
Verifying Feature-Based Model Templates Against
Well-Formedness OCL Constraints

Krzysztof Czarnecki Krzysztof Pietroszek
University of Waterloo, Canada

{kczarnec,kmpietro}@swen.uwaterloo.ca

Abstract
Feature-based model templates have been recently proposed as a
approach for modeling software product lines. Unfortunately, tem-
plates are notoriously prone to errors that may go unnoticed for
long time. This is because such an error is usually exhibited for
some configurations only, and testing all configurations is typically
not feasible in practice. In this paper, we present an automated ver-
ification procedure for ensuring that no ill-structured template in-
stance will be generated from a correct configuration. We present
the formal underpinnings of our proposed approach, analyze its
complexity, and demonstrate its practical feasibility through a pro-
totype implementation.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specifications—Tools; D.2.2 [Software Engi-
neering]: Design Tools and Techniques—Computer-aided software
engineering (CASE)

General Terms Design

Keywords Model-driven development, software-product lines,
formal verification, configuration, feature modeling, model tem-
plates, metaprogramming, feature interaction, UML, OCL

1. Introduction
Recently, there has been an increasing interest of the software-
engineering community in generative and model-based software
development paradigms, such as OMG’s Model-Driven Architec-
ture (MDA) [12] or Microsoft’s Software Factories [8]. Addition-
ally, there has been a trend in the model-driven software engineer-
ing community, as exemplified by the Software Factories approach
in particular, towards supporting product-line practices in the mod-
eling context.

One approach that is geared towards modeling software prod-
uct lines isfeature-based model templates, which we proposed in
our earlier work [3]. A feature-based model template consists of a
feature model and an annotated model expressed in some general
modeling language such as UML or a domain-specific modeling
language. A feature model contains a set of features, or system
requirements, that are common or variable among the systems in
some application domain. A feature model also defines what com-

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-237-2/06/0010. . . $5.00
Reprinted from GPCE’06, [Unknown Proceedings], October 22–26, 2006, Portland,
Oregon, USA., pp. 1–??.

binations of features are allowed in a correct system specification.
The annotated model is a semantic specification of the features in
some appropriate modeling language. The annotations refer to the
features in the feature model, but they may have different forms. In
this paper, we consider annotating individual model elements with
presence conditions, which are analogous to the#ifdef directive
of the C preprocessor. Based on a particular configuration of fea-
tures, a template processor creates an instance of the template by
evaluating the presence conditions in the model and removing ele-
ments whose presence conditions evaluate to false. A key strength
of model templates is that they allow us to maintain several model
variants, such as variants of business or design models for different
product-line members, in a superimposed form within a single arti-
fact. Furthermore, the model annotations establish the traceability
between features and their realizations in the model.

Unfortunately, in our experience, creating and evolving model
templates has been an error-prone process because, for example,it
is easy to forget a necessary constraint in the feature model or an
annotation in the annotated model. While particular instances of the
template that are being currently used may be correct, instantiating
the template for other configurations, which one would expect to
be correct, could lead to incorrect template instances.

While there are many different notions of correctness, in this
paper we only concentrate on the well-formedness of the result-
ing instances. In particular, we give an automatic verification pro-
cedure which can establish that no ill-formed template instances
will be produced given a correct configuration of the template’s
feature model. The approach allows us to express the desired
well-formedness constraints in the Object-Constraint Language
(OCL) [14] with respect to the metamodel of the target modeling
language of the template instances. This key capability is achieved
through a new semantics of OCL for templates. The semantics
maps OCL constraints to propositional formuls, which are then
fed into a SAT solver. We present the formal underpinnings of our
proposed approach, analyze its complexity, and demonstrate its
practical feasibility through a prototype implementation.

As we are not aware of any other verification approaches for
feature-based model templates, we believe that our work is both
novel and an important step towards model-driven software product
lines.

The remainder of this paper is structured as follows. Section 2
presents the necessary background for feature-based model tem-
plates. Section 3 elaborates on the verification problem for model
templates. Section 4 gives an informal summary of the verification
procedure using an example. Formal definitions of the concepts in-
volved in the verification procedure, including model templates and
the template interpretation for OCL, are given in Appendices A and
B. Section 5 analyzes the computational complexity of the verifica-
tion procedure. A prototype implementation and some experience

1

with it are described in Sections 6 and 7. We report on the related
work in Section 8. Finally, Section 9 concludes the paper.

2. Feature-Based Model Templates
A feature-based model templateconsists of a feature model and
a model template. The feature model defines the structure of the
input parameters for the template. The model template is an an-
notated model expressed in the target notation defined by a meta-
model. We assume that the metamodel is defined using the Meta-
Object Facility (MOF) formalism [11], but the approach could be
also adapted for other metamodeling formalisms. Thus, the model
template can be a UML model, but it can also conform to a domain-
specific notation defined using MOF. The elements of the model
template can be associated with annotations referring to the fea-
tures in the feature model. In general, we distinguish between three
kinds of annotations:presence conditions, iteration directives, and
meta-expressions. In this paper, we only consider presence condi-
tions, which is the most basic and useful of the three annotation
kinds. Presence conditions define which elements of the annotated
model should be present in an instance of the template and which
not.

(a) Feature model

Product

 String description

 String name
 float price

 ...

 ...

Category
Catalog

Image3D

Image2D

«Categories & !MultipleClassification»

«MultipleClassification | !Categories»

«MultipleClassification | !Categories»

«3DImage» «3DImage»

«2DImage»«2DImage»

«Description»

«Categories»

«Categories»«Multilevel»

*

**

*

1..*

*

subCategories
*

**

*

(b) Annotated class model

Figure 1. Example of a UML class model template

An example of a feature-based model template is given in Fig-
ure 1. The example is an excerpt from a larger model of an e-
commerce platform, and it models various options for the catalog
structure of the platform.

Figure 1(a) shows a feature model in the cardinality-based
feature modeling notation [4]. A feature model is a tree struc-
ture with a root feature() as its root and the other nodes be-
ing solitary features, grouped features, or feature groups. In our
example, the root feature denotes the concept of a catalog struc-
ture, with two solitary features as its direct children, namely,
Categories and ProductInformation. Each solitary feature
has afeature cardinality, which is an interval of the form[m..n],
wherem ∈ Z ∧ n ∈ Z ∪ {∗} and0 ≤ m ≤ n, assuming that
∀m ∈ Z : m < ∗. Feature cardinality denotes how many copies
of the feature with its entire subtree can be included as children of
the feature’s parent when specifying a concrete configuration. In
this paper, we only consider cardinality-based modeling notation
without cloning, i.e., a subset of the general notation for which
the only allowed feature cardinalities are[0..0], [0..1], and [1..1].
Features with the cardinality[1..1] are referred to asmandatory
(), whereas features with the cardinality[0..1] are calledoptional
(). For example,ProductInformation is mandatory, whereas
Categories is optional. In other words, all catalogs described by
the feature model support storing product information, but they
may or may not organize products into categories.Categories
has four optional subfeatures:MultipleClassification allows

a product to belong to multiple categories;Multilevel denotes
support for nested categories;Description stands for categories
supporting category descriptions; andThumbnails stands for cat-
egories showing thumbnail images of the contained products.
Furthermore,ProductInformation has the optional subfeature
AssociatedAssets, which denotes support for storing various
media files. In our example,AssociatedAssets has anor-group
() with two grouped features, namely,2DImage and3DImage.
In other words, product information may have support for storing
two-dimensional images, or three-dimensional images, or both. In
general, a feature group gathersk features and has agroup cardi-
nality, which is an interval of the form〈m–n〉, wherem, n ∈ Z

and0 ≤ m ≤ n ≤ k. Group cardinality denotes how many group
members can be selected. The group cardinality of an or-group is
〈1–k〉, which is〈1–2〉 for the or-group in Figure 1(a). In addition
to the node hierarchy and the cardinalities, a feature model may
also contain additional constraints, such asrequiresandexcludes
constraints. In our example, selectingThumbnails for categories
requires selecting2DImage for product information.

