knowledge.

.

We rely on existing and ongoing work to extract necessary
input from code and documentation. [Berger et al. 2010]

.

This work uses feature names, descriptions and
dependencies to build a feature model.

... Steven She.. Reverse Engineering Feature Models.. 7 / 33

Reverse-engineering steps.

.

..

.Codebase..

#ifdef A
#ifndef B

#error …
#endif

#endif

. Feature names.

Descriptions

.

Dependencies

.

scheduler ↔ os_kernel
networking → os_kernel
bluetooth → networking

bluetooth is a network driver.

. Feature Model.

scheduler

os_kernel

networking

bluetooth

.

Feature names are needed to build a feature model.

.

Let’s årst try to reverse-engineer a feature model using
just names and dependencies.

.

Leverage both names and descriptions for additional
domain knowledge.

.

We rely on existing and ongoing work to extract necessary
input from code and documentation. [Berger et al. 2010]

.

This work uses feature names, descriptions and
dependencies to build a feature model.

... Steven She.. Reverse Engineering Feature Models.. 7 / 33

Using just names and dependencies.

Given these features:{
os_kernel, scheduler, networking, bluetooth

}
…and these dependencies:

1. (bluetooth ∨ networking ∨ scheduler → os_kernel)
2. ∧ (os_kernel → scheduler)
3. ∧ (bluetooth → networking)

• What are the legal conågurations of features?
• What is the feature model that describes these legal

conågurations?

... Steven She.. Reverse Engineering Feature Models.. 8 / 33

Using just names and dependencies.

Given these features:{
os_kernel, scheduler, networking, bluetooth

}
…and these dependencies:

1. (bluetooth ∨ networking ∨ scheduler → os_kernel)
2. ∧ (os_kernel → scheduler)
3. ∧ (bluetooth → networking)

• What are the legal conågurations of features?
• What is the feature model that describes these legal

conågurations?

... Steven She.. Reverse Engineering Feature Models.. 8 / 33

Using just names and dependencies.

Given these features:{
os_kernel, scheduler, networking, bluetooth

}
…and these dependencies:

1. (bluetooth ∨ networking ∨ scheduler → os_kernel)
2. ∧ (os_kernel → scheduler)
3. ∧ (bluetooth → networking)

• What are the legal conågurations of features?
• What is the feature model that describes these legal

conågurations?

... Steven She.. Reverse Engineering Feature Models.. 8 / 33

Using just names and dependencies.

Given these features:{
os_kernel, scheduler, networking, bluetooth

}
…and these dependencies:

1. (bluetooth ∨ networking ∨ scheduler → os_kernel)
2. ∧ (os_kernel → scheduler)
3. ∧ (bluetooth → networking)

• What are the legal conågurations of features?
• What is the feature model that describes these legal

conågurations?

... Steven She.. Reverse Engineering Feature Models.. 8 / 33

Many possible models.

.

.

.scheduler

os_kernel

networking

bluetooth

. scheduler

os_kernel

networking

bluetooth implies

.

os_kernel

networkingbluetoothscheduler

implies

· · ·

• All these models are refactorings.
• All describe the same features and dependencies.
• We need domain knowledge to identify the best model.

... Steven She.. Reverse Engineering Feature Models.. 9 / 33

Many possible models.

.

.

.scheduler

os_kernel

networking

bluetooth

. scheduler

os_kernel

networking

bluetooth implies

.

os_kernel

networkingbluetoothscheduler

implies

· · ·

• All these models are refactorings.
• All describe the same features and dependencies.
• We need domain knowledge to identify the best model.

... Steven She.. Reverse Engineering Feature Models.. 9 / 33

Many possible models.

.

.

.scheduler

os_kernel

networking

bluetooth

. scheduler

os_kernel

networking

bluetooth implies

.

os_kernel

networkingbluetoothscheduler

implies

· · ·

• All these models are refactorings.
• All describe the same features and dependencies.
• We need domain knowledge to identify the best model.

... Steven She.. Reverse Engineering Feature Models.. 9 / 33

Reverse-engineering steps.

