Verifying Feature-Based Model Templates Against
Well-Formedness OCL Constraints

Krzysztof Czarnecki Krzysztof Pietroszek

University of Waterloo, Canada
{kczarnec,kmpietro}@swen.uwaterloo.ca

Abstract binations of features are allowed in a correct system specification.
Ehe annotated model is a semantic specification of the features in
some appropriate modeling language. The annotations refer to the
features in the feature model, but they may have different forms. In
this paper, we consider annotating individual model elements with
presence conditions, which are analogous to#thidef directive

of the C preprocessor. Based on a particular configuration of fea-
tures, a template processor creates an instance of the template by
tevaluating the presence conditions in the model and removing ele-
ments whose presence conditions evaluate to false. A key strength
of model templates is that they allow us to maintain several model
variants, such as variants of business or design models for different
product-line members, in a superimposed form within a single arti-
Categories and Subject Descriptors D.2.1 [Software Engineer- fact. Furthermore, the model annotations establish the traceability

Feature-based model templates have been recently proposed as
approach for modeling software product lines. Unfortunately, tem-

plates are notoriously prone to errors that may go unnoticed for

long time. This is because such an error is usually exhibited for

some configurations only, and testing all configurations is typically

not feasible in practice. In this paper, we present an automated ver-
ification procedure for ensuring that no ill-structured template in-
stance will be generated from a correct configuration. We presen
the formal underpinnings of our proposed approach, analyze its
complexity, and demonstrate its practical feasibility through a pro-
totype implementation.

ing]: Requirements/Specifications—Tools; D.2Sbftware Engi- between features and their realizations in the model.

neeringd: Design Tools and Techniques—Computer-aided software Unfortunately, in our experience, creating and evolving model

engineering (CASE) templates has been an error-prone process because, for example,
. is easy to forget a necessary constraint in the feature model or an

General Terms Design annotation in the annotated model. While particular instances of the

Keywords Model-driven development, software-product lines, teémplate that are being currently used may be correct, instantiating
formal verification, configuration, feature modeling, model tem- the template for other configurations, which one would expect to

plates, metaprogramming, feature interaction, UML, OCL be correct, could lead to incorrect template instances. o
While there are many different notions of correctness, in this

. paper we only concentrate on the well-formedness of the result-
1. Introduction ing instances. In particular, we give an automatic verification pro-
Recently, there has been an increasing interest of the software-cedure which can establish that no ill-formed template instances
engineering community in generative and model-based software will be produced given a correct configuration of the template’s
development paradigms, such as OMG's Model-Driven Architec- feature model. The approach allows us to express the desired
ture (MDA) [12] or Microsoft's Software Factories [8]. Addition- well-formedness constraints in the Object-Constraint Language
ally, there has been a trend in the model-driven software engineer-(OCL) [14] with respect to the metamodel of the target modeling
ing community, as exemplified by the Software Factories approach language of the template instances. This key capability is achieved
in particular, towards supporting product-line practices in the mod- through a new semantics of OCL for templates. The semantics
eling context. maps OCL constraints to propositional formuls, which are then
One approach that is geared towards modeling software prod-fed into a SAT solver. We present the formal underpinnings of our
uct lines isfeature-based model templateshich we proposed in proposed approach, analyze its complexity, and demonstrate its
our earlier work [3]. A feature-based model template consists of a practical feasibility through a prototype implementation.
feature model and an annotated model expressed in some general As we are not aware of any other verification approaches for
modeling language such as UML or a domain-specific modeling feature-based model templates, we believe that our work is both
language. A feature model contains a set of features, or systemnovel and an important step towards model-driven software product
requirements, that are common or variable among the systems inlines.
some application domain. A feature model also defines what com- The remainder of this paper is structured as follows. Section 2
presents the necessary background for feature-based model tem-
Permission to make digital or hard copies of all or part of this work for personal plates. Section 3 elaborates on the verification problem for model
classroom use is grantgd without fee ;frovided that gopies are not made%uth’estrib templates. Se.Ctlon 4 gives an informal S‘?”.".“ary of the ve“flcatlo.n
for profit or commercial advantage and that copies bear this notice and the fuiitati ~ Procedure using an example. Formal definitions of the concepts in-