(a) Feature configuration

Product

 String name
 float price

 ...

 ...

Category
Catalog

Image2D

«MultipleClassification | !Categories»

«MultipleClassification | !Categories»

«2DImage» «2DImage»

«Categories»

«Categories»«Multilevel»

* *
*

1..*

subCategories
*

*

*

(b) Template instance

Figure 2. Feature configuration and the corresponding template
instance

A feature model denotes a set of configurations. Aconfiguration
of a feature model is a subset of its features. Acorrect configura-
tion is one that satisfies (i) the constraints represented by the fea-
ture hierarchy, (ii) the constraints represented by the cardinalities,
and (iii) the additional constraints. The first set of constraints (i)
contains the root feature of the feature model and, for every other
feature in the model, an implication from the feature to its par-
ent feature. The second set (ii) contains implications of the form
f ⇒ choicem,n(f1, . . . , fk) for every feature groupf1, . . . , fk

and its parent featuref and implications of the formf1 ⇒ f2

for every mandatory featuref2 and its parentf1. The meaning
of choicem,n is as follows. Given the propositional logic formu-
las p1, . . . , pk and0 ≤ m ≤ n ≤ k, choicem,n(p1, . . . , pk) is
true iff at leastm and at mostn of p1, . . . , pk are true. The set of
additional constraints (iii) for the model in Figure 1(a) consists of
the implicationThumbnail ⇒ 2DImage. Thus, the set of correct
configurations of a feature model without cloning can be captured
by a propositional logic formula, which is the conjunction of all the
constraints in these three sets. For the feature model in Figure 1(a)
and assuming the abbreviations in Table 1, this formulaqFM is as
follows:

qFM =
root: cs∧
child-parent: (ct ⇒ cs) ∧ (mc ⇒ ct) ∧ (ml ⇒ ct)∧

(ds ⇒ ct) ∧ (tn ⇒ ct) ∧ (pi ⇒ cs)∧
(aa ⇒ pi) ∧ (i2 ⇒ aa) ∧ (i3 ⇒ aa)∧

group: (aa ⇒ choice1,2(i2, i3))∧
mandatory: (cs ⇒ pi)∧
additional: (tn ⇒ i2)

(1)

2

Table 1. Abbreviations of feature names from Figure 1(a)
Feature Abbr. Feature Abbr.

CatalogStructure cs Thumbnails tn

Categories ct ProductInformation pi

MultipleClassification mc AssociatedAssets aa

Multilevel ml 2DImage i2

Description ds 3DImage i3

Data flow

Feature model

Feature configuration
Automatic template instantiation
− Evaluation of presence conditions
− Element removal

Manual configuration process

Refers to features
Model template
− Expressed in target notation

Template instance

through annotations

− Annotated with presence conditions

Process Artifact

Figure 3. Model template instantiation

where

choice1,2(i2, i3) = i2 ∧ ¬i3 ∨ ¬i2 ∧ i3 ∨ i2 ∧ i3 = i2 ∨ i3

The feature model in Figure 1(a) denotes 52 correct configura-
tions. A sample correct configuration is shown in Figure 2(a) using
a so-calledcheck-box renderingof a configuration tool [5]. In this
rendering, optional features are shown as check boxes. The boxes
of selected features are checked. The boxes of eliminated features
are crossed.

Figure 1(b) shows an example of a UML class model template,
which is a UML class model annotated with presence conditions.
In this paper, we assume that presence conditions are propositional
formulas over the features from the feature model. A presence con-
dition defines for which combinations of features a given model
element is required. In Figure 1(b), presence conditions are shown
as UML stereotypes. For example, the classImage2D and the adja-
cent association are annotated with the feature2DImage, meaning
that they are only needed if2DImage is selected. Although the ma-
jority of elements is annotated with single features, more complex
presence conditions are sometimes required, such as in the case
of the containment relationship betweenCatalog andProduct.
The latter presence condition is required since products need to
be contained directly in the catalog if categories are not supported
or if multiple classification is allowed. The presence condition of
Product, which is not annotated, is assumed to be true by default.
As realized in a prototype implementation [3], the display of the
stereotype labels next to the annotated elements can be optionally
suppressed, and a color encoding can be applied to the elements
based on the stereotypes.

The key idea of a feature-based model template is that, given
a particular feature configuration, an instance of the template can
be automatically created by removing the model elements whose
presence conditions evaluate to false. An overview of this process is
presented in Figure 3. Figure 2(b) shows an instance of the template
in Figure 1(b) for the configuration in Figure 2(a). For example, the
classImage3D is not present in the instance because the feature
3DImage was eliminated.

3. Well-Formedness Problem of Model Templates
An important concern of template development is ensuring its cor-
rectness. A feature-based template is correct iff every correct con-
figuration results in a correct template instance. Although, template
users can apply verification techniques directly to the template in-
stances they create, the template developer ideally should ensure
the correctness of a template before it is passed on to the users.
Template correctness will save the users from potentially having to
deal with the template developer’s bugs.

An important aspect of template correctness is well-formedness.
In our experience, it is easy to make a mistake in a model tem-
plate that will lead to an ill-formed instance for a correct con-
figuration. A similar problem often occurs in practice with other
kinds of templates, such as server-side templates for producing
web pages or C pre-processor directives, too. In our case, mis-
takes could be made in the feature model, the annotated model,
and/or the annotations. For example, the template developer could
forget to include an additional constraint in the feature model or at-
tach an appropriate annotation to an element. Such mistakes are
particularly likely when new features and variants are added to
the template, e.g., during an extension of a product line with new
products. In fact, the template in Figure 1 has an annotation er-
ror, which will lead to a dangling association for any configura-
tion with Categories being false. The resulting malformed in-
stance for one such correct configuration is shown in Figure 4.
The annotation error in Figure 1(b) can be corrected by changing
the annotation of the non-aggregate association betweenCategory
andProduct from MultipleClassification | !Categories
to just MultipleClassification. The example in Figure 1 is
based on a previous paper [3]. Early drafts of that paper had ex-
actly the erroneous example from Figure 1, which went unnoticed
for several revisions of the paper.

(a) Correct configuration

Product

 String name
 float price
 ...