.

..

.Codebase..

#ifdef A
#ifndef B

#error …
#endif

#endif

. Feature names.

Descriptions

.

Dependencies

.

scheduler ↔ os_kernel
networking → os_kernel
bluetooth → networking

bluetooth is a network driver.

. Feature Model.

scheduler

os_kernel

networking

bluetooth

.

Feature names are needed to build a feature model.

.

Let’s årst try to reverse-engineer a feature model using
just names and dependencies.

.

Leverage both names and descriptions for additional
domain knowledge.

.

We rely on existing and ongoing work to extract necessary
input from code and documentation. [Berger et al. 2010]

.

This work uses feature names, descriptions and
dependencies to build a feature model.

... Steven She.. Reverse Engineering Feature Models.. 10 / 33

Many possible models.

.

.

.scheduler

os_kernel

networking

bluetooth

. scheduler

os_kernel

networking

bluetooth implies

.

os_kernel

networkingbluetoothscheduler

implies

· · ·

bluetooth is a network driver.

• All these models are refactorings.
• All describe the same features and dependencies.
• We need domain knowledge to identify the best model.

... Steven She.. Reverse Engineering Feature Models.. 11 / 33

Many possible models.

...scheduler

os_kernel

networking

bluetooth

. scheduler

os_kernel

networking

bluetooth implies

.

os_kernel

networkingbluetoothscheduler

implies

· · ·

bluetooth is a network driver.

• All these models are refactorings.
• All describe the same features and dependencies.
• We need domain knowledge to identify the best model.

... Steven She.. Reverse Engineering Feature Models.. 11 / 33

Reverse-engineering steps.

..

.

.Codebase..

#ifdef A
#ifndef B

#error …
#endif

#endif

. Feature names.

Descriptions

.

Dependencies

.

scheduler ↔ os_kernel
networking → os_kernel
bluetooth → networking

bluetooth is a network driver.

. Feature Model.

scheduler

os_kernel

networking

bluetooth

.

Feature names are needed to build a feature model.

.

Let’s årst try to reverse-engineer a feature model using
just names and dependencies.

.

Leverage both names and descriptions for additional
domain knowledge.

.

We rely on existing and ongoing work to extract necessary
input from code and documentation. [Berger et al. 2010]

.

This work uses feature names, descriptions and
dependencies to build a feature model.

... Steven She.. Reverse Engineering Feature Models.. 12 / 33

Reverse-engineering steps.

.

.

..Codebase..

#ifdef A
#ifndef B

#error …
#endif

#endif

. Feature names.

Descriptions

.

Dependencies

.

scheduler ↔ os_kernel
networking → os_kernel
bluetooth → networking

bluetooth is a network driver.

. Feature Model.

scheduler

os_kernel

networking

bluetooth

.

Feature names are needed to build a feature model.

.

Let’s årst try to reverse-engineer a feature model using
just names and dependencies.

.

Leverage both names and descriptions for additional
domain knowledge.

.

We rely on existing and ongoing work to extract necessary
input from code and documentation. [Berger et al. 2010]

.

This work uses feature names, descriptions and
dependencies to build a feature model.

... Steven She.. Reverse Engineering Feature Models.. 12 / 33

Goal.

Provide support for reverse-engineering a large-scale
feature model from existing project artifacts.

• A project (e.g. FreeBSD) could beneåt from a FM for
conåguration and analysis.

• Many possible FMs describe the same features and
dependencies—exponential!

• Our work provides assistance for building feature hierarchy
by signiåcantly reducing choices for the model builder.

• Other FM elements, such as groups, are detected
automatically.

... Steven She.. Reverse Engineering Feature Models.. 13 / 33

Outline.

1 Introduction

2 Procedures

3 Evaluation

4 Conclusions

... Steven She.. Reverse Engineering Feature Models.. 14 / 33

Conåguration semantics.

The conåguration semantics of a feature model is a
set of legal conågurations.

..
powersave

cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

.
powersave

cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

.

Legal conåguration.

.