on the first page. To copy otherwise, to republish, to post on servers or tritrdis volved in the verification procedure, including model templates and
to lists, requires prior specific permission and/or a fee. the template interpretation for OCL, are given in Appendices A and
GPCE'06 October 22-26, 2006, Portland, Oregon, USA. B. Section 5 analyzes the computational complexity of the verifica-

Copyright(© 2006 ACM 1-59593-237-2/06/0010. .. $5.00
Reprinted from GPCE'06, [Unknown Proceedings], October 22—-26, 2006, Rirtlan
Oregon, USA,, pp. 122.

tion procedure. A prototype implementation and some experience

with it are described in Sections 6 and 7. We report on the related a product to belong to multiple categoriésiltilevel denotes

work in Section 8. Finally, Section 9 concludes the paper. support for nested categorie®sscription stands for categories
supporting category descriptions; afithmbnails stands for cat-
2. Feature-Based Model Templates egories showing thumbnail images of the contained products.

FurthermoreProductInformation has the optional subfeature
AssociatedAssets, which denotes support for storing various
media files. In our exampléssociatedAssets has anor-group

(&) with two grouped features, nameBDImage and 3DImage.

n other words, product information may have support for storing
“two-dimensional images, or three-dimensional images, or both. In
general, a feature group gathéréeatures and hasgroup cardi-
nality, which is an interval of the forngm—n), wherem,n € Z
and0 < m < n < k. Group cardinality denotes how many group

A feature-based model templatensists of a feature model and

a model template. The feature model defines the structure of the
input parameters for the template. The model template is an an-
notated model expressed in the target notation defined by a meta
model. We assume that the metamodel is defined using the Meta
Object Facility (MOF) formalism [11], but the approach could be
also adapted for other metamodeling formalisms. Thus, the model
template can be a UML model, but it can also conform to a domain-
specific notation defined using MOF. The elements of the model \.ambers can be selected. The group cardinality of an or-group is
template can be associated with annotations referring to the fea—<1_k>, which is (1-2) for the or-group in Figure 1(a). In addition
tures in the feature model. In general, we distinguish between three;; ihe node hierarchy and the cardinalities, a feature model may
kinds of annotationspresence conditionsteration directivesand also contain additional constraints, suchreguiresand excludes

meta-expressionsn this paper, we only consider presence condi- qngiraints. In our example, selectiliyunbnails for categories
tions, which is the most basic and useful of the three annotation

; >) ; equires selectingDI for product information.
kinds. Presence conditions define which elements of the annotateJ g gbImage P
model should be present in an instance of the template and which

not. subCaIegorL S Category
Catalog | «Multilevel» «Categories»
subCategori¢s Category W CatalogStructure (1 configuration)
Catalog «Mu\llevel «Categories» =& E‘fﬂgolzle\sc\ fcat «Ca[egorie* >
; : - - ultipleClassification
S.t.n.ng descriptionDescription» & Multilevel «MdltipleClassification | ICategories» 1.*
«Categoriés] = Description «MultipleClassification | !Categories:
A CatalogStructure (52 configurationsy — «MultipleClassification | |Categories» L. . B Trumbnails * *
= @ Categories «Categories & MultipleClassificationy S Productln.ﬂ:rmat\on Product Image2D
© MultipleClassification = E:“SSDCEEUASSEVB String name «2DImage» | «2DImage>
o Multilevel «MultipleClassification | !Categories» = f1 oat 9 rice
© Description * . N [2DImage He P
© Thumbnails Product * * Image2D Bd a0image
= # Praductinfor mation . «2DImage» | «2DImage» a) Feature configuration b) Template instance
=~ & Associatedéssets String n_an”e () 9 () P
2N Y float price
T 2DImage * * | Image3D Figure 2. Feature configuration and the corresponding template
o 3DImage .
=l «3DImage» | «3DImage» instance
(a) Feature model (b) Annotated class model