Catalog

Image2D

«MultipleClassification | !Categories»

«MultipleClassification | !Categories»

«2DImage» «2DImage»
* *

1..*

**

(b) Malformed template instance

Figure 4. Sample configuration leading to a dangling association

In this paper, we assume that the abstract syntax of the target
modeling notation is given by a metamodel expressed in MOF,
which is essentially a combination of a class model and addi-
tional well-formedness constraints expressed in OCL. A model
is well-formed iff it conforms to the metamodel, i.e., it satisfies
the multiplicities and the OCL constraints of the metamodel. Fig-
ure 5 shows a fragment of the UML 2.0 metamodel for class
modeling. A sample class model conforming to the metamodel is
shown in Figure 6. The sample model is actually an excerpt from
Figure 1(a) containing the incorrectly annotated association. Fig-
ure 6(a) shows the sample model using the UML concrete syntax.
The corresponding abstract syntax using the UML object diagram
notation is shown in Figure 6(b). Note that the association between
Category andProduct is represented by three objects: an instance
of Association and two instances ofProperty. The properties,
which play the role ofmemberEnds, are contained by the respective
instances ofClass. For simplicity, we do not show the abstract syn-
tax objects representing the stereotypes attached toCategory and
the association, but we only indicate them using concrete syntax in
Figure 6(b).

3

Figure 5. Fragment of the UML 2.0 metamodel for class modeling

Category

Product

«MultipleClassificatio | !Categories»

«Categories»

(a) Concrete syntax

a:Association

e2:Property

c1:Class
e1:Property

c2:Class
memberEnd

memberEnd

«MultipleClassification | !Categories»

name = "Category"

name = "Product"

«Categories»

(b) Abstract syntax

Figure 6. Sample class model conforming to Figure 5

Well-formedness constraints may come from different sources.
One such source is the specification of the language being used,
i.e., the UML standard [13] in our example. Some well-formedness
constraints are stated in the UML standard explicitly. For example,
the standard contains the following constraint expressed as an OCL
invariant onAssociation (see Figure 5) and stating that only
binary associations can be aggregations [13, p. 55]:

context Association inv:
self.memberEnd->exists

(aggregation<>AggregationKind::none)
implies self.memberEnd->size() = 2

Unfortunately, many well-formedness constraints need to be in-
ferred from the informal text of the UML specification. For exam-
ple, the requirement in the standard [13, p. 56] that “a part instance
be included in at most one composite at a time,” implies that a class
cannot participate in more than one composition at the part end if
any of these compositions has the multiplicity [1..1] at the aggre-
gate end. The latter can be stated as the following OCL constraint,
which is not given in the specification explicitly:

context Class inv:
let oppositeAggEnds = self.attribute->collect

(opposite)->select(isComposite)
in oppositeAggEnds->size() = 1 or

oppositeAggEnds->forAll
(lowerBound()=0 and upperBound()=1)

In general, well-formedness constraints may be more complex
than the two previous examples, such as a constraint ensuring that
a classifier realizing an interface has to implement all operations of
the interface. Furthermore, they may span different subnotations of

Sample correct configurations leading to

Verification procedure

Class model of the
metamodel OCL constraints

Answer: yes or no

malformed template instances

Is instance of Written with respect to

HasHas

Data flow

Feature model Model template

Feature−based model template

Figure 7. Context of the verification procedure

UML, such as a constraint ensuring that an operation called in an
activity model is actually present in the class model.

Additional well-formedness constraints may be needed when
the modeling language is specialized for a specific application do-
main or for the purposes of a particular project, e.g., to enforce a
particular set of modeling style guidelines. In UML, such special-
izations are represented as profiles, which contain the additional
constraints. For example, a profile for business entity models such
as the one in Figure 2(b) could include the stereotype≪root≫ with
the constraint that any class not marked by that stereotype must par-
ticipate in at least one composition at the part end.

The need for the template instance to satisfy the multiplicities
in the class diagram can be stated as a set of additional OCL
constraints. Thus, a verification procedure that can ensure the well-
formedness of all template instances for all correct configurations
against a set of OCL constraints can also be used to ensure the well-
formedness of the instances with respect to the multiplicities of
the metamodel. Consequently, any multiplicity [m ..n] in the class
model of the metamodel that is other than [0..*] can be relaxed to
[0..*] by extending the set of well-formedness rules with an OCL
constraint of the following form:

context c inv: (2)
let s:Integer = self.r ->size() in m <=s and s<=n

In the above constraint,r is the role name at the binary associ-
ation end with the the multiplicity [m ..n] and c is a class at the
opposite end of the association. Interestingly, there are relatively
few non-composite association ends with multiplicity other than
[0..*] in the UML 2.0 metamodel. For example, the metamodel
part covering class modeling has fewer than ten such cases, which,
except for [2..*] on memberEnd (see Figure 5), involve only mul-
tiplicities of the form [0..1], [1..1], and [1..*].

While the well-formedness of a model is relatively easy to es-
tablish by simply evaluating the well-formedness constraints on the
model, establishing well-formedness for model templates is not so
easy. The reason is that a template may have a huge number of cor-
rect configurations and creating and individually checking an in-
stance for each correct configuration is usually not feasible. While
the small feature model in Figure 1(a) already has 52 correct con-
figurations, that number can easily reach astronomic dimensions
for practical feature models. Therefore, we need an efficient auto-
matic verification procedure for establishing the well-formedness
of model templates.

4. Verification Approach
The context of the verification procedure is shown in Figure 7. The
procedure takes a feature-based model template, which consists
of a feature model and an annotated model (i.e., template), the
class model of which the annotated model is an instance of, and
a set of well-formedness rules in OCL. The OCL rules are written
with respect to the class model, and the class model and the rules

4

form the metamodel of the target language, to which all template
instances should conform. Consequently, in addition to being part
of the metamodel of the target language, the class diagram is also
the metamodel for the annotated model, i.e., the template.

4.1 Template Interpretation of OCL

Verifying that for all correct configurations of a feature model the
resulting template instances are well-formed with respect to a set of
OCL constraints can be achieved through an alternative semantics
of OCL, which we refer to as thetemplate interpretation. In a nut-
shell, while OCL expressions are normally evaluated over object
structures, the template interpretation allows us to evaluate an OCL
expression over a template, i.e., an object structure whose objects
have presence conditions, as shown in Figure 6(b). The result of
evaluating an expression over a template using the template inter-
pretation is a set of all the values that could be obtained from eval-
uating the same expression on all instances of the template using
the standard OCL semantics. Furthermore, each value in that set is
annotated with its own presence condition, which is a propositional
formula over the features from the feature model. The condition is
such that, given a template instance that was created from a feature
configuration satisfying the condition, evaluating the OCL expres-
sion using the usual OCL semantics over the template instance will
yield the associated value. In other words, the template interpreta-
tion of OCL involves operations over sets of value-condition pairs.
While the precise definition of the template interpretation is given
in Appendix B, we illustrate its main idea in this section using an
example.

Each OCL constraint that we want to check has the form of
an invariant on some classc, with the constraint’s body being a
Boolean OCL expressione:

context c inv:
e (3)

The standard OCL interpretation of this invariant with respect
to a model is thate should evaluate to true for every objectc of
the classc. The template interpretation ofe, on the other hand,
yields{(true, pt), (false, pf), (⊥, p⊥)}, wherept, pf , andp⊥ are
propositional formulas over features. Note that OCL uses a three-
value logic and⊥ denotes “undefined”.

As an example, let us consider a constraint requiring that every
association has at least two ends:

context Association inv:
memberEnd->size() > 1 (4)

Without considering its presence conditions, the model in Fig-
ure 1(b) satisfies this constraint since every association in that
model has at least two ends. In particular, evaluatingmemberEnd
->size() > 1 on a1 in Figure 6 using the standard OCL inter-
pretation clearly yields true sincea1 is associated with two ends,
namelye1 ande2. More precisely, navigating tomemberEnd from
a1 yields{e1, e2}, applyingsize() to this set yields 2, and com-
paring2 > 1 yields true.

