
Example-Driven Modeling
Model = Abstractions + Examples

Kacper Bąk, Dina Zayan, Krzysztof Czarnecki,

Michał Antkiewicz, Zinovy Diskin

GSD Lab, University of Waterloo, Canada

{kbak,dzayan,kczarnec,mantkiew,zdiskin}

@gsd.uwaterloo.ca

Andrzej Wąsowski

IT University of Copenhagen, Denmark

wasowski@itu.dk

Derek Rayside

University of Waterloo, Canada

drayside@uwaterloo.ca

Abstract—We propose Example-Driven Modeling (EDM), an
approach that systematically uses explicit examples for eliciting,
modeling, verifying, and validating complex business knowledge.
It emphasizes the use of explicit examples together with ab-
stractions, both for presenting information and when exchanging
models. We formulate hypotheses as to why modeling should
include explicit examples, discuss how to use the examples, and
the required tool support. Building upon results from cognitive
psychology and software engineering, we challenge mainstream
practices in structural modeling and suggest future directions.

I. INTRODUCTION

Domain modeling is one of key activities in requirements

engineering. It is about transferring knowledge from a Subject

Matter Expert (SME) to Business Analyst (BA) and stating it

explicitly in the form of documents, models, and code. Getting

requirements right is hard because much of the knowledge

is difficult to elicit and communicate [1]. Let us imagine a

scenario where Alice is an SME and Bob is a BA. Alice

hires Bob to build a system for booking meeting rooms in her

organization. Bob is new to Alice’s organization and needs to

understand the domain first. The conversation goes as follows:

ALICE: Members of our organization often book

rooms for meetings. Each meeting is organized by

a chair and has at least one other participant. Each

room has a maximum capacity it can hold. Depend-

ing on the room different equipment is available.

BOB: Please, give me examples of room bookings.

ALICE: The mid-year review meeting always takes

place in June. It is organized by Steven, our chair,

and is held in the meeting room C. The room pro-

vides a whiteboard and audio-conferencing equip-

ment to include online participants.

Another example is an on-demand meeting orga-

nized within work hours. Joana, a team-leader, some-

times meets other team members in room D. They

use a whiteboard and have no online participants.

[BOB writes down the examples, learns the domain

and abstracts concepts to come up with a model].

BOB: So we have 4 main concepts: meeting, meeting

room, equipment, and a member. The participants

are on-site members or join remotely. There is one

distinguished member: the chair. I have one question.

Are all types of the equipment available in each

meeting room? For example, can there be a meeting

room without audio-conferencing equipment?

ALICE: Well, each room provides either a traditional

or an electronic whiteboard. All other equipment is

optional (such as projectors and computers). Only if

the meeting includes remote participants, must the

room offer at least audio-conferencing equipment.

BOB: Aha, an important constraint must be added!

The dialog shows how Alice transferred her domain knowl-

edge to Bob by describing the concepts and giving examples.

Bob created an initial model and validated it with Alice. Ex-

amples allowed Bob to clarify the requirements, and discover

(together with Alice) an important domain constraint.

II. EXAMPLE-DRIVEN MODELING

Systematic use of models provides many benefits in soft-

ware engineering, such as, improved communication, under-

standing of problems, productivity, and software quality [2].

Despite these benefits, models have failed to gain widespread

adoption. The main reason for limited adoption is because

they do not serve a wider audience. They are mostly used in

narrow domains by highly trained experts [3] who work with

abstractions. The majority of stakeholders, who would benefit

from modeling, however, are not modeling experts. Yet they

can understand and work with models via examples [2], [3].

The use of examples is critical to provide benefits of

models to a wider population of stakeholders as it makes

modeling more accessible to non-experts. We propose EDM,

an approach where modeling is fundamentally based on exam-

ples. EDM relies on systematic use of explicit examples for

eliciting, modeling, verifying, and validating domain knowl-

edge. In contrast to current structural modeling practices,

examples are as important as abstractions. In EDM, models

comprise both abstractions and examples, where abstractions

are mental representations dissociated from concrete objects,

and examples are concrete instances of abstractions. Although

abstractions or examples alone can represent concepts [4], the

redundancy is useful in comprehension and verification.

EDM distinguishes two non-trivial activities that relate

examples with abstractions: 1) Abstraction Inference (AI) – for

synthesizing abstractions from a set of examples, 2) Example

Derivation (ED) – for generating examples from abstractions.