A feature model denotes a set of configurationsoAfiguration
Figure 1. Example of a UML class model template of a feature model is a subset of its featurexokrect configura-
tion is one that satisfies (i) the constraints represented by the fea-
An example of a feature-based model template is given in Fig- ture hierarchy, (i) the constraints represented by the cardinalities,
ure 1. The example is an excerpt from a larger model of an e- and (i) the additional constraints. The first set of constraints (i)
commerce platform, and it models various options for the catalog contains the root feature of the feature model and, for every other

structure of the platform. feature in the model, an implication from the feature to its par-
Figure 1(a) shows a feature model in the cardinality-based ent featurg. The second set (ii) contains implications of the form
feature modeling notation [4]. A feature model is a tree struc- S = choicen,.(f1,..., fx) for every feature groupfs, ..., fx
ture with aroot feature(4) as its root and the other nodes be- and its parent featur¢ and implications of the forny, = f;
ing solitary features grouped featuresor feature groupsin our for every mandatory featurg; and its parentf,. The meaning
example, the root feature denotes the concept of a catalog struc-0f choice, .. is as follows. Given the propositional logic formu-
ture, with two solitary features as its direct children, namely, 1aspi,...,px and0 < m < n < k, choicg n(p1, ... px) is
Categories and ProductInformation. Each solitary feature true iff at leastm and at most of pi, . .., py. are true. The set of
has afeature cardinality which is an interval of the fornfrn..n], additional constraints (iii) for the model in Figure 1(a) consists of

wherem € Z An € Z U {+} and0 < m < n, assuming that the implicationThumbnail = 2DImage. Thus, the set of correct
Vm € Z : m < . Feature cardinality denotes how many copies configurations of a feature model without cloning can be captured
of the feature with its entire subtree can be included as children of by a propositional logic formula, which is the conjunction of all the
the feature’s parent when specifying a concrete configuration. In constraints in these three sets. For the feature model in Figure 1(a)
this paper, we only consider cardinality-based modeling notation @nd assuming the abbreviations in Table 1, this forngiais as
without cloning i.e., a subset of the general notation for which follows:

the only allowed feature cardinalities aj.0], [0..1], and[1..1].

Features with the cardinalitji..1] are referred to asnandatory qFrm =

(*), whereas features with the cardinalify.1] are calledbptional root: csA

(%). For exampleProductInformation is mandatory, whereas child-parent: (ct = cs) A (me = ct) A (ml = ct)A
Categories is optional. In other words, all catalogs described by (ds = ct) A (tn = ct) A (pi = cs)A
the feature model support storing product information, but they ouD: Eaa z }c)r112)i/c\ (12(3 ?g;)//\\(ls = aa)A

may or may not organize products into categori@&stegories rgnansétory- (i: = pi) 2132,

has four optional subfeaturagultipleClassification allows additional- (tn = i2)

Table 1. Abbreviations of feature names from Figure 1(a

Feature Abbr. Feature Abbr.
CatalogStructure cs Thumbnails tn
Categories ct ProductInformation pi
MultipleClassification| mc AssociatedAssets aa
Multilevel ml 2DImage i2
Description ds 3DImage i3

Refers to features

through annotation:
Feature model|< - - — - - - -~~~ _

Manual configuration process

Model template
— Expressed in target notation
- Annotated with presence condition

Automatic template instantiation
— Evaluation of presence conditions
— Element removal

Feature configuration

> () —=

Process Artifact Data flow

Template instance

Figure 3. Model template instantiation

where
choice 2(i2,13) = i2 A 0i3V "i2 Ai3V i2 A i3 =12V i3

The feature model in Figure 1(a) denotes 52 correct configura-
tions. A sample correct configuration is shown in Figure 2(a) using
a so-calleccheck-box renderingf a configuration tool [5]. In this

rendering, optional features are shown as check boxes. The boxes
of selected features are checked. The boxes of eliminated features

are crossed.
Figure 1(b) shows an example of a UML class model template,
which is a UML class model annotated with presence conditions.