Let us now consider the template interpretation ofmemberEnd
->size() > 1 on a1. First, navigating tomemberEnd from a1
yields{(e1, p∗(e1)), (e2, p∗(e2))}, wherep∗(e1) andp∗(e2) de-
note theaccumulated presence conditionsof e1 ande2, respec-
tively. The accumulated presence condition of an objectc is the
conjunction of the presence condition ofc and all its container ob-
jects, if any. Thus, given that the presence condition ofe1 is true
and the presence condition of its containing object, namelyc1 (see
Figure 6), isct, p∗(e1) is ct ∧ true, i.e.,ct. A similar calculation
for p∗(e2) yields true.

The next step, which is the application ofsize() to the result
of memberEnd, i.e.,{(e1, p∗(e1)), (e2, p∗(e2))}, yields the set of

three possible values, i.e., 0, 1, or 2, with their corresponding con-
ditions:{(0,¬p∗(e1)∧¬p∗(e2)), (1, p∗(e1)∧¬p∗(e2)∨¬p∗(e1)∧
p∗(e2)), (2, p∗(e1) ∧ p∗(e2))}.

Finally, we need to apply the binary comparison operator>.
While the standard interpretation of this operator takes two num-
bers and returns true or false, the template interpretation takes
two sets, e.g.,{(1, p1), (2, p2)} and {(0, p3), (3, p4)}, where
p1, . . . , p4 are conditions, and yields a set that contains the re-
sults for all possible combinations of the arguments, i.e.,{(1 >
0, p1 ∧ p3), (1 > 3, p1 ∧ p4), (2 > 0, p2 ∧ p3), (2 > 3, p2 ∧ p4)}.
The latter set is easily simplified to{(true, p1 ∧ p3 ∨ p2 ∧
p3), (false, p1 ∧ p4 ∨ p2 ∧ p4)}.

Coming back to our original example, we need to compare
the result ofself.memberEnds->size(), namely{(0,¬p∗(e1)∧
¬p∗(e2)), (1, p∗(e1)∧¬p∗(e2)∨¬p∗(e1)∧p∗(e2)), (2, p∗(e1)∧
p∗(e2))}, and{(1, true)}. The latter set is the template interpreta-
tion of the OCL literal1. The result of this comparison is the fol-
lowing set:{(0 > 1,¬p∗(e1)∧¬p∗(e2)∧ true), (1 > 1, p∗(e1)∧
¬p∗(e2) ∨ ¬p∗(e1) ∧ p∗(e2) ∧ true), (2 > 1, p∗(e1) ∧ p∗(e2) ∧
true)}, which can be easily simplified to the following set:

{(true, p∗(e1) ∧ p∗(e2)), (false,¬(p∗(e1) ∧ p∗(e2)))} (5)

4.2 Verification Steps

Given the OCL constraint (3), we can verify a template against
the constraint for every object of classc in the template. The
verification for a given objectc can be achieved in two steps.

1. We evaluatee for c (i.e., assuming thatself refers to{(c, true)})
using the template interpretation. The template interpretation
of e yields{(true, pt), (false, pf), (⊥, p⊥)}. The resulting for-
mula pt is needed as an input for the next step. According to
our calculation in the previous section, the template interpreta-
tion of the body expression of the constraint (4) on the object
a (see Figure 6) is{(true, p∗(e1)∧ p∗(e2)), (false,¬(p∗(e1)∧
p∗(e2))), (⊥, false)} (see set (5)). Thus, in our example,pt is
p∗(e1)∧p∗(e2), which becomesct after substituting the values
for the accumulated presence conditions.

2. We check the validity of the propositional formulaqFM ⇒
(p∗(c) ⇒ pt). If the formula is valid, the template is well-
formed with respect to (3) forc. In that formula,qFM is the
propositional formula representing the set of correct feature
configurations of the feature modelFM. In our example, after
substituting the values forp∗(a) andpt, the formula that we
need to check for validity isqFM ⇒ ((mc∨¬ct) ⇒ ct), where
qFM is given in the equation (1).

Let us explain these two steps. The template interpretation ofe
in step one yields a set of value-condition pairs, where each con-
dition represents a family of template instances for whiche will
evaluate to the corresponding value using the standard OCL se-
mantics. According to the set, the standard OCL interpretation ofe
for c in the context of any template instance created from a feature
configuration for whichpt is true will yield true. However, we only
care about ensuringe for c in a template instance ifc is present in
that instance, i.e.,p∗(c) evaluates to true for the configuration from
which the template instance was created. Consequently, the con-
straint (3) will not be violated forc in a template instance created
from any configuration for whichp∗(c) ⇒ pt is true. Thus, the de-
sired correctness of template instances for correct configurations is
established iff the latter condition is implied by the feature model,
i.e., qFM ⇒ (p∗(c) ⇒ pt) is valid, meaning that it is true for any
configuration, correct or not. Consequently, step two verifies the
well-formedness of the template against the OCL constraint (3) for
c by checking the validity of the formula representing the correct-
ness condition.

5

4.3 Error Detection, Reporting, and Resolution

Step two of our verification approach requires verifying the valid-
ity of a propositional formula. In practice, this can be achieved by
checking the satisfiability of the negation of the formula using a
SAT solver. Although the satisfiability problem is NP-complete,
there are SAT-solvers that can very efficiently check satisfiability
for practical cases. In particular, our experience with solvers based
on Binary-Decision Diagrams (BDDs) has been very positive. We
comment on the latter in Section 5. If the negation is satisfiable,
we have just found an error in our feature-based model template.
A SAT solver will usually also give sample valuations, which cor-
respond to configurations in our context, for which the resulting
template instances will not be well-formed. Furthermore, since we
check each constraint for each instance of the context class sepa-
rately, an error can be pinpointed to a particular object in the tem-
plate. In our example, the negation of the correctness formula, i.e.,
¬(qFM ⇒ ((mc ∨ ¬ct) ⇒ ct)), is satisfiable, with a sample solu-
tion being the configuration in Figure 4(a). Thus, for that configu-
ration, the constraint (4) is violated for the associationa.

The cause for the invalidity of the correctness formula may be
located in the feature model, the annotations, and/or the structure
of the annotated model. Checking the individual constituents of the
correctness formula may be helpful in locating that cause. Above
all, we want to check the satisfiability ofqFM to make sure that
the set of correct configurations is non-empty. Furthermore, if the
formula p∗(c) ⇒ pt is not satisfiable, we know that there is
a guaranteed error in the template (its annotations and/or model
structure), while the feature model may be correct. Finally, when
none of the two previous cases is true but the correctness formula
is not valid and the template developer determines by inspecting
the template that the annotations and the structure of the annotated
model is correct, we may have a case that a constraint is missing
in the feature model. The missing constraint could come either
from the problem space (domain analysis) or it could be necessary
because of the particular implementation of the feature model in
the model template (i.e., constraint determined by the solution
space). In that case, we can apply one of the existing formula
simplifiers from the field of hardware synthesis on the negation of
the correctness formula and add the result to the feature model as an
additional constraint. The latter action corresponds to propagating
a constraint from the solution space to the problem space.