Illegal conåguration.

... Steven She.. Reverse Engineering Feature Models.. 15 / 33

Reverse-engineering.

A set of legal conågurations can be represented
by many possible feature models.

..a set of legal
conågurations

.

FM1

.
FM2

.
...

.

FMn

• The conåguration semantics alone are not enough to
identify a unique FM.

... Steven She.. Reverse Engineering Feature Models.. 16 / 33

Domain semantics.

The domain semantics are the meaning of the features
and are reýected in the names and hierarchy.

.

.

.scheduler

os_kernel

networking

bluetooth

. v.s.. scheduler

os_kernel

networking

bluetooth implies

bluetooth is a network driver.

... Steven She.. Reverse Engineering Feature Models.. 17 / 33

Domain semantics.

The domain semantics are the meaning of the features
and are reýected in the names and hierarchy.

...scheduler

os_kernel

networking

bluetooth

. v.s.. scheduler

os_kernel

networking

bluetooth implies

bluetooth is a network driver.

... Steven She.. Reverse Engineering Feature Models.. 17 / 33

Domain semantics (cont.)

..feature model .

a set of legal
conågurations

.

feature
hierarchy

.

feature names

.

conåguration
semantics

.

domain
semantics

... Steven She.. Reverse Engineering Feature Models.. 18 / 33

Reverse-engineering II.

Given a set of legal conågurations, feature names
and a hierarchy, a precise FM can be

reverse-engineered.

..a set of legal
conågurations

.

feature
hierarchy

.

feature names

.
FM1

.

FM2

.

...

.

FMn

... Steven She.. Reverse Engineering Feature Models.. 19 / 33

Reverse-engineering II (cont.)

..a set of legal
conågurations

.

FM components

.

feature
hierarchy

.

feature
hierarchy

.

feature names

.

FM

.

Input

.Dependencies .

Descriptions

.

Feature names

• When reverse-engineering a FM, the feature hierarchy
doesn’t exist yet.

... Steven She.. Reverse Engineering Feature Models.. 20 / 33

Reverse-engineering II (cont.)

..a set of legal
conågurations

.

FM components

.

feature
hierarchy

.

feature names

.

FM

.

Input

.Dependencies .

Descriptions

.

Feature names

• We can build the feature hierarchy using dependencies,
names and descriptions.

... Steven She.. Reverse Engineering Feature Models.. 20 / 33

Building the feature hierarchy.

..1 Determine a parent for every feature:

• We use the names and descriptions to propose a hierarchy
that reýects domain semantics.

• An interactive, tool-assisted procedure.

• Given a feature, rank choices for its parent by similarity.

..2 A child must imply its parent:

• The meaning of the hierarchy in a feature model.

• Generate an implication graph from dependencies.

... Steven She.. Reverse Engineering Feature Models.. 21 / 33

Building the feature hierarchy.

..1 Determine a parent for every feature:

• We use the names and descriptions to propose a hierarchy
that reýects domain semantics.

• An interactive, tool-assisted procedure.

• Given a feature, rank choices for its parent by similarity.

..2 A child must imply its parent:

• The meaning of the hierarchy in a feature model.

• Generate an implication graph from dependencies.

... Steven She.. Reverse Engineering Feature Models.. 21 / 33

Feature similarity.

Feature names and descriptions

os_kernel Operating system.

scheduler I/O scheduling.

networking Networking drivers.

ethernet Type of local area networking.

Selecting a parent for:

bluetooth, a network driver.

... Steven She.. Reverse Engineering Feature Models.. 22 / 33

Feature similarity.

Feature names and descriptions

os_kernel Operating system.

scheduler I/O scheduling.

networking Networking drivers.

ethernet Type of local area networking.

Selecting a parent for:

bluetooth, a network driver.

... Steven She.. Reverse Engineering Feature Models.. 22 / 33

Feature similarity.

Feature names and descriptions

os_kernel Operating system.

scheduler I/O scheduling.

networking Networking drivers.

ethernet Type of local area networking.

Selecting a parent for:

bluetooth, a network driver.