In this paper, we assume that presence conditions are propositional

formulas over the features from the feature model. A presence con-
dition defines for which combinations of features a given model
element is required. In Figure 1(b), presence conditions are shown
as UML stereotypes. For example, the classge2D and the adja-
cent association are annotated with the feafllEmage, meaning

that they are only neededdbImage is selected. Although the ma-

3. Well-Formedness Problem of Model Templates

An important concern of template development is ensuring its cor-
rectness. A feature-based template is correct iff every correet con
figuration results in a correct template instance. Although, template
users can apply verification techniques directly to the template in-
stances they create, the template developer ideally should ensure
the correctness of a template before it is passed on to the users.
Template correctness will save the users from potentially having to
deal with the template developer’s bugs.

An important aspect of template correctness is well-formedness.
In our experience, it is easy to make a mistake in a model tem-
plate that will lead to an ill-formed instance for a correct con-
figuration. A similar problem often occurs in practice with other
kinds of templates, such as server-side templates for producing
web pages or C pre-processor directives, too. In our case, mis-
takes could be made in the feature model, the annotated model,
and/or the annotations. For example, the template developer could
forget to include an additional constraint in the feature model or at-
tach an appropriate annotation to an element. Such mistakes are
particularly likely when new features and variants are added to
the template, e.g., during an extension of a product line with new
products. In fact, the template in Figure 1 has an annotation er-
ror, which will lead to a dangling association for any configura-
tion with Categories being false. The resulting malformed in-
stance for one such correct configuration is shown in Figure 4.
The annotation error in Figure 1(b) can be corrected by changing
the annotation of the non-aggregate association bet@eeszory
andProduct fromMultipleClassification | !Categories
to justMultipleClassification. The example in Figure 1 is
based on a previous paper [3]. Early drafts of that paper had ex-
actly the erroneous example from Figure 1, which went unnoticed
for several revisions of the paper.

A CatalogStructure (1 configuration) | Catalog
= [Categories e —

[MultipleClassification
[Multilevel
[Description
[Thurmbnails
=" Productinfiormation
=[] sssociatedsssets
i,

«MultipleClassification | ICategories» 1.*

«MultipleClassification | ICategories

*

*

* *

Product Image2D

«2DImage>

- 2DImage:
String nane « 9e»

float price

[2Dimage
B =0image

(a) Correct configuration (b) Malformed template instance

Figure 4. Sample configuration leading to a dangling association

In this paper, we assume that the abstract syntax of the target

jority of elements is annotated with single features, more complex modeling notation is given by a metamodel expressed in MOF,
presence conditions are sometimes required, such as in the casahich is essentially a combination of a class model and addi-
of the containment relationship betweeatalog andProduct. tional well-formedness constraints expressed in OCL. A model
The latter presence condition is required since products need tois well-formed iff it conforms to the metamodel, i.e., it satisfies
be contained directly in the catalog if categories are not supported the multiplicities and the OCL constraints of the metamodel. Fig-
or if multiple classification is allowed. The presence condition of ure 5 shows a fragment of the UML 2.0 metamodel for class
Product, which is not annotated, is assumed to be true by default. modeling. A sample class model conforming to the metamodel is
As realized in a prototype implementation [3], the display of the shown in Figure 6. The sample model is actually an excerpt from
stereotype labels next to the annotated elements can be optionallyFigure 1(a) containing the incorrectly annotated association. Fig-
suppressed, and a color encoding can be applied to the elementsire 6(a) shows the sample model using the UML concrete syntax.
based on the stereotypes. The corresponding abstract syntax using the UML object diagram

