
GSDLAB TECHNICAL REPORT

A Taxonomic Space for Increasingly
Symmetric Model Synchronization

Zinovy Diskin, Arif Wider, Hamid Gholizadeh,
Krzysztof Czarnecki

GSDLAB–TR 2014-02-1 February 2014

Generative Software Development Laboratory
University of Waterloo

200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

WWW page: http://gsd.uwaterloo.ca/

The GSDLAB technical reports are published as a means to ensure timely dissemination

of scholarly and technical work on a non-commercial basis. Copyright and all rights

therein are maintained by the authors or by other copyright holders, notwithstanding

that they have offered their works here electronically. It is understood that all persons

copying this information will adhere to the terms and constraints invoked by each author’s

copyright. These works may not be reposted without the explicit permission of the

copyright holder.

A Space of Model Synchronization Types:
Symmetrization of Model Transformations

and its Challenges

Zinovy Diskin1,2, Arif Wider3, Hamid Gholizadeh2, Krzysztof Czarnecki1

1 University of Waterloo, Canada
2 McMaster University, Canada
{diskinz|mohammh}@mcmaster.ca

3 Department of Computer Science
Humboldt-Universität zu Berlin, Germany

wider@informatik.hu-berlin.de

Abstract. A pipeline of unidirectional model transformations is a well-
understood architecture for model driven engineering tasks such as model
compilation or view extraction. However, modern applications seem to
require a shift towards networks of models related in various ways, whose
synchronization often needs to be incremental and bidirectional. This
new situation demands new features from transformation tools and a
solid semantic foundation. We address the latter by presenting a taxon-
omy of model synchronization types, organized into a 3D-space. Each
point in the space refers to its set of synchronization requirements and a
corresponding algebraic structure modeling the intended semantics. The
space aims to help with identifying and communicating the right tool
and theory for the synchronization problem at hand. It also intends to
guide future theoretical and tool research.

1 Introduction

Fig. 1: MDE-
pipe in MDA

Early model-driven engineering (MDE) was based on a simple
generic scenario promoted by the Model Driven Architecture
(MDA) vision [10]: platform-independent models describing
a software system at a high-level of abstraction are trans-
formed stepwise to platform-dependent models, from which
executable source code is automatically generated. The gen-
erated code can be discarded anytime, whereas models are
the primary artifacts to be maintained. Software development
in the MDA perspective appears as a collection of model-
transformation chains or streams “flowing through the MDE-
pipe”, as shown in Fig. 1.

However, this nice pipeline architecture fails to capture two important aspects
of practical MDE. First, it turns out that some changes are easier to make in
lower-level models (including code) rather than high-level models. This require-
ment leads to round-trip engineering, in which MT-streams in the MDE-pipe flow

2

back and forth. Second, models (on the same or different abstraction levels) are
typically overlapping rather than disjoint, which in our pipe analogy means that
MT-streams interweave rather than flow smoothly. Round-tripping and overlap-
ping thus change the flow from “laminar” to “turbulent,” as illustrated by the
inset figure. Instead of separated and weakly interacting MT-streams, we have a
network of intensively interacting models with bidirectional horizontal (the same
abstraction level) and vertical (round-tripping) arrows as shown in Fig. 2.

“Turbulency” of modern MT brings several theoretical and
practical challenges. Semantics of turbulent MT is not well
understood, and clear semantics is crucial for synchronization
tools because otherwise users have no trust in automatic syn-
chronization. Moreover, tool users and tool builders need a
common language to communicate required and provided fea-
tures because not every synchronization problem requires the
same set of features, and implementation of unnecessary fea-
tures can be costly and increases chances of unwanted interac-
tion. Having a taxonomy of synchronization behaviors, with a
clear semantics for each taxonomic unit, would help to manage these problems.

Models'

Code'

(a)' (b)'Fig. 2: Modern
MDE pipe

We will analyse the basic unit of a model network – a
pair of interrelated models to be kept in sync – and build
a taxonomy of relationships between two models from the
viewpoint of their synchronization, assuming that concur-
rent updates are not allowed. It is a strong simplifying as-
sumption, yet many practically interesting cases are still
covered. We identify three orthogonal dimensions in the
space of such relationships, and 24 synchronization types
— points in the space. The space equips the multitude of
types with a clear structure: every type is characterized by
a triple of its coordinates, which together determine its syn-
chronization behavior. We term some synchronization types
to be more symmetric than others. We observe an evolution
of MDE from its early pipeline setting to its current state as a path from the
asymmetric synchronization zone of the space to the symmetric zone (hence, the
title of the paper).

We also propose an algebraic framework, in which synchronization types can
be given a formal semantics. Algebraic laws related to a synchronization type
give rise to requirements to synchronization procedures realizing the type. Hence,
classifying a concrete synchronization case by its type helps to identify and
communicate the right tool and the right specification for the synchronization
problem at hand.

The paper is structured as follows. Section 2 introduces a series of examples
that allow us to illustrate main synchronization types. In Sections 3 we organize
them into a 3D-space, and Sections 4 and 5 specify the space formally. Section
7 presents related work and Section 8 concludes the paper.

3

2 Symmetrization via Examples

We will consider several examples of synchronization scenarios to illustrate what
we mean by symmetrization.