In the session between Alice and Bob, Bob performed AI to

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
New Ideas and Emerging Results

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1273



build models from the examples given by Alice. He used ED

to verify the models on examples. Neither activity is given

a higher priority, both are equally important and first class.

Depending on the modeler and the situation either of the

activities may be preferred to support modeling.

Common sense tells us that examples are useful in structural

modeling. In fact, modelers use examples informally for

building and explaining models. We are not aware, however, of

a systematic approach and empirical studies that investigate the

usefulness and the use of examples. We would like to address

the following questions: How useful examples are for building

models? What is the impact of examples on comprehension of

models? How to use examples systematically? What examples

are more useful than others? What kind of tool support is

needed to work with examples? We assert that they should be

studied on the conceptual basis of cognitive science, rather

than addressed intuitively on the basis of common sense

alone. Answering these questions may lead to new methods,

languages, and tools that make modeling more accessible. The

remainder of this paper explores why and how to use exam-

ples in EDM, with each subsection presenting a hypothesis,

followed by a discussion and a short conclusion.

III. WHY BASE MODELING ON EXAMPLES?

A. Constructing models with the aid of explicit examples

improves the quality of models.

The session with Alice and Bob showed how Bob created

a model from examples, and then validated it with Alice.

He gave an example of a room without audio-conferencing

equipment. Alice clarified that rooms hosting online meetings

must have audio-conferencing equipment. Thanks to examples

they were able to refine the initially underconstrained model.

Humans learn from examples by generalizing information

and building mental models. Gick and Holyoak [5] showed

that humans learn abstractions and solve analogical problems

more effectively if the new material is presented with multiple

examples. They also showed that multiple examples improve

the quality of constructed abstractions. By analogy, we hy-

pothesize that explicit examples help to build better models

by capturing relevant details, scoping the models, and serving

as test cases. They should have positive impact on a model’s

validity and the modelers’ confidence that the model is valid.

Explicit examples should improve correctness and precision

of models just as test cases lead to better software. Similar to

test cases, examples naturally express corner cases. One of the

corner cases that Bob touched upon was a room without audio-

conferencing equipment hosting an online meeting. Thus,

examples determine the scope of models and explicitate their

applicability. They also capture the relevant details that SMEs

recall from the real world. By investigating the examples a

BA can question some details and generalize them. In the

dialog, Alice mentioned Steven as a chair. Bob abstracted that

information and distinguished some participant as a chair.

Black-box software testing uses test cases to verify soft-

ware’s observable behavior. Traditionally software testing was

the last step of software development. Recent approaches, such

as Test-Driven Design (TDD) [6] and Behavior-Driven Devel-

opment (BDD) [7], encourage starting development by writing

tests. TDD prescribes creating automated test cases before

writing the actual code. BDD is based on TDD and focuses on

providing a ubiquitous language among stakeholders to specify

examples. Despite these advances in software testing, testing

of structural models is a less common practice.

The importance of examples is well recognized and ac-

knowledged formally in behavioral modeling methodologies.

Examples typically show traces of execution, as in Spin [8],

or are used as test cases [9], [10]. Some behavioral modeling

methodologies are examples-based [11]. Structural modeling

seems to underestimate the role of examples as compared to

behavioral modeling. UML [12] provides object and class di-

agrams. Object diagrams are instances of class diagrams, thus

they encode examples of the latter. In practice, class diagrams

are much more frequently used than object diagrams [13]. The

tool support for systematic use of explicit examples is limited

to academic tools, such as Dresden OCL [14], MMUnit [15],

and the USE tool [16]. The USE tool can verify if an object

diagram is an instance of a class diagram, only recently provid-

ing ED, but has no support for AI. Modal Object Diagrams

(MODs) [17] extend object diagrams with positive/negative

examples. In contrast to UML, Alloy [18] and Formula [19]

are designed to validate models via examples. Only recently

was the need for an instance notation in Alloy recognized [20].

While Alloy goes from abstractions to examples, Modeling

By Example (MBE) infers abstractions from examples [21].

However, it deals only with simple structural models.

Conclusion: Explicit examples have been successfully used

in software testing and behavioral modeling. They help to find

bugs and fix software and models. Yet they are rarely used

in structural modeling. The structural modeling world needs

evidence that the systematic use of examples improves the

quality of models. It needs empirical studies showing defect

reduction and maintenance gains as compared to modeling

without explicit examples. Empirical evidence will guide the

design of methods, languages, and tools. We envision tools

that derive examples and infer rich structural models.