The key idea of a feature-based model template is that, given notation is shown in Figure 6(b). Note that the association between
a particular feature configuration, an instance of the template canCategory andProduct is represented by three objects: an instance
be automatically created by removing the model elements whoseof Association and two instances dfroperty. The properties,
presence conditions evaluate to false. An overview of this process iswhich play the role ohemberEnds, are contained by the respective
presented in Figure 3. Figure 2(b) shows an instance of the templateinstances o€1ass. For simplicity, we do not show the abstract syn-
in Figure 1(b) for the configuration in Figure 2(a). For example, the tax objects representing the stereotypes attachedtiegory and
classImage3D is not present in the instance because the feature the association, but we only indicate them using concrete syntax in
3DImage was eliminated. Figure 6(b).

Is instance of Written with respect to

[Feature modeﬂ [Model templat

|C.fassffrer| | Struciural Feature |
~_ —= "~ Class model of the :
+clas fprdermdl| Pproperty ememberEnd ‘ [Feature—based model templat%
Class « | isDenved: dered L :
01 Boolean = faise | o) +association ’:Dﬂmz?n Verification procedure
+/superClass isRe adOnly : 2. 0.1 IBoeoT::n)
Boolean = false . = false
- isDenavedUnion : +owne dEnd ol ngﬂmmat:‘ Data flow Answer: yes or no
Boolean =false [+ :
,d;:]i?nsmngse fordered, _Bubsets y 0.1 Sample correct configurations leading to
aggregation - m:r'-lnbbsgl}énd} amociation malformed template instances
Agfr:;;::om(md +navigableOwnedEnd
=<enumeration>> {isComposite : Figure 7. Context of the verification procedure
AggregatienKind Boclean {subsetsowned End)
none +lendT
shared X V&IueSpecmcanon {oergere\:;e‘l X . . X
composite UML, such as a constraint ensuring that an operation called in an
0.1/ +iopposte +defaultValue ivi i i .
op activity model is actually present in the class model
Additional well-formedness constraints may be needed when

the modeling language is specialized for a specific application do-
main or for the purposes of a particular project, e.g., to enforce a
particular set of modeling style guidelines. In UML, such special-

izations are represented as profiles, which contain the additional

Figure 5. Fragment of the UML 2.0 metamodel for class modeling

Categor cl:Class . ! . i
pecateqories «Catogories» ._‘ el:Property ‘ constraints. For example, a profile for business entity models such
name = "Category" memberEnd as the one in Figure 2(b) could include the stereotypeot > with
the constraint that any class not marked by that stereotype must par-
aAssociation ‘ ticipate in at least one composition at the part end.
«MultpleClassififatio | |Categories» [MulipleClassification | (Categories The need for the template instance to satisfy the multiplicities
in the class diagram can be stated as a set of additional OCL
: memberEn constraints. Thus, a verification procedure that can ensure the well-
Product c2:Class - . . .
E‘_‘i e2:Property ‘ formedness of all template instances for all correct configurations
name = "Product against a set of OCL constraints can also be used to ensure the well-
(a) Concrete syntax (b) Abstract syntax formedness of the instances with respect to the multiplicities of
the metamodel. Consequently, any multiplicity.[. n] in the class
Figure 6. Sample class model conforming to Figure 5 model of the metamodel that is other than [*] can be relaxed to

[0..%] by extending the set of well-formedness rules with an OCL
constraint of the following form:

Well-formedness constraints may come from different sources.
One such source is the specification of the language being use
i.e., the UML standard [13] in our example. Some well-formedness
constraints are stated in the UML standard explicitly. For example, In the above constraint,is the role name at the binary associ-
the standard contains the following constraint expressed as an OCLation end with the the multiplicityr . .n] andc is a class at the
invariant onAssociation (see Figure 5) and stating that only opposite end of the association. Interestingly, there are relatively
binary associations can be aggregations [13, p. 55]: few non-composite association ends with multiplicity other than
[0..%] in the UML 2.0 metamodel. For example, the metamodel

colf .memberEnd->exists part covering class modeling has fewz_ar than ten such cases, which,