2.1 Getting Started: “Fly with comfort!”

by

 OsFlight !
time cost
 mor 50
 eve 100

Short'Distance!Flight!
fnum from to time plane
#1 YYZ ZRH mor Jet10
#2 ZRH LYS mor Jet10
#3 YYZ MUC eve Jet20
#4 MUC LYS eve Jet20 scd

 fst

B’s$view$$
getmt(B)

Model$B

LdFlight
fnum time price
 #11 mor 150
 #22 eve 200

Model$A
Map$
$r

Figure!4!

by

LdFlight
fnum time price
 #11 mor 150
 #22 eve 200

Model$A
Model$B

SdFlight!
fnum from to time plane
#1 YYZ ZRH mor Jet20
#2 YYZ ZRH eve Jet20
#3 ZRH LYS mor Jet40
#4 ZRH LYS eve Jet40

OsFlight !
time cost
 mor 50
 eve 75
 mor 50

View$$
getmt(B)

 scd

 fst

Map$
$r

Figure!5!

Fig. 3: Model B and mapping r implement model A

A Canadian air carrier is
anticipating a significant
increase in the passen-
ger flow from Toronto to
Lyon (close to Grenoble)
due to the FASE’14 con-
ference. The company de-
cides to organize several
charter one-stop flights.
Two teams are created to

work on the project. The first is responsible for the marketing: the number of
flights to be added, their time (morning or evening), and prices. Model A in Fig. 3
(left) is a sample model that the marketing team has developed. The second team
is technical: it works on implementation of marketing decisions, and deals with
an optimal choice of intermediate airports and airplanes to use. Having data
about airports and planes, the team can compute a crucial flight parameter:
cost-per-passenger, or just cost. An example of a technical model implementing
the marketing model A is also shown in Fig. 3. The model consists of a base
table B of short-distance flights (sd-flights)4, and a derived table of one-stop
flights (os-flights), obtained by joining sd-Flight with themselves: an os-Flight
flight self is a pair of sd-flights (self.fst, self.scd) satisfying two conditions:

(Q) self.fst.to = self.snd.from and self.fst.time ≤ self.snd.time.

The first one defines relational join and the second one assumes ordering mor<
eve. We also define self.time=self.fst.time. Computing self.cost is done by some
procedure using airport and airplane data. We thus have a function getmt(read
“get the marketing view of technical data”) that computes derived table OsFlight
from base table SdFlight.

Two ‘by’-links relate Ld-flights to their one-stop implementations. Together
they form an inter-table mapping by: LdFlight → OsFlight. This constitutes a
model-correspondence mapping r : A→ getmt(B) (mapping r could contain more
submappings like by, if model A would have more tables). Note that implemen-
tation is a pair (B, r), but we will often say ‘implementation’ B, leaving the
correspondence mapping implicit. We consider implementation (B, r) to be cor-
rect, if for each ld-flight self we have:

(C) self.time = self.by.time and self.price ≥ self.by.cost + 100.

4 We use standard airport codes: YYZ – for Pearson Int., Toronto, ZRH – Zurich,
LYS – Lyon Saint-Exupéry, and MUC – Munich ”Franz Josef Strauß”.

4

Many different correct implementations of the same model A are possible. For
example, Fig. 4 shows a variant with ZRH serving as a hub for several flights. It
implies that the relational join table OsFlight has extra flights, and thus map-
ping r is not surjective. This is a typical situation: an implementation platform
normally provides many possibilities, not all of which are used in a concrete
implementation.

by

 OsFlight !
time cost
 mor 50
 eve 100

Short'Distance!Flight!
fnum from to time plane
#1 YYZ ZRH mor Jet10
#2 ZRH LYS mor Jet10
#3 YYZ MUC eve Jet20
#4 MUC LYS eve Jet20 scd

 fst

B’s$view$$
getmt(B)

Model$B

LdFlight
fnum time price
 #11 mor 150
 #22 eve 200

Model$A
Map$
$r

Figure!4!

by

LdFlight
fnum time price
 #11 mor 150
 #22 eve 200

Model$A
Model$B

SdFlight!
fnum from to time plane
#1 YYZ ZRH mor Jet20
#2 YYZ ZRH eve Jet20
#3 ZRH LYS mor Jet40
#4 ZRH LYS eve Jet40

OsFlight !
time cost
 mor 50
 eve 75
 mor 50

View$$
getmt(B)

 scd

 fst

Map$
$r

Figure!5! Fig. 4: Another Implementation

Also, to be pre-
cise, what is imple-
mented is not the
entire model A but
its projection on the
time and price columns
(attribute fnum does
not play any role in
creation of model B).

This projection is a technical view gettm(A) of marketing model A, which can
be more complex if there are other attributes affecting the price (wholesales,
promotions, etc.) but not relevant for side B. Figure 5 refines Fig. 4 by taking
both views into account.

by

LdFlight
fnum time price
 #11 mor 150
 #22 eve 200

Model&A

LdFlight* !
time price
 mor 150
 eve 200

View&&
gettm(A)

Model&B

SdFlight!
fnum from to time plane
#1 YYZ ZRH mor Jet20
#2 YYZ ZRH eve Jet20
#3 ZRH LYS mor Jet40
#4 ZRH LYS eve Jet40

OsFlight !
time cost
 mor 50
 eve 75
 mor 50

View&&
getmt(B)

 scd

 fst

Map&
&r

Figure!6!Fig. 5: Model B and mapping r implementing model A

Since model At = gettm(A) is fully determined by model A, we say that A
informationally dominates At and write A≥infAt. We will also say that model A
has its private information invisible to At. Similarly, getmt(B)≤infB. However,
neither of models A and B fully dominates the other, as they both have their
own private information. We call it informational symmetry, A≥≤infB.