B. Augmenting models with explicit examples improves model

comprehension among various stakeholders.

Stakeholders also need to understand models after they were

created by others. Let us imagine that Alice sends the model

to another SME who was not trained to deal with abstractions

but understands the domain and examples very well. We

hypothesize that if stakeholders know the phenomena shown

by the examples, they can understand models more effectively.

The best knowledge transfer occurs when humans learn

abstractions with examples [5], [22], [23], i.e., presenting just

an example or an abstraction alone is insufficient for compre-

hension. The use of examples lowers mental effort required to

understand problems [24]. While abstractions capture domain

knowledge more completely than examples, they are difficult

to comprehend as many business rules and constraints are

implicit. Examples, on the other hand, capture intuition [23].

1274



We hypothesize that relating abstractions to examples fosters

1) domain learning when the model is created and 2) model

comprehension when the model is explained to others.

The structural modeling world has not looked at examples

from the comprehension viewpoint. Although models are often

meant to facilitate communication among shareholders [2],

they are mostly understandable to a relatively small group of

experts [3]. Many other stakeholders can comprehend models

only by analyzing examples [2], [3], and, indeed, this is how

explanations are provided to non-experts. The rare use of

object diagrams [13] suggests that if examples are used at all,

they are used informally. Examples are missing in structural

methodologies and practices, which hinders comprehension.

As a result (or a cause), the tools and languages do not

seamlessly integrate abstractions and examples.

Conclusion: It is instrumental to empirically verify whether

examples improve the comprehension of models among vari-

ous stakeholders. A variety of studies should explore the use

of examples while learning the domain and while explaining

models to others. The results of studies may help to answer the

questions When? How much? and For whom? the examples

are mostly useful. If they confirm our hypothesis, it would be

clear that new modeling notations should integrate examples

into models. Furthermore, methodologies and practices would

have to be redesigned to accommodate examples.

IV. HOW TO USE EXAMPLES IN EDM?

A. EDM starts either with abstractions or examples. A mod-

eler typically goes back and forth between the two.

In the dialog, Alice gave examples of how the organization

manages bookings. Bob learned the domain concepts and in-

ferred the initial abstractions. Later they found out that rooms

that host online participants must offer audio-conferencing

equipment. Bob added the constraint to the initial abstraction.

Going back and forth between examples and abstractions is

unavoidable. It is virtually impossible to construct and under-

stand a non-trivial model without validating it on examples.

Also, understanding a large set of examples without abstrac-

tions is equally hard. The process of going back and forth is

incremental: abstractions and examples evolve together.

The use of examples varies between novices and experts:

while novices need examples right-away, experts need them

only for clarification [25], [26], [24]. The difference comes

from the level of expertise, which in turn comes from the

knowledge. According to Kalyuga [26] examples compensate

for the missing or partially available knowledge. We hypothe-

size that BAs familiar with the domain start with abstractions

and seek examples only for clarifications; BAs new to the

domain elicit examples first and then infer abstractions.

Going from examples to abstractions requires tools that infer

abstractions from a set of examples. There are techniques for

inferring grammars [27], programs [28], data schemas [29],

behavioral [30] and structural models [21]. They typically take

examples and an initial abstraction. A major challenge is to

infer constraints imposed by negative examples. None of the

tools can handle constraints that represent complex business

rules. Furthermore, co-evolution of examples and abstractions,

although studied [31], [32], is not well supported in tools.

Support for partial examples is needed to enable flexible

modeling and rapid verification and validation. Partial exam-

ples are underspecified model instances, i.e., they either have

some variability (e.g., optional attributes) or uncertainty (e.g.,

undefined values). BAs should not have to fill in all the details

of examples, but should specify only the properties that matter

in a given context. AlloyPI [20] and Clafer [33] offer first-class

support for expressing and completing partial examples.

Conclusion: EDM proposes to use examples in a new way

as compared to mainstream structural modeling methods. The

requirements for new tools push the boundaries of what is

currently available and well supported. First, EDM assumes

that different tools are required by BAs familiar and unfamiliar

with the domain. The former need tools to derive examples

from models (for validation and explanation), while the latter

need tools that infer models from examples. EDM also requires

support for partial examples, which are currently handled

mostly by academic tools. Furthermore, simultaneous evolu-

tion of models and examples calls for tools that offer seamless,

interactive support for such co-evolution during modeling.