(aggregation<>AggregationKind: :none) except for p. . x] on memberEnd (see Figure 5), involve only mul-
implies self.memberEnd->size() = 2 tiplicities of the form p. . 1], [1..1],and [1. . *].
While the well-formedness of a model is relatively easy to es-

Unfortunately, many well-formedness constraints need to be in- tablish by simply evaluating the well-formedness constraints on the
ferred from the informal text of the UML specification. For exam- model, establishing well-formedness for model templates is not so
ple, the requirement in the standard [13, p. 56] that “a part instance easy. The reason is that a template may have a huge number of cor-
be included in at most one composite at a time,” implies that a class rect configurations and creating and individually checking an in-
cannot participate in more than one composition at the part end if stance for each correct configuration is usually not feasible. While

dcontext ¢ inv: 2)
let s:Integer = self.r->size() in m<=s and s<=n

context Association inv:

any of these compositions has the multiplicity. [1] at the aggre- the small feature model in Figure 1(a) already has 52 correct con-
gate end. The latter can be stated as the following OCL constraint, figurations, that number can easily reach astronomic dimensions
which is not given in the specification explicitly: for practical feature models. Therefore, we need an efficient auto-

matic verification procedure for establishing the well-formedness

text Cl1 inv:
context Class inv of model templates.

let oppositeAggEnds = self.attribute->collect
(opposite)->select (isComposite)

in oppositeAggEnds->size() = 1 or 4. \Verification Approach

oppositeAggEnds->forAll

(LowerBound ()=0 and upperBound ()=1) The context of the verification procedure is shown in Figure 7. The

procedure takes a feature-based model template, which consists

In general, well-formedness constraints may be more complex of a feature model and an annotated model (i.e., template), the

than the two previous examples, such as a constraint ensuring thatlass model of which the annotated model is an instance of, and
a classifier realizing an interface has to implement all operations of a set of well-formedness rules in OCL. The OCL rules are written

the interface. Furthermore, they may span different subnotations of with respect to the class model, and the class model and the rules

form the metamodel of the target language, to which all template three possible values, i.e., 0, 1, or 2, with their corresponding con-
instances should conform. Consequently, in addition to being part ditions:{(0, =p* (e1)A—p*(e2)), (1,p" (e1) A—p*(e2)V—p* (e1)A
of the metamodel of the target language, the class diagram is alsop*(e2)), (2,p" (e1) Ap*(e2))}.
the metamodel for the annotated model, i.e., the template. Finally, we need to apply the binary comparison operator

) While the standard interpretation of this operator takes two num-
4.1 Template Interpretation of OCL bers and returns true or false, the template interpretation takes

Verifying that for all correct configurations of a feature model the two sets, e.g.,{(1,p1),(2,p2)} and {(0,ps), (3,p4)}, where
resulting template instances are well-formed with respect to a set of P1, - - - , pa are conditions, and yields a set that contains the re-
OCL constraints can be achieved through an alternative semanticssults for all possible combinations of the arguments, {¢l, >

of OCL, which we refer to as theemplate interpretationin a nut- 0,p1 Aps), (1> 3,p1 Apa), (2> 0,p2 Aps), (2> 3,p2 Apa)}.
shell, while OCL expressions are normally evaluated over object The latter set is easily simplified t§(true,pi A ps V p2 A
structures, the template interpretation allows us to evaluate an OCLP3), (false p1 A pa V p2 A pa)}.