2.2 A Tour of Synchronization Symmetries and Asymmetries

There are several ways to organize the interaction between the marketing team
(model A) and the technical team (model B). We will distinguish five basic
interaction patterns, each described in one of the following subsections.

2.2.1 Any implementation is good enough, and the user does not care
which one is chosen; e.g., either of the two possibilities shown in Fig. 3, 4, or
yet another one, would suit the user. In other words, the marketing team pushes
the policies and the technical team needs to find a way to implement whatever
is decided by marketing. This is an unlikely scenario for flight implementation,
but it can be often encountered in code generation, when the user does not have

5

access to code. We will refer to this situation by saying that model A strongly
dominates B organizationally, and write A�orgB (or, equivalently, B�orgA).

2.2.2 Implementation is an asset. Now suppose that the technical team
works intensively with model B, tries different variants, analyzes them, and
strives to find an optimal solution. Discarding results of these efforts with every
change in model A would be discouraging for side B. A much better solution is
to implement changes on side A incrementally as shown in Fig. 6: the change,
or delta, on side A, ∆A, is propagated to a delta on side B, ∆B , which together
with the original implementation B provides an updated implementation. In
the figure, solid lines and shaded tables refer to given data, and dashed lines
and blank tables denote data produced by the operation of delta propagation.
In more detail, ∆A makes explicit that flight #11 is preserved and flight #22
is added. Correspondingly, delta ∆B keeps flights #1 and #2, and adds two
Sd-flights implementing the required one-stop flight. The range of possible im-
plementations is captured by placing labeled nulls ?i into the table; nulls with
the same label must be substituted with the same value (unknown so far), nulls
with different labels are independent, but may be also substituted with the same
value. In this way, uncertain model B′ captures the implementation in Fig. 3 with
?1=MUC, and that one in Fig. 4 with ?1=ZRH, and others possibilities as well.
Correspondingly, the derived OsFlight table is also uncertain: the cost value is
given by applying some known procedure say, F , to unknown argument values
?i, i = 1, 2, 3.

get(ΔB)

by

 OsFlight $
time cost
 mor 50 scd

 fst

B’s$view$$
get(B)

Model$B

LdFlight
fnum time price
 #11 mor 150

Model$A
Map$
$r

LdFlight
fnum time price
 #11 mor 150
 #22 eve 200

Model$A’

ΔA

 OsFlight $
 time cost
 mor 50
 eve F(?i)
 ….

Short)Distance$Flight"
fnum from to time plane
#1 YYZ ZRH mor Jet10
#2 ZRH LYS mor Jet10
#3 YYZ ?1 eve ?2
#4 ?1 LYS ""eve ?3

get(B’) Model$B’

by'

Map$$
r’

ΔB

Short)Distance$Flight"
fnum from to time plane
#1 YYZ ZRH mor Jet10
#2 ZRH LYS mor Jet10

Figure"7"
Fig. 6: Incremental implementation

Incremental propaga-
tion as described above
gives model B more in-
dependence than in case
2.2.1. However, while up-
date propagation from A
to B is allowed, update
propagation from B to A
is prohibited as we ex-
plain in the following.

Suppose that model B
is the result of customiz-
ing some previous model
B−, i.e., the update delta
∆− leading to B was in-

dependently produced on side B rather than propagated. We assume some pol-
icy that does allow such changes on side B if they do not affect side A, that
is, original model A−=A (consistent with B−) and updated model B are still
consistent. Then Customization on side B will be saved even if A changes and
the change is propagated incrementally as described by Fig. 6. However, the
policy is prohibitive towards B, if updated B− (i.e., B) and A− are inconsistent;
to restore consistency the policy would require to roll back ∆−. We will refer
to this situation where update propagation from A to B is allowed but update

6

propagation from B to A is prohibited by saying that model A dominates B
organizationally (but not strongly), and write A>orgB or B<orgA. We will also
term the case as organizational asymmetry ; then we may call the case in 2.2.1
strong organizational asymmetry.

2.2.3 Implementation is as important as specification: Round-tripping.
Consider a different business context, in which the technical team gains a greater
authority and administrative weight than before. Now, if while working with the
B-model originated from model A, the team would find a good modification B′,
e.g., new profitable os-flights, but B′ is inconsistent with A, then the B-team
may require to modify model A to a state A′ consistent with B′. In other words,
updates now can be propagated in both directions. We will refer to the case as
organizational symmetry of A and B, and write A≥≤orgB.

2.2.4 In-between organizational asymmetry and symmetry. In this case
only some updates can be propagated: Assume that model B is a database of
SdFlights, and A is its materialized view comprising all OsFlights. Of course,
the attribute fnum is to be skipped, and mapping ‘by’ is bijective: A ∼= get(B).

In our previous examples, view A was prescriptive in the sense that model
B was thought of as an implementation of A. Now we consider view A as an
ordinary descriptive view on the data source B, as is typical for databases. Yet
we still want to allow the user to update the view, say, to state A′, and propagate
the update back to the source. The problem is that there are many states B′

such that get(B′) = A′, but we cannot arbitrarily choose one of them: updated
state A′ reflects an updated state of the world, which is, in turn, reflected in the
unique updated source B′ (recall that B is a view of the real world data). In
other words, choosing an arbitrary update policy does not work anymore.