5. Computational Complexity of the Approach
In this section, we characterize the complexity of our verification
procedure by analyzing both verification steps from Section 4.

In the case of step one, we need to only look at the space com-
plexity of evaluating an OCL expression according to its template
semantics since the size of the collections is the main performance
bottleneck of the evaluation. This complexity can be characterized
in terms of the sizes of the collections (e.g., sets of alternatives) in-
volved in the computation. In particular, the complexity is heavily
dependent on the kinds of operations and their usage patterns in the
expression. We classify some OCL operations that routinely occur
in well-formedness constraints (such as those for UML) in terms of
their worst-case space complexity in Table 2.

Looking at Table 2, we should be only concerned about the last
two entries. Binary operations such as+ and− can be a concern,
but only if they are used in certain undesirable patterns, such as
chaining them. For example, an expression of the formx1+. . .+xn

has the complexityO(mn) (assumingm is the size ofxi), i.e, it is
only tractable for a smalln. Fortunately, we have not come across
the need to write such expression in well-formedness constraints
based on our analysis of the UML specification. The operationsize
on collections has the worst complexity. Again, we found that we

Table 2. Space complexity of OCL operations according to tem-
plate semantics

Operations Result collec-
tion sizea

nullary:12, etc. O(1)

unary:not,−, toUpper, toLower, length(String), isEmpty,
notEmpty, isDefined

O(n)

binary:union, include O(n + m)

binary:+, −, ∗, and, or, implies, xor, concat, =, <, >,
<=, >=, includes; iteration:exists, forAll, select, reject,
collect

O(n ∗ m)

unary:size(Collection(t)) O(2n)

a For unary operations,n is the size of the input collection. For binary operations, the
input collections have sizesn andm, respectively. For iteration operations, the size of
the input collection isn and the size of each collection resulting from evaluating the
iteration expression on each input element is assumed to bem.

only needed to applysizeon collections of relatively small sizes
in well-formedness constraints. For example,sizeis often used to
enforce multiplicities as in constraint (2). Since the upper bound of
the multiplicities that need to be enforced is usually small (such as
1 or 2; note that * does not need to be enforced), the corresponding
collections of optional elements in the template are not likely to be
large.

The complexity of the second step when using a BDD-based
SAT solver is usually dependent mainly on the number and the
ordering of variables in the formula to be checked. Although the
worst-case complexity for this step can be exponential, experience
shows that such solvers can handle many practical problems effi-
ciently.

6. Prototype Implementation
In order to establish the practical feasibility of our approach, we
have implemented a template verifier according to the procedure
presented in this paper as part offmp2rsm[3], which is a plug-in
extending the IBM Rational Software Modeler (RSM) with feature-
based model templates. RSM is an Eclipse based environment for
UML 2.0 modeling. Support for feature modeling withinfmp2rsm
is provided through another Eclipse-based plug-in, namely Fea-
ture Modeling Plugin [1], which can run inside of RSM.1 Figure 8
shows a screen shot of our prototype after detecting the dangling as-
sociation betweenProduct andCategory. The template shown is
the one from Figure 1. The verifier reports the error and pinpoints it
by highlighting the association and the two classes. A sample con-
figuration that will result in the dangling association is also given.
The well-formedness constraints and the text to be shown if they
are not met can be given to the tool in a XML file. The complete
OCL constraint expressing the absence of dangling associations is
as follows:

context Association inv:
memberEnd->size() > 1 and
memberEnd->forAll(type.isDefined) (6)

We have implemented the template interpretation for OCL by
modifying an existing OCL evaluator, namely theDresden OCL
Toolkit [16]. We reuse the OCL parser generated by Ansgar Kon-
nermann using the LALR(1) parser generatorSableCC[7]. Our
current implementation of the evaluator using the template interpre-
tation supports object navigation; arithmetic, logic, and relational
operations; and collection operations includingsize, isEmpty,
notEmpty, exists, forAll, collect, select, reject, and

1 Online demonstrations of the fmp2rsm including the verifier are available
athttp://gp.uwaterloo.ca/fmp/.

6

Figure 8. Screenshot of the fmp2rsm tool with the integrated tem-
plate verifier

includes. We check the satisfiability of the propositional formula
¬ (qFM ⇒ (p∗(c) ⇒ pt)) using the JavaBDD package [18].

The current implementation of the verifier works as follows. Be-
fore checking any constraints, the propositional formulaqFM de-
scribing the correct configurations of the feature model is created
as a BDD. This step is done only once, as the result is reused when
checking the individual constraints. Next, the OCL constraints are
evaluated using the modified OCL evaluator. Currently, thept for-
mula that results from each evaluation is represented as a string,
which is then parsed and converted into a BDD. The string repre-
sentation simplifies interfacing with different BDD packages. How-
ever, better performance could potentially be achieved by having
the OCL evaluator build and manipulate BDDs directly, as the in-
termediate propositional formulas would be possibly simplified im-
mediately. The BDD of each formula to be checked for satisfiability
is obtained by appropriately merging the BDDs of the constituent
formulas, namelyqFM, pt, andp∗(c). Finally, each resulting BDD
is checked if it has any solutions.

7. Experimental Evaluation
We have tested our prototype on business model templates for an
e-commerce platform, which were developed by a member of our
group who was not involved in the research on template verifica-
tion. A detailed description of the templates is available [10]. The
templates include a feature model with 214 features, 5 annotated
class diagrams with 38 classes (28 annotated), and 17 activity di-
agrams with 238 nodes (31 annotated). The models contain a total
of 138 annotations, which use 79 features. The templates are based
on the business models of the IBM Websphere Commerce prod-
uct, which are part of the product’s documentation. Therefore, we
believe that the templates are representative of practical business
templates in terms of their structure. Our verifier found 7 dangling
associations in the templates as given in [10].

In our experiments, the average time for creating the BDD for
the feature model from the case study on a Pentium IV M 1.7GHz
with 1 GB RAM was less than a minute. Checking for dangling
associations on the annotated class model took less than a second.
Checking for potential composition sharing (see the constraint in
Section 3) took about 10 seconds. Verifying the constraints for the
absence of dangling associations and composition sharing is linear
with the number of associations in the model the constraint (6)
accesses only the close neighbors of a context object.2 Constraints
that navigate over large portions of a model are usually more
expensive. For example, the following constraint ensures that no
template instance has an unused enumeration type:

context Enumeration inv:
Class.allInstances()->collect

(attribute.type)->includes(self)

Checking this constraint on the annotated class model took
about 30 seconds. Obviously, this time depends on the size of the
model.