expression over a template, i.e., an object structure whose objects Coming back to our original example, we need to compare
have presence conditions, as shown in Figure 6(b). The result ofthe result okelf .memberEnds->size (), namely{(0, =p"(e1) A
evaluating an expression over a template using the template inter-—p" (€2)), (1, p" (e1) A —p”(e2) V =p*(e1) Ap*(e2)), (2,p" (e1) A
pretation is a set of all the values that could be obtained from eval- P (e2))}, and{(1,true)}. The latter set is the template interpreta-
uating the same expression on all instances of the template usingtion of the OCL literal1. The result of this comparison is the fol-
the standard OCL semantics. Furthermore, each value in that set idowing set:{(0 > 1, =p*(e1) A —p”(e2) Atrue), (1 > 1,p"(e1) A
annotated with its own presence condition, which is a propositional =" (e2) V =" (e1) A p*(e2) Atrue), (2 > 1,p"(e1) A p*(e2) A
formula over the features from the feature model. The condition is true)}, which can be easily simplified to the following set:
such that, given a template instance that was created from a feature * * () *
configuration satisfying the condition, evaluating the OCL expres- {(true, p™(e1) Ap™(e2)), (false =(p" (1) A p7(e2)))}
sion using the usual OCL semantics over the template instance will
yield the associated value. In other words, the template interpreta-)))
tion of OCL involves operations over sets of value-condition pairs. Given the OCL constraint (3), we can verify a template against

(®)

4.2 \Verification Steps

While the precise definition of the template interpretation is given
in Appendix B, we illustrate its main idea in this section using an
example.

Each OCL constraint that we want to check has the form of
an invariant on some clags with the constraint’s body being a
Boolean OCL expressiost

context ¢ inv:
e

®)

The standard OCL interpretation of this invariant with respect
to a model is that should evaluate to true for every objecbf
the classc. The template interpretation @f on the other hand,
yields {(true, p;), (false py), (L,p.1)}, wherep,, ps, andp, are
propositional formulas over features. Note that OCL uses a three-
value logic andL denotes “undefined”.

As an example, let us consider a constraint requiring that every
association has at least two ends:

context Association inv:
memberEnd->size() > 1

4)

Without considering its presence conditions, the model in Fig-
ure 1(b) satisfies this constraint since every association in that
model has at least two ends. In particular, evaluatiagberEnd
->size() > 1 onal in Figure 6 using the standard OCL inter-
pretation clearly yields true sincel is associated with two ends,
namelyel ande2. More precisely, havigating teemberEnd from
alyields{e1, e2}, applyingsize () to this set yields 2, and com-
paring2 > 1 yields true.

Let us now consider the template interpretatiomefberEnd
->size() > 1 on al. First, navigating tanemberEnd from a1
yields{(e1,p*(el1)), (e2,p"(e2))}, wherep*(e1) andp® (e2) de-
note theaccumulated presence conditionbel and e2, respec-
tively. The accumulated presence condition of an objeist the
conjunction of the presence conditionc®&nd all its container ob-
jects, if any. Thus, given that the presence conditioe ofs true
and the presence condition of its containing object, naraelfsee
Figure 6), isct, p*(el) is ct A true, i.e.,ct. A similar calculation
for p*(e2) yields true.

The next step, which is the application ©fze () to the result
of memberEnd, i.e.,{(e1,p*(el)), (e2,p"(e2))}, yields the set of

the constraint for every object of clagsin the template. The
verification for a given objeat can be achieved in two steps.

1. We evaluate for ¢ (i.e., assuming thate1f refers to{(c, true)})
using the template interpretation. The template interpretation
of e yields {(true, p:), (false ps), (L,p1)}. The resulting for-
mula p: is needed as an input for the next step. According to
our calculation in the previous section, the template interpreta-
tion of the body expression of the constraint (4) on the object
a (see Figure 6) if(true, p*(e1) Ap*(e2)), (falsg =(p*(e1) A
p*(e2))), (L,false)} (see set (5)). Thus, in our exampig,is
p*(e1) Ap™(ez2), which becomest after substituting the values
for the accumulated presence conditions.