If the view update is insertion, we can manage the uniqueness problem by
filling unknown slots with labeled nulls (Section 2.2.2). Suppose, however, that
the view update is a deletion, for example, ld-flight #11 in Fig. 6 is deleted. This
deletion can be caused by a real world deletion of sd-flight #11.by.fst from YYZ
to ZRH, or flight #11.by.scd from ZRH to LYS, or both. We cannot arbitrarily
choose one of these choices, because rows of table SdFlight must represent actual
flights existing in the schedule. Hence, deletions in the viewAmust be prohibited.

Thus, some of view updates are propagatable, and some are not; however, any
view update is reachable from the source side B. The case is thus more symmetric
than organizational asymmetry in 2.2.2, but less symmetric than round-tripping
in 2.2.3. We will term the situation as organizational semi-symmetry (or partial
round-tripping) and write A≤orgB.

A dual semi-symmetry case, A≥orgB, is also possible. It means that all view
updates are propagatable, but only some of the source updates are allowed. For
example, we can imagine a propagation policy when sd-flight updates changing
costs, and hence possibly affecting prices, are propagatable, whereas updates
that imply deletions or additions of ld-flights are prohibited.

7

3 From a Line of Examples to a Space of Types

The series of scenarios in Section 2 is intuitively perceived as linearly progressing
from less to more symmetric synchronization behaviour. However, a more thor-
ough analysis reveals a richer structural landscape which is a three-dimensional
taxonomic space formed by three orthogonal synchronization features shown in
Fig. 7: Organisational symmetry, Informational symmetry, and Incrementality.
Symmetry of each feature is “measured” along its axis, and black and grey circles
present synchronization types, each one characterized by its triple of coordinates.
Below we will explain why six bottom types are split. Our sample scenarios are
naturally placed on a trajectory as shown by the solid blue arrow in Fig. 7. We
classify scenario from section 2.2.1 as (010), 2.2.2 as (011), 2.2.4 as (1

211), and
2.2.3 as (111).

In more detail, axis X is for indexing organizational symmetry (org-symm):
asymmetry is indexed by 0, symmetry by 1, and semi-symmetry or partial round-
tripping has index 1

2 . Axis Y is for informational symmetry (info-symm): asym-
metry and symmetry are indexed by 0 and 1 resp. Note that strong organizational
asymmetry (A�orgB in section 2.2.1) turns out to be a compound concept: it
is a combination of organizational asymmetry (org-symm.=0) and lack of incre-
mentality (incr.=0).

Axis Z is for “measuring” with how much incrementality (if at all) mod-
els are synchronized. Incrementality index (incr.) is set either to 0, if model
transformation is always executed from scratch, or to 1, if the transformation
is incremental, i.e., realized via delta propagation as shown in Fig. 6. A special
case of incremental transformation is when deltas are degenerated into pairs of
states (A,A′), (B,B′) and etc. (see [2]). We index this case by incr. = 1

2 and call
it discrete incrementality. For example, to generate code from a changed model

1"

Organisational
symmetry (X)

A"≥≤org"B"A"">org"B"A"≤info"B""

A""<org"B" A""≤org"B"

Informational
symmetry (Y)

A"≥≤info"B""

A""≥org"B"0"

(½00)" (100)""(000)"

(001)"

(111)"(011)"

(½01)"
(101)"

(½11)"

(010)"

Incrementality (Z)

(00½)"
(10½)"

−"

+"

−"

+"

Fig. 7: Taxonomic space of synchronization types

8

state A′, the transformation uses the original version of code B (generated from
the original model A). As mentioned in the introduction, concurrent updates are
not considered.

Computation vs. Organisation. In a synchronization scenario, we call for-
ward (source to view/target) and backward (view/target to source) synchro-
nization operations get and gen, respectively. These synchronization operations
form a computational framework of synchronization. On the other hand, there
is an organizational framework: It organizes different policies that prescribe one
or another use of synchronization operations. These two aspects – computation
and organization – are independent and should be separated in a foundational
synchronization framework. This is one of the main ideas of our space.

For example, in a database context, we sometimes require that views are cre-
ated and updated independently rather than receiving updates from the source,
and the source data cannot be changed other than via the view (i.e., source
data cannot be updated directly). With this policy it seems that we only re-
quire operation gen for our purpose, but we also need operation get to check the
correctness of source generation, i.e., to ensure equality get(gen(A)) = A or in-
clusion get(gen(A)) w A for a given view A (see [4] for invertibility requirements
etc.). In this scenario, the view is active – it issues updates that have to be
accepted by the source, while the source is a passive receiver of the updates and
cannot change the view. We also say that the view organizationally dominates
the source. However in another scenario, the organizational dominance can be
reversed so that the source is active, i.e., is created and updated independently,
while the view is a passive receiver of updates from the source. This is typical for
databases, but it is known that for some simple views, view updates are allowed
to be propagated back to the source, and then operation gen is needed.

In both scenarios, we need both forward and backward operations, but we
use them for different purposes. Thus, the presence of two mutually inverse op-
erations (get, gen) (the computational framework) does not say anything about
which side is active or passive, and how updates are propagated (the organi-
zational framework). The latter can be set independently of the computational
base: computation and organization are two orthogonal dimensions of model
synchronization. Different types of computational frameworks are placed in the
YZ-plane of the space, which is described in Sect. 4. Different types of synchro-
nization policies form axis X orthogonal to the YZ-plane are specified in Sect. 5.