B. A variety of generated examples leads to more effective

model construction, comprehension, and validation.

In the dialog, Alice gave two examples of room booking.

Both examples had a significant common part but also were

slightly different. Both bookings included a chair (Steven and

Joana, respectively), specified the room (C and D), and listed

the equipment. The concrete values, such as chair names,

differed. Those abstract commonalities and specific differences

allowed Bob to infer a model that covers the two examples.

Lack of critical differences between examples results in too

concrete abstractions (e.g., room name always being C).

The choice of examples is important for the effectiveness of

comprehension and knowledge transfer. According to Gick and

Paterson, the most effective are near-miss contrasting exam-

ples [34]. They emphasize the critical differences, which helps

humans build flexible abstractions. Too contrasting examples,

however, are ineffective in spotting the critical differences and

negatively impact knowledge transfer. We hypothesize that a

specific, yet to be defined, variety of examples is needed to

build, understand, and validate models effectively.

While positive examples specify correct model instances,

negative examples represent disallowed instances, i.e., they can

be abstracted as model constraints. Constraints reduce models’

variability and uncertainty, thus making them more precise.

A pair of near-miss examples may include a positive and a

negative one. Understanding such pairs gives additional insight

and helps to reason why and when the model is correct [35].

The need for a specific variety of examples has been

recognized in software testing and grammar inference re-

search. In the former, the selection of test cases impacts the

effectiveness of the testing process [36]. Significantly different

test cases provide better code coverage with fewer cases. While

randomly-generated test cases do not guarantee that they are

1275



significantly different, antirandom testing does [37]. Similarly,

significantly different examples lead to more effective discov-

ery of model errors [38]. Grammar inference uses multiple

examples and machine learning to infer a finite state automaton

that defines the grammar [39]. The set of examples includes

positive and negative examples. In modeling, object diagrams,

as defined by UML, specify only positive examples.

Conclusion: Besides many technical improvements, there

is still little known about examples in modeling from a

user’s viewpoint. We need empirical studies showing the

impact of using a variety of examples on model construction,

comprehension, and validation. The studies should investigate

properties of individual examples (What examples are useful?

What are the benefits of adding negative examples? How to

derive near-miss examples? How to find minimal examples?),

properties of the whole population (Is it representative? Is it

diverse enough? Is it minimal?), and the ordering of example

presentation to stakeholders (How to effectively explore exam-

ples? How to show differences among examples?).

V. CONCLUSION AND FUTURE WORK

Developers have been using examples for decades to test

software. Traditionally they used test cases to verify and val-

idate the existing code. Modern approaches prescribe writing

tests before writing the code. Examples are also used for

verification and validation of behavioral models. The use of

examples in structural modeling, however, is not prevalent.

EDM emphasizes the importance of examples in such models

and gives guidelines on how to apply them.

We see EDM as a promising way of improving the quality

of structural models—such as, domain, data, variability, and

component models and meta-models—and the effectiveness

of communication among stakeholders. Even though our

discussion focussed on structural modeling, an empirically-

validated theory of examples will also likely help improve

behavioral modeling. The next step is to define a method for

evaluating each hypothesis and to design empirical studies. We

encourage other researchers to join the effort to investigate the

effectiveness of explicit examples. If the presented hypotheses

are confirmed, this may lead to redefining models as inherent

combinations of abstractions and examples, i.e., Model =

Abstractions + Examples. The studies are likely to uncover

weaknesses of the existing methods, languages, and tools, and

also determine new requirements and improvements.

ACKNOWLEDGEMENTS

Thanks to Dan Berry and Tom Maibaum for their comments.

REFERENCES

[1] M. A. Jackson, “Problems & Requirements,” in RE, 1995.

[2] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Em-
pirical assessment of MDE in industry,” in ICSE, 2011.

[3] B. Dobing and J. Parsons, “How UML is used,” CACM, vol. 49, no. 5,
2006.

[4] E. E. Smith and D. L. Medin, Categories and concepts. Harvard
University Press, 1981.

[5] M. L. Gick and K. J. Holyoak, “Schema induction and analogical
transfer,” Cognitive Psychhology, vol. 15, no. 38, 1983.

[6] D. Janzen and H. Saiedian, “Test-driven development concepts, taxon-
omy, and future direction,” Computer, vol. 38, no. 9, 2005.