8. Related Work
We are not aware of any existing work on (1) the verification of
code or model templates whose input are feature models and (2)
the verification of model templates in particular. Probably the clos-
est work is that of Huang et al. [9] on verifying a particular flavor of
Java templates, which uses a simple metalanguage equipped with
selection and iteration. The input for these templates is also Java
code, which must conform to a set of constraints expressed in pred-
icate logic and specified by the template developer. Furthermore,
the template developer specifies predicate logic constraints on the
the template instances. The template verifier can then check that
latter constraints will hold for any instance created from a correct
input. The latter statement also applies to our approach; however,
there are important differences. The focus of our approach is differ-
ent since we want to support feature models created during domain
analysis for a product line as the description of template input. Fur-
thermore, we restricted the metalanguage for the purpose of the
verification to selection only (i.e., presence conditions). While this
may seem very restrictive, a great deal of model templates needed
in the product-line context, such as templates for business process
models, rarely require more than presence conditions. In particu-
lar, adding iteration directive would likely make the templates too
programming-oriented for business modelers. Using feature mod-
els as the input structure coupled with the metalanguage being pres-
ence conditions in the form of propositional formulas over the fea-
tures makes our approach computationally more tractable. In par-
ticular, the Java template verifier has to call a theorem prover, while
we only need a SAT solver. Furthermore, the Java template verifier
is not guaranteed to come up with a positive or negative answer for
all templates and template inputs. This is not the case for our veri-
fication procedure, which is both sound and complete. Finally, the
Java template verifier works on code templates, while our approach,
through the use of MOF and OCL, is geared towards modeling.
However, our approach can also be used for code templates whose
input is described by feature models, in which case the abstract syn-
tax of the programming language would need be expressed using
MOF and OCL.

2 Checking the constraint for dangling association is exponential with the
arity of an association because of the complexity of thesize operation.
Fortunately, associations with an arity higher than three are extremely rare
in practice. Also, checking for composition sharing is exponential with the
number of compositions in which a class participates. Similarly, this number
is usually small in practice.

7

The application of SAT solvers for creating configurations of
and verifying feature models is not new. In particular, the formal-
ization of feature models based on predicate logic presented in Sec-
tion 2 was inspired by Batory’s work [2], which also recommends
the use of SAT solvers. Furthermore, the use of BDD-based con-
straint solvers has also been proposed by van der Storm [17].

9. Conclusions and Future Work
In this paper, we proposed a well-formedness verification proce-
dure for feature-based model templates. The approach allows OCL
constraints to be written against the metamodel of the target nota-
tion for the template instances. These constraints can be evaluated
against a template using a novel template interpretation for OCL.
The result of this evaluation can then be fed into a SAT solver in or-
der to verify that no ill-formed template instances can be produced
based on a correct configuration. In addition to giving a formal def-
inition of our approach, we also validated its feasibility through a
prototype implementation.

Based on our early positive experience with applying the proto-
type on another project within our research group, in which busi-
ness model templates for an e-commerce platform are being devel-
oped, we believe that it greatly improves the usability of feature-
based model templates by catching common mistakes in templates
that otherwise would go unnoticed.

Ideas for future work include (1) extending the verification pro-
cedure to support additional metaprogramming facilities of the
feature-based template approach, in particular, meta-expressions
and flow closure [3]; (2) exploring optimization opportunities such
as condition simplification in value-condition sets computed at in-
termediate steps of the template evaluation of an OCL expres-
sion; and (3) investigating the verification of semantic properties
of model templates, such as the verification of activity model tem-
plates using model checking technology.

Acknowledgments
We would like to thank Andrzej Wasowski and the anonymous
reviewers for their valuable comments on earlier drafts.

References
[1] M. Antkiewicz and K. Czarnecki. FeaturePlugin: Featuremodeling

plug-in for Eclipse. InOOPSLA’04 Eclipse Technology eXchange
(ETX) Workshop, 2004. Paper athttp://swen.uwaterloo.ca/
∼kczarnec/etx04.pdf; software atgp.uwaterloo.ca/fmp.

[2] D. S. Batory. Feature models, grammars, and propositional formulas.
In Software Product Lines Conference (SPLC), volume 3714 of
LNCS, pages 7–20. Springer-Verlag, 2005.

[3] K. Czarnecki and M. Antkiewicz. Mapping features to models: A
template approach based on superimposed variants. InGenerative
Programming and Component Enginering (GPCE), volume 3676 of
LNCS, pages 422–437. Springer-Verlag, 2005.

[4] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing cardinality-
based feature models and their specialization.Software Process
Improvement and Practice, 10(1):7–29, 2005.

[5] K. Czarnecki and C. H. P. Kim. Cardinality-based feature modeling
and constraints: a progress report. InInternational Workshop on
Software Factories, San Diego, California, Oct 2005. Paper available
athttp://www.ece.uwaterloo.ca/∼kczarnec/sf05.pdf.

[6] M. de Jonge and J. Visser. Grammars as feature diagrams. In
ICSR7 Workshop on Generative Programming, pages 23–24, 2002.
http://www.cwi.nl/events/2002/GP2002/GP2002.html.

[7] É. Gagnon. Sablecc: An object-oriented compiler framework.
Master’s thesis, School of Computer Science, McGill University,
Montreal, Mar. 1998.http://sablecc.org.

[8] J. Greenfield and K. Short. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools. Wiley,
Indianapolis, IN, 2004.

[9] S. S. Huang, D. Zook, and Y. Smaragdakis. Statically safe program
generation with safegen. InGenerative Programming and Component
Enginering (GPCE), volume 3676 ofLNCS, pages 422–437.
Springer-Verlag, 2005.

[10] S. Q. Lau. Domain analysis of e-commerce systems using feature-
based model templates. Master’s thesis, University of Waterloo,
Ontario, Canada, Jan. 2006.http://gp.uwaterloo.ca.

[11] Object Management Group.Meta-Object Facility, 2002. http:
//www.omg.org/technology/documents/formal/mof.htm.

[12] Object Management Group.Model-Driven Architecture, 2004.
http://www.omg.org/mda.

[13] Object Management Group.Unified Modeling Language 2.0, 2005.
http://www.omg.org/docs/formal/05-07-04.pdf.

[14] OMG. UML 2.0 OCL Specification, 2003.http://www.omg.org/
docs/ptc/03-10-14.pdf.

[15] M. Richters. A Precise Approach to Validating UML Models and
OCL Constraints. PhD thesis, Universität Bremen, 2002. Logos
Verlag, Berlin, BISS Monographs, No. 14.

[16] Technische Universität Dresden. Dresden OCL Toolkit, 2005.
http://dresden-ocl.sourceforge.net/.

[17] T. van der Storm. Variability and component composition. In
International Conference on Software Reuse (ICSR8), volume 3107
of LNCS, pages 157–166. Springer-Verlag, 2004.

[18] J. Whaley. JavaBDD, 2003-2006. Library available at SourceForge,
http://javabdd.sourceforge.net/.

A. Formalization of Feature-Based Model
Templates

The following subsections give a formal definition of feature-based
model templates, which includes feature models, annotated models,
and the template instantiation process.