Split types. An intricacy of the space is that some coordinates split into two
subtypes because of the asymmetry of dominance relations (see XZ-plane in
Fig. 7). When a type xyz comprises two asymmetric relations, it splits into
two subtypes depending on whether two dominant models coincide or not. We
will denote two corresponding types by xyz− (even less symmetry, since the
same model is “suppressed” in both relations), or xyz+ (if one model dominates
in one relation, and the other model in the other relation). Typical instances of
type (001)− are incrementally maintained database views, or incremental reverse
engineering. Typical instances of type (001)+ are incremental unidirectional re-
finements, particularly, code generation. As a results of this splitting, there are

9

3×2 + 3×2 + 3 = 15 types with info-symm=0 and 9 types with info-symm=1.
Hence, the total number of types is 15 + 9 = 24.

4 Computational framework: Lenses

A well-known mathematical framework for modeling bidirectional transforma-
tions is based on algebraic structures called lenses [11,2]. Roughly, an asymmet-
ric lens is a tuple L≤ = (V,S, get, gen) with V and S the source and view model
spaces resp., and (get, gen) a pair of operations mapping models from S to models
in V (get the view of the source), and back (generate the source from the view).
The operations are required to be mutually inverse in one or another sense. The
structure of model spaces and arities of the operations depend on whether the
transformations are incremental, and how incrementality is realized.

4.1 Non-incremental lenses

In the simplest case of non-incremental transformation, model spaces are just
sets of models, get and gen are ordinary unary operations, get : V← S and
gen : V→ S, and their invertibility amounts to equation A = get.(A.gen) holding
for any model A ∈ V. We have chosen the directions of get and gen as above to
correspond to the example in Section 2. Also, to recall directions of operations,
we write the arguments of get to the right, and of gen to the left, of the function
symbol.

Importantly, lenses do not require (get.B).gen = B for all B ∈ S as there
may be multiple different sources with the same view.

The algebraic structure described above is called a non-incremental (asym-

metric) lens. We denote them by double arrows L≤0 : V � S (think of two oper-
ations) with the upper semi-arrow giving the direction of get. The superscript

in the symbol L≤0 also points to the view space, and the subscript refers to
zero-incremental (i.e., non-incremental) transformation.

4.2 Incremental case

For modeling incremental transformations, i.e., update (delta) propagation, we
assume model spaces are categories, i.e., directed graphs with sequentially com-
posable arrows, whose objects/nodes are models, and arrows are intermodel
deltas. That is, a model space M is a pair (M•,M∆) with M• a set of models, and
M∆ a set of composable directed intermodel deltas, which includes an identity
loop delta idA : A→ A for every model A ∈ M∆ (see [4] for a detailed motiva-
tion). Incremental transformations are now modeled by operations get and gen
acting over models and deltas: get : V← S is a functor5, and gen : V∆×S• → S∆
an operation, which takes a view delta a : A→ A′ and an original source B such

5 a mapping sending nodes to nodes and edges to edges so that their incidence is
preserved, and arrow composition and identities are preserved as well

10

that A = get.B, and produce a source delta b : B → B′. In the lens jargon,
this is phrased as “put the view update back to the source”, and such binary
gen is usually denoted by put. Invertibility is specified by the PutGet law: if
(a : A→ A′, B).put = b : B → B′, then a = get.b for any a∈V∆, B∈S•. Thus,

a delta lens is a tuple (V,S, get, put) denoted by L≤1 : V � S with subindex 1

meaning incrementality. We thus have two notions of lenses, L≤incr with incr= 0
or 1 for non-incremental and incremental transformations resp.

A symmetric lens of incremental type incr ∈ {0, 1} is a pair of lenses, the

left one, L≥incr : M
 V, and the right one, R≤incr : V � N, working over a shared
view space V. The operations of forward, from M to N, and backward, from
N to M, delta propagation are defined by composing the corresponding gets
and puts. For a left delta a : A→ A′ and right model B∈N• such that A.getL =
getR.B, the corresponding right delta b : B → B′ can be computed by setting b =
(a.getL, B).putR. We thus have the operation fPpg : M∆×N• → N∆ of forward
update propagation. Dually defined is the operation of backward propagation
bPpg : M∆ ← M•×N∆: for given A ∈ M• and b : B → B′ ∈ N∆, bPpg(A, b) =
putL(A, getR.b) gives a left delta a : A→ A′. We will write a symmetric lens as a

tuple S≥≤incr = (M,N, fPpg, bPpg) omitting alignment operations, and denote them

by double-arrows S≥≤incr : M � N. 6 Spaces M and N are called the left and N the
right sources resp.

Note that an asymmetric lens R≤incr : V � S can be considered as a special

symmetric lens S≥≤incr : V � S whose left component is the identity lens Id≥ : V
 V,

and the right component is R≤incr.
Thus, we have four notions of lenses, which constitute four points in the

YZ-plane of our space.

4.3 Private vs. public deltas.

Let pair of lenses, L≥1 : M
 V and R≤1 : V � N, be a symmetric lens provid-
ing update/delta propagation from the left to the right space and back. Delta
a : A→ A′ in the left space is called private, if a.getL = idA.getL . Non-private

deltas are called public. Thus, we have a partition M∆ = Mprv
∆]Mpub

∆ . Similarly,

delta b : B → B′ is called private if idgetR(B) = getR(b), and N∆ = Nprv
∆] Npub

∆ .