... Steven She.. Reverse Engineering Feature Models.. 22 / 33

Feature similarity.

Feature names and descriptions

os_kernel Operating system.

scheduler I/O scheduling.

networking Networking drivers.

ethernet Type of local area networking.

Selecting a parent for:

bluetooth, a network driver.

... Steven She.. Reverse Engineering Feature Models.. 22 / 33

Feature similarity.

Feature names and descriptions

1. networking Networking drivers.

2. ethernet Type of local area networking.

3. os_kernel Operating system.

4. scheduler I/O scheduling.

Selecting a parent for:

bluetooth, a network driver.

... Steven She.. Reverse Engineering Feature Models.. 22 / 33

Implication graph.

A child must imply its parent in the feature hierarchy.

scheduler
os_kernel

bluetooth
ethernet

networking

Selecting a parent for:

bluetooth, a network driver.

• ethernet is not shown—not a choice for parent.
• Implications signiåcantly reduce the number of choices.
• But, in a practical setting, dependencies may be

incomplete.
... Steven She.. Reverse Engineering Feature Models.. 23 / 33

Implication graph.

A child must imply its parent in the feature hierarchy.

scheduler
os_kernel

bluetooth
ethernet

networking

Selecting a parent for:

bluetooth, a network driver.

• ethernet is not shown—not a choice for parent.
• Implications signiåcantly reduce the number of choices.
• But, in a practical setting, dependencies may be

incomplete.
... Steven She.. Reverse Engineering Feature Models.. 23 / 33

Implication graph.

A child must imply its parent in the feature hierarchy.

scheduler
os_kernel

bluetooth
ethernet

networking

Selecting a parent for:

bluetooth, a network driver.

• ethernet is not shown—not a choice for parent.
• Implications signiåcantly reduce the number of choices.
• But, in a practical setting, dependencies may be

incomplete.
... Steven She.. Reverse Engineering Feature Models.. 23 / 33

Implication graph.

A child must imply its parent in the feature hierarchy.

scheduler
os_kernel

bluetooth
ethernet

networking

Selecting a parent for:

bluetooth, a network driver.

• ethernet is not shown—not a choice for parent.
• Implications signiåcantly reduce the number of choices.
• But, in a practical setting, dependencies may be

incomplete.
... Steven She.. Reverse Engineering Feature Models.. 23 / 33

Two lists: RIFs and RAFs.

Ranked Implied Features Ranked All-Features

Selected: cpu_hotplug

1.

2.

3.

4.

5.

powersave

acpi

acpi_system

cpu_freq

pm

CPU frequency

scaling.

1.

2.

3.

4.

5.

cpu_freq

powersave

performance

acpi

acpi_system

...

• Ranked Implied Features (RIFs)
implied features sorted by similarity to the selected feature.

• Ranked All-Features (RAFs)
all features sorted by similarity to the selected feature.

... Steven She.. Reverse Engineering Feature Models.. 24 / 33

Two lists: RIFs and RAFs.

Ranked Implied Features Ranked All-Features

Selected: cpu_hotplug

1.

2.

3.

4.

5.

powersave

acpi

acpi_system

cpu_freq

pm

CPU frequency

scaling.

1.

2.

3.

4.

5.

cpu_freq

powersave

performance

acpi

acpi_system

...

• Ranked Implied Features (RIFs)
implied features sorted by similarity to the selected feature.

• Ranked All-Features (RAFs)
all features sorted by similarity to the selected feature.

... Steven She.. Reverse Engineering Feature Models.. 24 / 33

Two lists: RIFs and RAFs.

Ranked Implied Features Ranked All-Features

Selected: cpu_hotplug

1.

2.

3.

4.

5.

powersave

acpi

acpi_system

cpu_freq

pm

CPU frequency

scaling.

1.

2.

3.

4.

5.

cpu_freq

powersave

performance

acpi

acpi_system

...

• Ranked Implied Features (RIFs)
implied features sorted by similarity to the selected feature.

• Ranked All-Features (RAFs)
all features sorted by similarity to the selected feature.