A.1 Feature Models

A feature model can be formally represented by the structure

FM = (F, E, G, ‖·‖, D) (7)

where (i)F is a finite set of features; (ii)E ⊂ F 2 is a set of edges;
(iii) G ⊂ (2E \ ∅) is a set of feature groups represented as sets of
edges; (iv)‖·‖ : G → Z

2 is a total function assigning cardinalities
to groups; (v) andD is a set of additional constraints expressed as
propositional formulas overF . The setsF andE form a tree with
r ∈ F as its root. All edges in a group must have the same source
feature. For simplicity, we treat a solitary feature as a group of one.
Consequently, every edge belongs to some group. Furthermore, all
groups inG are pair-wise disjoint. Finally, for everyg ∈ G, the
corresponding cardinality‖g‖ = (m, n) has to be well-formed,
i.e., 0 ≤ m ≤ n ≤ |g|. For example, the cardinality function for
the feature model in Figure 1(a) is as follows:

‖g‖ =

8

>

<

>

:

(1, 1) if g={(pi,aa)}
(1, 2) if g={(aa,i2),(aa,i3)}
(0, 1) otherwise

The semantics of a feature model can be defined using an ap-
propriate grammar or logic [2, 4, 6]. In this work, we use an inter-
pretation of feature models using propositional logic in a similar
style as defined by Batory [2]. In this interpretation, a configura-
tion φ is defined as a particular assignment oftrueor falseto every
feature inF , i.e.,φ ∈ Φ, whereΦ is the set of all total functions
with the signatureF → {true, false}. A configurationφ is cor-
rect iff φ |= qFM, i.e., qFM is true forφ. Given a feature model

8

FM = (F, E, G, ‖·‖, D), the propositional formulaqFM can be
computed as follows:

qFM = r ∧ qH ∧ qG ∧ qD

qH =
^

(f1,f2)∈E

(f1 ⇐ f2)

qG =
^

g∈G
g={(f,f1),...,(f,fk)}

‖g‖=(m,n)

(f ⇒ choicem,n(f1, . . . , fk))

qD =
^

d∈D

d

A.2 Model Templates

Our formalization of annotated models uses an existing formaliza-
tion of class models that is given in the OCL 2.0 specification [14,
Appendix A]. This formalization is based on Mark Richter’s PhD
thesis [15]. In that formalization, a class model3 is represented by
the structure:

M =
(CLASS, ATTc, OPc, ASSOC, associates, roles, multiplicities,≺)

where (i) CLASS is a set of classes; (ii) ATTc is a set of operation
signaturesai : tc → t for functions mapping an object of class
c to an associated attribute value withai being the attribute name,
tc being the OCL type corresponding to the classc, andt being
the attribute type; (iii) OPc is a set of signatures for user-defined
operations of a classc; (iv) A SSOC is a set of association names;
(v) associatesis a function mapping each association name to a
list of participating classes; (vi)roles is a function assigning each
end of an association a role name; (vii)multiplicities is a function
assigning each end of an association a multiplicity specification;
and (viii)≺ is a partial order on CLASS reflecting the generalization
hierarchy of classes. All these sets and functions are precisely
defined in the specification [14, pp. 187–194]. Thus, a metamodel
for a model template is given asM and a setO of additional well-
formedness constraints expressed in OCL.

The semantics ofM is a set ofsystem statesor instances of class
modelM. model template because we useM as the metamodel for
the template. A system state for a modelM is the structure [14, p.
194]:

σ = (σCLASS, σATT, σASSOC)

where (i) for every classc ∈ CLASS, the finite setσCLASS(c)
contains all objects ofc existing in the system state; (ii) for each
attributea : tc → t ∈ ATT∗

c , where ATT∗
c is the set of operation

signatures for attribute functions for all attributes ofc, including
the inherited ones, the functionσATT(a) : σCLASS(c) → I(t) assigns
an attribute value (which may be⊥) to each object, whereI(t) is
the interpretation of the typet; (iii) the finite setsσASSOC contain
links connecting objects. Links are instances of associations and
are represented as sequences of objects. A link set must satisfy
all multiplicity specifications defined for an association inM. The
complete definition of the object state structures (i–iii) is given in
the specification [14, pp. 193–194].

Now we can give a precise definition of a model template, which
is the structure:

σT = (σ, p)

wherep : σ∗
CLASS → LF is a total function assigning presence

conditions to template elements. Inp’s signature,σ∗
CLASS is the set

of all objects in the system stateσ, i.e.,

σ∗
CLASS =

[

c∈CLASS

σCLASS(c)

3 The OCL semantics specification [14, Appendix A 1] uses the term “object
model” instead of “class model”. However, we prefer the latterin order to
be consistent with the terminology used at the UML model level.

andLF is the set of all propositional formulas overF with the usual
propositional operators:∧, ∨, ¬, ⇒, and⇔, as well aschoicem,n.

A.3 Template Instantiation

Before we give a precise definition of template instantiation, we
definep∗ : σ∗

CLASS → LF , which is a total function computing the
accumulated presence condition for every template element:

p∗(c) = p(c) ∧
^

cc∈wholes(c)

p(cc)

In the above definition,wholes(c) denotes the set of all objects
in σ∗

CLASS that directly or indirectly containc according to the
containment associations inM.

Figure 2(b) shows an instance of the template in Figure 2(a) for
the configuration in Figure 1(b). The instance is obtained through
template instantiationdefined by the functionT . Given a template
σT and a configurationφ, T computes a new system state (i.e., a
new instance of the metamodel) in which objects whose accumu-
lated presence conditions are false with respect to the configuration
φ are removed. The rationale for using the accumulated presence
conditions rather than just presence conditions is that removing an
element should also remove all the elements contained in it, inde-
pendently of the presence condition of the contained elements. In
addition to removing objects fromσCLASS, T also needs to remove
these objects from the links inσASSOC, and from the domains of the
attribute functions inσATT. If the object removal from a link results
in an object sequence with less than two objects, the entire link is
also removed. More formally,T is defined as follows:

T ((σ, p), φ) = σ′, where

σ = (σCLASS, σATT, σASSOC)
σ′ = (σ′

CLASS
, σ′

ATT
, σ′

ASSOC
)

σ′
CLASS

(c) = {c | c ∈ σCLASS(c) ∧ φ |= p∗(c)}
σ′

ATT
(a)(c) = σATT(a)(c) andσ′

ATT
(a) : σ′

CLASS
→ I(t)

σ′
ASSOC

(as) = {l | 〈c1 . . . cn〉 ∈ σASSOC(as)∧
l = πφ|=p∗(ci)

(〈c1 . . . cn〉)∧

| l| > 1 }

In the above definition,πφ|=p∗(ci)(〈c1 . . . cn〉) projects all compo-
nentsci, i ∈ {1, . . . , n}, of the sequence〈c1 . . . cn〉 for which
φ |= p∗(ci).

The result of template instantiation may not be well-formed
with respect to the target notation. In particular, the result may
violate the multiplicities of the metamodel and/or the additional
OCL constraints inO. Although reducingσCLASS and the domain
of σATT will result in σ′

CLASS andσ′
ATT that satisfy the class model of

M, removing objects from the links inσASSOC may result inσ′
ASSOC

that violates the multiplicities inM.

B. Template Interpretation of OCL
Before giving the template interpretation of OCL, we need to
briefly discuss how the standard interpretation of OCL expres-
sions is formally defined in the OCL specification [14, Appendix
A.3.1]: An evaluation context for an expression is given by an en-
vironmentτ = (σ, β) consisting of a system stateσ and a variable
assignmentβ : V art → I(t), whereV art is the set of vari-
ables of typet, andI(t) denotes the interpretation of typet, e.g.,
I(Boolean) = {true, false,⊥}. The system stateσ provides access
to the set of currently existing objects, their attribute values, and
association links between objects. The variable assignmentβ maps
names of OCL variables to values. Given the set of all environ-
mentsEnv, τ ∈ Env, the standard semantics of an OCL expression
is given by the interpretation functionIJeK : Env → I(t), which
is precisely defined in the OCL specification [14, Definition A.30].
Furthermore, the specification defines the interpretation functionI
for all OCL types and their operations.