5 The Process: Synchronization Cases and Types

5.1 Models as trajectories

Organizational symmetry is about change propagation, and we will consider a
changing model as a trajectory in the respective space. Let M be a metamodel,
and M = (M•,M∆) be the space of its instances and deltas as described above.
We define a model overM to be a mapping A : I → M•, whose domain I is a finite

6 Symmetric lenses can be defined in a more general way by defining fPpg and bPpg
axiomatically [2,3], but we do not need this generality for the present paper.

11

linearly ordered set {i0 < i1 < . . . < in} of version numbers or indexes. Thus,
A appears as the model’s immutable identity whereas its state A(i) changes as
index i runs over I. To simplify notation, below we will write Ai for A(i), and
by the abuse of terminology often call model’s states just models.

If i∈I is a version number and i−1 is its parent (the previous version num-
ber), we have a (directed) delta ai : Ai−1 → Ai specifying the change. We may
consider the pair (i−1, i) as an arrow from i−1 to i, and delta ai as the A-
image of this arrow in M∆. This makes I a directed graph, and A a graph
mapping. Moreover, we can make I a category I with nodes I• = I and arrows
I∆ = {i1i2 : i1 < i2 ∈ I×I}, arrow composition i1i2; i2i3 = i1i3) and identities ii.
Then a model trajectory is a functor A : I→ M, i.e., a graph mapping such that
A(i1i3) = A(i1i2);A(i2i3) and A(ii) = idAi

. For any non-initial index i, we write
ai for delta A(i−1, i) : Ai−1 → Ai to be read “the update that created model
Ai”.

To traverse set I, we will use operations i−1, i−2, ... and i+1, i+2, ... with
the evident meaning. (Not defined are i0 − 1 and in + 1.)

Class of all possible trajectories in space M is denoted by TrTrTr[M].

5.2 Synchronization cases and types

Synchronization of two models is about maintaining certain correspondences
between two trajectories, say, A : I→ M and B : J→ N, in two computationally
related model spaces. For example, we may assume the spaces are related by
a delta lens λ : M � N comprising operations of forward and backward delta
propagation as described in Section 4.

Partitioning of model deltas into private and public determines a similar
partitioning of index deltas and, resp., indexes themselves: I = Iprv] Ipub with

Iprv = {i ∈ I : ai ∈ Mprv
∆ } , and Ipub =

{
i ∈ I : ai ∈ Mpub

∆

}
,

and similarly J = Jprv] Jpub.
Since public updates destroy consistency, as soon as a public update is com-

mitted on one side, it must be propagated to the other side to restore consis-
tency. The propagated update is also public, but we call it passive while the
original update is active. For example, suppose that we have a public update
ai : Ai−1 → Ai, i.e., i ∈ Ipub. There are two possibilities for the case. Either up-
date ai was initiated on the A side (we say a is active) and then was propagated
to the B side. This means that there is a version number i� ∈ J and update
bi� : Bi�−1 → Bi� produced by this propagation (we then say that b is passive),
such that consistency of Ai and Bj is restored: Ai ∼ Bi�. Alternatively, ai is
the result of propagation from the other side (now a is passive) of some (active)
update bj : Bj−1 → Bj so that i = �j and we again have consistency A�j ∼ Bj
resulted from this backward propagation.

Then for a pair of synchronized trajectories as above, we have a partitioning
Ipub = Iact]Ipas, a partitioning Jpub = Jact]Jpas, and a pair of order-preserving

12

bijections,

� : Iact → Jpas and � : Ipas ← Jact.

This data imply an evident isomorphism i��j between Ipub and Jpub such that
for any pair i��j ∈ I×J , models Ai and Bj are consistent: Ai ∼ BJ .

The next definition gives an accurate formal specification of the case.

Definition 1 (Synchronization case). Given a lens λ : M � N, a (consistent)
synchronization case is a pairs of trajectories, A : I→ M and B : J→ N, with the
following additional structure.

(a) Sets Ipub and Jpub are further partitioned, Ipub = Iact] Ipas and Jpub =
Jact]Jpas, and two isomorphisms are given: � : Iact → Jpas and � : Ipas ← Jact.
This established an isomorphism �� : Ipub → Jpub, such that for any pair of cor-
responding indexes i��j ∈ I×J , models Ai and Bj are consistent: Ai ∼ Bj . Par-
ticularly, we assume that initial indexes correspond, i0��j0, and thus A0 ∼ B0.

Note also that set Ipub ⊂ I is also linearly ordered and has its own traversal
operations i−−−1 (long minus) and i++1 (long plus).

(b) Now we require the following. If i��j and i++1 ∈ Iact, then j++1 ∈ Jpas

and

ai++1.fPpg(Bj++1−1) = bj++1,

where ai++1 : Ai++1−1 → Ai++1, bj++1 : Bj++1−1 → Bj++1, andAi++1−1 ∼ Bj++1−1
as Ai ∼ Bj and all updates between i and i++1, and j and j++1 are private by
the definition of long plus.

If i��j and i++1 ∈ Ipas, then j++1 ∈ Jact and

ai++1 = bPpg(Ai++1−1).bj++1,

The necessary modification of this definition for the case of non-incremental lens
λ : M � N is evident.

Below we will often write a synchronization case over a lens λ : M � N as a
pair of trajectories (A,B) in spaces M and N resp., thus leaving all the necessary
extra structure specified in Definition 1 implicit.