... Steven She.. Reverse Engineering Feature Models.. 24 / 33

Other FM constructs.

powersave
cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

→
powersave

cpu_hotplug

cpu_freq

performance

acpi

pm

acpi_system

• User selects a parent for every feature.

• Once a hierarchy is built, other constructs, such as
mandatory features and groups, are automatically detected.

• If feature groups overlap, user selects groups to retain.

... Steven She.. Reverse Engineering Feature Models.. 25 / 33

Outline.

1 Introduction

2 Procedures

3 Evaluation

4 Conclusions

... Steven She.. Reverse Engineering Feature Models.. 26 / 33

Evaluation questions.

Our similarity measure should reduce the number of choices
to only a few when determining a parent for a feature.

..1 How many features have their reference parents ranked in
the top 5 of our RIFs?

• Evaluated on complete and incomplete input.

..2 How many features are needed for ånding 75% of reference
parents using the RAFs?

... Steven She.. Reverse Engineering Feature Models.. 27 / 33

Evaluation questions.

Our similarity measure should reduce the number of choices
to only a few when determining a parent for a feature.

..1 How many features have their reference parents ranked in
the top 5 of our RIFs?

• Evaluated on complete and incomplete input.

..2 How many features are needed for ånding 75% of reference
parents using the RAFs?

... Steven She.. Reverse Engineering Feature Models.. 27 / 33

Evaluation questions.

Our similarity measure should reduce the number of choices
to only a few when determining a parent for a feature.

..1 How many features have their reference parents ranked in
the top 5 of our RIFs?

• Evaluated on complete and incomplete input.

..2 How many features are needed for ånding 75% of reference
parents using the RAFs?

... Steven She.. Reverse Engineering Feature Models.. 27 / 33

Evaluation subjects.

Complete input:

• Reference feature models: Linux and eCos.
• Linux has roughly 5000 features; eCos 1200 features.

Incomplete input:

• A portion of FreeBSD.
• Domain analysis to create reference model of 90 features.
• Extracted input dependencies by analyzing preprocessor

usage, documentation, etc.
• Simulated incomplete input on Linux and eCos by randomly

removing dependencies and words.

... Steven She.. Reverse Engineering Feature Models.. 28 / 33

Evaluation results for RIFs.

..1 How many features have their reference parents ranked in
the top 5 of our RIFs?

• Linux: 76% of features, eCos: 79% of features.

• Ignoring root features, 90% for Linux and 81% for eCos.

• For incomplete descriptions, At least 50% of words needed
for good results (roughly 10 words in Linux).

... Steven She.. Reverse Engineering Feature Models.. 29 / 33

Evaluation results for RAFs.

..2 How many features are needed for ånding 75% of reference
parents using the RAFs?

• Linux: 3% of features, eCos: 6% of features.

• For incomplete descriptions, 50% of words needed for good
results.

More details in paper.

... Steven She.. Reverse Engineering Feature Models.. 30 / 33

Outline.

1 Introduction

2 Procedures

3 Evaluation

4 Conclusions

... Steven She.. Reverse Engineering Feature Models.. 31 / 33

Related work.

• Past work looked at only dependencies and didn’t deal with
multiple possible models.

[CW 2007]

• Other works have applied textual similarity metrics, but
don’t take dependencies into account.

[Alves et al. 2008, Niu et al. 2008]

• Past work attempts to create models automatically and not
interactively.

... Steven She.. Reverse Engineering Feature Models.. 32 / 33

Conclusions.

Future Work.

• Further develop the extraction of dependencies from a
codebase.

• Integrate techniques into an existing FM editor.

Conclusions.

• Our procedure deals with incomplete input.
• Combine the use of dependencies and textual similarity.
• Problem requires domain knowledge—tool-assisted.
• Provide empirical data on how effective this technique is on

three projects: Linux, eCos and FreeBSD.

... Steven She.. Reverse Engineering Feature Models.. 33 / 33

	Introduction
	Procedures
	Evaluation
	Conclusions