[7] D. North, “Introducing bdd,” Better Software, vol. 12, 2011.
[8] G. J. Holzmann, The Spin Model Checker: Primer and Reference

Manual, 2004.
[9] J. Dick and A. Faivre, “Automating the generation and sequencing of

test cases from model-based specifications,” in FME, 1993.
[10] J. Offutt and A. Abdurazik, “Generating tests from UML specifications,”

in UML, 1999.
[11] D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based Program-

ming Using LSC’s and the Play-Engine. Springer-Verlag, 2003.
[12] OMG, OMG Unified Modeling Language, 2009.
[13] J. Whittle, “What do 449 MDE Practitioners Think About MDE?” in

MODELS, 2011.
[14] B. Demuth, “The Dresden OCL Toolkit and its Role in Information

Systems Development,” in ISD, 2004.
[15] D. Sadilek and S. Weißleder, “Testing metamodels,” in ECMDA-FA,

2008.
[16] M. Gogolla, F. Büttner, and M. Richters, “USE: a UML-Based Speci-

fication Environment for Validating UML and OCL,” SCP, vol. 69, no.
1-3, 2007.

[17] S. Maoz, J. Ringert, and B. Rumpe, “Modal Object Diagrams,” in
ECOOP, 2011.

[18] D. Jackson, Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2006.

[19] E. K. Jackson, E. Kang, M. Dahlweid, D. Seifert, and T. Santen,
“Components, platforms and possibilities: towards generic automation
for MDA,” in EMSOFT, 2010.

[20] V. Montaghami and D. Rayside, “Extending Alloy with Partial In-
stances,” in ABZ, 2012.

[21] L. Mendel, “Modeling by example,” Master’s thesis, MIT, 2007.
[22] Z. Chen and M. W. Daehler, “Positive and negative transfer in analogical

problem solving by 6-year-old children,” CD, vol. 4, 1989.
[23] R. L. Goldstone and J. Y. Son, “The transfer of scientific principles

using concrete and idealized simulations,” JLS, vol. 14, no. 1, 2005.
[24] T. van Gog, L. Kester, and F. Paas, “Effects of worked examples,

example-problem, and problem-example pairs on novices’ learning,”
CEP, vol. 36, no. 3, 2011.

[25] M. T. H. Chi, P. J. Feltovich, and R. Glaser, “Categorization and
representation of physics problems by experts and novices,” Cognitive

Science, vol. 5, no. 2, 1981.
[26] S. Kalyuga, “Knowledge elaboration: A cognitive load perspective,”

Learning and Instruction, vol. 19, no. 5, 2009.
[27] R. Parekh and V. Honavar, “An incremental interactive algorithm for

regular grammar inference,” in Grammatical Interference: Learning

Syntax from Sentences, ser. LNCS, L. Miclet and C. de la Higuera,
Eds. Springer Berlin / Heidelberg, 1996, vol. 1147.

[28] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation
using examples,” CACM, vol. 55, no. 8, 2012.

[29] G. J. Bex, F. Neven, and S. Vansummeren, “Inferring XML schema
definitions from XML data,” in VLDB, 2007.

[30] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) designs,”
in VMCAI, 2006.

[31] B. Gruschko, D. S. Kolovos, and R. F. Paige, “Towards synchronizing
models with evolving metamodels,” in ECSMR, 2007.

[32] A. Cicchetti, D. D. Ruscio, R. Eramo, and A. Pierantonio, “Automating
co-evolution in Model-Driven Engineering,” in EDOC, 2008.

[33] K. Bąk, K. Czarnecki, and A. Wąsowski, “Feature and meta-models in
Clafer: mixed, specialized, and coupled,” in SLE, 2010.

[34] M. L. Gick and K. Paterson, “Do contrasting examples facilitate schema
acquisition and analogical transfer?” CJP, vol. 46, no. 4, 1992.

[35] R. M. Seater, “Core extraction and non-example generation: Debugging
and understanding logical models,” Master’s thesis, MIT, 2004.

[36] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data selection:
Help for the practicing programmer,” Computer, vol. 11, no. 4, 1978.

[37] Y. K. Malaiya, “Antirandom testing: getting the most out of black-box
testing,” in SRE, 1995.

[38] S. Weißleder, “Test models and coverage criteria for automatic model-
based test generation with UML state machines,” Ph.D. dissertation,
2010.

[39] R. Parekh and V. Honavar, “Grammar inference, automata induction, and
language acquisition,” in Handbook of Natural Language Processing,
2000.

1276