5.3 Synchronization Types

The class of all synchronization cases over a given lens λ : M � N is denoted by
SCSCSC[λ]. It is a big set of pairs of synchronized trajectories that contains all possible
synchronization cases. If special organizational relations between the models are
assumed, some cases can be a priori prohibited. For example, we can make side
A an entirely passive receiver of changes from side B by requiring Iact = ∅.
Thinking extensionally (i.e., in terms of sets), an organizational relation is a set
of synchronization cases considered legal wrt. this relation. We call such sets
synchronization types.

Our first condition is quite general; it is a sort of a liveness condition for
types.

13

Definition 2 (Completeness). A set T ⊂ SCSCSC[λ] of synchronization cases is
called a (synchronization) type if it is complete in the following sense: for any
deltas d ∈ M∆ and e ∈ N∆, there is a case (A,B) with i ∈ I and j ∈ J such that
ai = d and bj = e.

Below we will describe several properties of synchronization cases. Each such

a property, say, Φ, determines a corresponding type, [Φ]
def
= {sc ∈ SCSCSC[λ] : sc |= Φ}.

We will name these properties and types in terms of organizational symmetry
or asymmetry.

We begin with a general pattern/schema of synchronization case properties.

Definition 3 ((P,Q)-symmetry). Let (A,B) be a sync case over a lens
λ : M � N, and a pair of sets P ⊂ M∆ and Q ⊂ N∆ of propagatable deltas
is given. We say the case is (P,Q)-compatible if ai ∈ P for all i ∈ Iact, and
bj ∈ Q for all j ∈ Jact. That is, a public update ai, i ∈ Ipub is allowed to prop-
agate to the other side iff ai ∈ P , that is, equivalence i ∈ Iact iff ai ∈ P holds.
Similarly, bj , j ∈ Jact is possible iff bj ∈ Q. We will also call (P,Q)-compatible
case (P,Q)-symmetric and write A><PQorg B.

Importantly, sets P and Q are determined organizationally rather than tech-
nologically in the sense that propagation operations are defined for non-propagatable
deltas. For example, when code is generated from a UML model by a forward
operation gen, the backward operation get is defined for all code deltas, and is
theoretically important for checking correctness of code generation (the GenGet
law). However, only some (or none) of code deltas are allowed to be propagated
back to the model.

The general PQ-symmetry has several important specializations.

Definition 4 (Organizationally asymmetric types). We say model A is
organisationally dominated by B or, equivalently, B dominates A, if P = ∅
whereas Q = N∪∆. Then we write A <org B or B >org A.

If the lens is symmetric, then propertiesA <org B andA >org B are equivalent
wrt. permutation of A and B. However, if the lens is asymmetric λ≤ : M � N,
then we have two different situation depending on which side of the lens is
dominated: we write A <+

org B if A <org B, and A <−org B if A >org B.

Definition 5 (round-tripping). Synchronization case (A,B) is called organi-
zationally symmetric, if P = M∪∆, Q = N∪∆, and both sets Iact and Jact are not
empty. We then write A><orgB.

A very special subtype of this type is interleaving, for which, in addition,
the following holds: Iprv = ∅ = Jprv. In other words, the two models actually
share the same set of version indexes, and all changes on either sides are at once
propagated to the other side in the interleaving mode.

Definition 6 (Partial roundtripping or semi-symmetry). Synchroniza-
tion case (A,B) is called organizationally semi-symmetric, if P M∪∆, Q = N∆,
and Iact and Jact are not empty. We then write A ≤org B and call the type
partial round-tripping.

14

Another partial round-tripping type A><PQorg is when both sets of propagat-
able deltas are partial: P M∪∆ and Q N∪∆, and Iact and Jact are not empty.

6 Symmetrization and its Challenges

The examples we discussed previously point to the importance of dealing with
networks of interacting models and model transformations rather than unidirec-
tional pipelines. Synchronization tasks in such network scenarios demand trans-
formation tools that support bidirectionality, incrementality, informational sym-
metry, and ultimately concurrent updates. We call this trend symmetrization
of model transformations. It poses several challenges for transformation tools.
Here, we want to attract attention to those challenges and make suggestions for
future practical and theoretical research.

Flexible Tool Architectures Developing synchronization tools that meet all
the requirements posed by symmetrization is hard to accomplish. We have shown
formally that several of these requirements are independent of each other. Some-
times features only need to be supported to some extent as we have shown with
1
2 indices on the incrementality and organisational axis.

Tool architectures need to reflect feature orthogonality and fine-grained re-
quirements by allowing for flexible combination of required features. For example,
when update procedures propagate deltas instead of states, the task of obtaining
deltas from given states can be flexibly assigned. They can be provided directly
by the editing tool or by comparing states and applying heuristics. The former
allows for fine-grained incremental updates, while the latter is better suitable
for concurrent, i.e. independent, updates.

Semantics of Synchronizations When synchronizing two models, two pro-
cedures of update propagation, from A to B and from B to A, must be con-
sistent between themselves, and satisfy some invertibility property (see [4,2] for
details). When implementing those procedures separately, proving and maintain-
ing consistency and invertibility for complex synchronization becomes a major
maintenance issue. The goal of bidirectional transformations (BX) is to specify a
consistency relation and let the update propagation procedures be inferred from
this specification, so that they are always consistent by construction. Because
there are usually many possibilities to restore consistency, the behaviour of the
inferred procedures must be predictable for a user. The situation with QVT-
R shows how unclear semantics of BX hinders tool implementation and user
acceptance [11]. Thus, a main challenge of symmetrization is to provide solid se-
mantics of BX, especially in combination with incrementality and informational
symmetry. The formal framework presented in the previous section is meant to
serve as a foundation for providing BX semantics.