9

Our proposed template interpretation of an OCL expressione
is given by the new interpretation functionIT JeK : EnvT →
IT (t). The evaluation context for an expression is now given by
a template environmentτT = (σT , βT) consisting of a template
σT = (σ, pc), and a variable assignmentβT : V art → IT (t),
where the functionIT gives the template interpretation of types and
their operations. We first discuss howIT is defined before giving
the definition forIT JeK.

The template interpretationIT (t) of a typet has to take into
account that it needs to represent a collection of possible results
for an expression evaluation rather than just a single result. For
non-collection types, i.e., the basic typesInteger, Real, Boolean,
andString, as well asTupleand object types, we need to represent
a set ofalternativevalues since for a given configurationφ one
and only one alternative has to be selected. For the collection types
Set(t) andBag(t), we need to represent a collection of the same
kind, i.e., a set or a bag, respectively, but containing values for
multiple selectionsrather than alternatives since a subset of the
values needs be selected for a givenφ. Such a representation is
more efficient than a set of alternative collections. Consequently,
for a non-collection typet, we define

IT (t) = F(I(t) × LF)

whereF(S) denotes the set of all finite subsets of a given setS.
For example, sinceI(Boolean) = {true, false,⊥}, IT (Boolean) =
F({true, false,⊥} × LF). Since IT (t) is a set of alternatives,
we additionally require that for every{(v1, p1), . . . , (vn, pn)} ∈
IT (t), wheret is a non-collection type, the propositional formula
choice1,1(p1, . . . , pn) is valid. For the collection typesSet(t) and
Bag(t), we have the following definitions:4

IT (Set(t)) = F(I(t) × LF)
IT (Bag(t)) = B(I(t) × LF)

whereB(S) denotes the set of all finite multisets overS and
I(t) is the standard OCL interpretation oft.

The template interpretation of an operationω : t1, . . . , tn → t
is given by the functionIT (ω) : IT (t1), . . . , I

T (tn) → IT (t),
with n ≥ 0.

For a unary operationω, such as−, abs, floor, round, not,
and the string operationssize, toUpper, andtoLower, the template
interpretation is defined according to the following schema:

IT (ω)({(x1, p1), . . . , (xn, pn)}) =
{(I(ω)(x1), p1), . . . , (I(ω)(xn), pn)}

For binary operations, such as+, −, ∗, /, min, max, <, >, ≤,
≥, concat, and, or, xor, andimplies, the corresponding schema is
as follows:
IT (ω)({(x1, px1), . . . , (xm, pxm)}, {(y1, py1), . . . , (yn, pyn)}) =

{ (I(ω)(x1, y1), px1 ∧ py1), . . . (I(ω)(x1, yn), px1 ∧ pyn),
...

...
...

(I(ω)(xm, y1), pxm ∧ py1), . . . (I(ω)(xm, yn), pxm ∧ pyn) }

For nullary operations, such as12 for Integer or ”foo” for
String, we have the following schema:

IT (ω)() = {(I(ω)(), true)}

Template semantics for operations on collection types are more
complex and varied, but still relatively straightforward to define.
Here we only show some examples. The operationsize: Set(t) →
Integer computes the size of a set. Its template interpretation is
defined as follows:

IT (size)({(x1, p1), . . . , (xn, pn)}) =
{(0, choice0,0(p1, . . . , pn)), . . . , (n, choicen,n(p1, . . . , pn))}

4 It is important to note that every OCL typet includes⊥ in the standard
OCL interpretation, i.e.,⊥ ∈ I(t). While the template interpretation of
non-collection types takes this fact into account, for simplicity, we do not
consider⊥ for template interpretation of collections. Also, in practice,⊥ is
less useful for collections since an empty collection can be used instead.

Here is the template interpretation ofisEmpty : Set(t) →
Boolean:

IT (isEmpty)(s) =

8

>

<

>

:

{(true, true)} if s = ∅

{(true,¬p1 ∧ . . . ∧ ¬pn),

(false, p1 ∨ . . . ∨ pn)} if s = {(x1, p1), . . . , (xn, pn)} ∧ n ≥ 1

Let us take a look at two examples of operations with the
signatureω : Set(t) × Set(t) → Set(t). The operationunionhas a
straightforward definition:

IT (union)(s1, s2) = s1 ∪ s2

However,intersectionis a bit more complex:

IT (intersection)(s1, s2) =
{(x, p) | ∀(x1, p1) ∈ s1 : ∀(x2, p2) ∈ s2 :

x1 = x2 ∧ x = x1 ∧ p = (p1 ∧ p2)}

The template interpretation of OCL expressions is similar to
the standard interpretation given in Definition A.30, itemsi.–iv.,
in the OCL specification. The itemsi.–vii. from that definition
are carried over to the template interpretation. For example, the
template interpretation of variables (corresponds to itemi.) is as
follows:

IT JvK(τT) = βT (v)

However,if-then-else(item v.) is defined differently. Here we only
give the definition for the case whene2 ande3 are of non-collection
types:

IT Jif e1 thene2 elsee3 endifK(τT) =
{(x, p) | ∀(x, p2) ∈ IT Je2K(τT) : ∀pt : (true, pt) ∈ IT Je1K(τT) :

p = (pt ∧ p2)}∪
{(x, p) | ∀(x, p3) ∈ IT Je3K(τT) : ∀pf : (false, pf) ∈ IT Je1K(τT) :

p = (pf ∧ p3)}∪
{(x, p⊥) ∈ IT Je1K(τT) | x = ⊥}

The itemvi. remains unchanged except for replacingtrue and
falseby IT (true) andIT (false), respectively. Finally, the defini-
tion of iterate (item vii.) needs a small change in the environment
definition, which we do not further explain here. Although itera-
tion operations on collections such asforAll andcollectcan be ex-
pressed usingiterate, more efficient, direct definitions can be given.
For example,forAll can be defined as follows:

IT Je1->forAll(v|e2)K(τ
T) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

{(true, true)} if IT Je1K(τT) = ∅

{(true, p1 ⇒ pe2(x1)=t∧

. . . ∧ pn ⇒ pe2(xn)=t),

(false, p1 ⇒ pe2(x1)=f∧

. . . ∧ pn ⇒ pe2(xn)=f),

(⊥, p1 ⇒ pe2(x1)=⊥∧

. . . ∧ pn ⇒ pe2(xn)=⊥)}

if IT Je1K(τT) =

{(x1, p1), . . . , (xn, pn)}∧

∀i = 1, . . . , xn

Rdx(IT Je2K((σT ,

βT {v/{(xi, true)}}))) =

{(true, pe2(xi)=t),

(false, pe2(xi)=f),

(⊥, pe2(xi)=⊥)}

where (i) (σT , βT {v/{(xi, true)}}) represents the environment
τT updated with a variable binding fromv to {(xi, true)} and (ii)
pe2(xi)=t denotes the condition under whiche2 evaluates to true
for xi. Furthermore, (iii) the functionRdx: IT (t) → IT (t), where
t is a non-collection type, takes a set of alternatives and returns an
equivalent set of alternatives in which pairs with the same value
were merged, e.g.:

Rdx({(1, p1), (1, p2), (2, p3)}) = {(1, p1 ∨ p2), (2, p3)}

Now we can give the precise definition of step one of our
verification approach from Section 4.2. Given the templateσT and
objectc, the template semantics is given as

Rdx(IT JeK)(τT)

whereτT = (σT , {self/{(c, true)}}).

10