Informational Symmetry Many BX approaches rely on informational asym-
metry. In practice, informational asymmetry rarely occurs. Even scenarios that
seem to be info-asymmetric at first glance are often info-symmetric because
most models contain some private part – e.g., layout information – that needs

15

to be preserved (though info-asymmetry can be a useful simplification). While
combinators for info-asymmetric BX have been shown to be very useful, their
symmetric counterparts are still missing.

Independent and Concurrent Updates When models that need to be syn-
chronized can be created independently and/or updated concurrently, solving
conflicts and matching models heuristically become important tasks. This differs
substantially from a situation that prohibits independent changes. Theoretical
and practical research is needed to deal with this situation adequately.

7 Related Work

Existing works on synchronization – practical and theoretical – usually focus only
on one specific type, i.e., one point in our space. For instance, original lenses as
presented by Foster et al. [5] formalize info-asymmetric state-based BX with
incrementality incr.=1/2. Info-symmetric state-based lenses with incr.=1/2 were
proposed in [11]. Delta-based lenses (incr.=1) were introduced for informational
asymmetry in [4] and symmetry in [2]. A unified specification of the entire family
of lens structures in Sect. 4 appears to be novel.

Triple Graph Grammars (TGG) [9,7] provide a more operational approach to
BX; for example, delta-lenses can be implemented by TGG [8]. Incrementality
in TGG has been also studied in [6,8].

The org-symmetry dimension has been discussed in the literature as unidi-
rectional vs. bidirectional transformations [1,9]. We present a more fine-grained
taxonomy by introducing organizational semi-symmetry. There is little related
work that describes the combination of several dimensions of model synchroniza-
tion and provides a formal foundation. Antkiewicz and Czarnecki’s [1] is closest
to ours in its intention to classify different synchronization scenarios, but deltas
are not considered there, and orthogonality of the dimensions is not elaborated.
We consider our work as a continuation of [1], and we are not aware of other
classification work in-between.

8 Conclusions

Symmetrization of MDE, i.e., the shift from model transformation pipelines to
networks of interacting models, poses several challenges for transformation tools,
e.g., support of bidirectionality, incrementality, informational symmetry, and
ultimately concurrent updates. Having a taxonomy of synchronization behaviors,
with a clear semantics for each taxonomic unit, could help to manage these
problems.

We presented a taxonomic 3D-space of model synchronization types and pro-
vided it with formal semantics. Two dimensions are computational and form a
taxonomic plane classifying pairs of mutually inverse transformation operations
realizing BX. The third dimension is orthogonal to the plane and classifies rela-
tionships of organizational dominance between the models to be kept in sync.

16

The space can be used to locate the type of the synchronization problem at
hand; from this type, we can infer the requirements for model transformations
tools and theories to be applied to the problem. We think of the space as a
communication medium for tool users and tool builders, in which they can specify
tool capabilities and behavior. We hope that our space could also guide future
research concerning bidirectional transformations. Concurrent updates are not
covered yet, although we are aware of its importance for MDE applications, and
leave it for future work.

References

1. Antkiewicz, M., Czarnecki, K.: Design Space of Heterogeneous Synchronization.
In: Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE. Lecture Notes in Computer
Science, vol. 5235, pp. 3–46. Springer (2007)

2. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
State- to Delta-Based Bidirectional Model Transformations: The Symmetric Case.
In: Whittle et al. [12], pp. 304–318

3. Diskin, Z., Maibaum, T.S.E.: Category Theory and Model-Driven Engineering:
From Formal Semantics to Design Patterns and Beyond. In: Golas, U., Soboll, T.
(eds.) ACCAT. EPTCS, vol. 93, pp. 1–21 (2012)

4. Diskin, Z., Xiong, Y., Czarnecki, K.: From State- to Delta-Based Bidirectional
Model Transformations: the Asymmetric Case. Journal of Object Technology 10,
6: 1–25 (2011)

5. Foster, J.N., Greenwald, M., Moore, J., Pierce, B., Schmitt, A.: Combinators for
bidirectional tree transformations: A linguistic approach to the view-update prob-
lem. ACM Trans. Program. Lang. Syst. 29(3) (2007)

6. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling 8, 21–43 (2009)

7. Golas, U., Lambers, L., Ehrig, H., Giese, H.: Toward bridging the gap between for-
mal foundations and current practice for triple graph grammars: Flexible relations
between source and target elements. In: ICGT’2012

8. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correct-
ness of Model Synchronization Based on Triple Graph Grammars. In: Whittle et al.
[12], pp. 668–682

9. Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars. In: ICGT. pp. 411–425
(2008)

10. Soley, R., et al.: Model Driven Architecture. OMG White Paper (2000)
11. Stevens, P.: Bidirectional model transformations in QVT: semantic issues and open

questions. Software and System Modeling 9(1), 7–20 (2010)
12. Whittle, J., Clark, T., Kühne, T. (eds.): Model Driven Engineering Languages and

Systems, 14th International Conference, MODELS 2011, Wellington, New Zealand,
October 16-21, 2011. Proceedings, Lecture Notes in Computer Science, vol. 6981.
Springer (2011)