. We check the validity of the propositional formujay =
(p*(c) = p¢). If the formula is valid, the template is well-
formed with respect to (3) foe. In that formula,geym is the
propositional formula representing the set of correct feature
configurations of the feature modeM. In our example, after
substituting the values fgr*(a) and p;, the formula that we
need to check for validity igev = ((mc V —ct) = ct), where
grw is given in the equation (1).

Let us explain these two steps. The template interpretatien of
in step one yields a set of value-condition pairs, where each con-
dition represents a family of template instances for whdckill
evaluate to the corresponding value using the standard OCL se-
mantics. According to the set, the standard OCL interpretatien of
for ¢ in the context of any template instance created from a feature
configuration for whiclp, is true will yield true. However, we only
care about ensuringfor ¢ in a template instance if is present in
that instance, i.ep® (c) evaluates to true for the configuration from
which the template instance was created. Consequently, the con-
straint (3) will not be violated for: in a template instance created
from any configuration for which*(c) = p; is true. Thus, the de-
sired correctness of template instances for correct configurations is
established iff the latter condition is implied by the feature model,
i.e., gem = (p*(c¢) = p¢) is valid, meaning that it is true for any
configuration, correct or not. Consequently, step two verifies the
well-formedness of the template against the OCL constraint (3) for
¢ by checking the validity of the formula representing the correct-
ness condition.

4.3 Error Detection, Reporting, and Resolution

Step two of our verification approach requires verifying the valid-
ity of a propositional formula. In practice, this can be achieved by
checking the satisfiability of the negation of the formula using a
SAT solver. Although the satisfiability problem is NP-complete,
there are SAT-solvers that can very efficiently check satisfiability
for practical cases. In particular, our experience with solvers based
on Binary-Decision Diagrams (BDDs) has been very positive. We
comment on the latter in Section 5. If the negation is satisfiable,
we have just found an error in our feature-based model template.
A SAT solver will usually also give sample valuations, which cor-
respond to configurations in our context, for which the resulting
template instances will not be well-formed. Furthermore, since we

check each constraint for each instance of the context class sepa;

rately, an error can be pinpointed to a particular object in the tem-
plate. In our example, the negation of the correctness formula, i.e.,
—(gem = ((mc V —ct) = ct)), is satisfiable, with a sample solu-
tion being the configuration in Figure 4(a). Thus, for that configu-
ration, the constraint (4) is violated for the association

The cause for the invalidity of the correctness formula may be

located in the feature model, the annotations, and/or the structure

of the annotated model. Checking the individual constituents of the
correctness formula may be helpful in locating that cause. Above
all, we want to check the satisfiability @gfvm to make sure that
the set of correct configurations is non-empty. Furthermore, if the
formula p*(c) = p: is not satisfiable, we know that there is

a guaranteed error in the template (its annotations and/or model

structure), while the feature model may be correct. Finally, when
none of the two previous cases is true but the correctness formul
is not valid and the template developer determines by inspecting

a

Table 2. Space complexity of OCL operations according to tem-
plate semantics

Operations Result collec-
tion size®

nullary: 12, etc. 0o(1)

unary:not, —, toUpper, toLower, length(String), isEmpty, O(n)

notEmpty, isDefined

binary:union, include O(n +m)

binary: 4+, —, %, and, or, implies xor, concat =, <, >, O(n*xm)

<=, >=, includes iteration:exists, forAll, select, reject,

collect

unary:size(Collection(t)) o(2™)

For unary operationsy is the size of the input collection. For binary operations, the
input collections have sizes andm, respectively. For iteration operations, the size of
the input collection i and the size of each collection resulting from evaluating the
iteration expression on each input element is assumedta.be

only needed to applgizeon collections of relatively small sizes

in well-formedness constraints. For examizeis often used to
enforce multiplicities as in constraint (2). Since the upper bound of
the multiplicities that need to be enforced is usually small (such as
1 or 2; note that * does not need to be enforced), the corresponding
collections of optional elements in the template are not likely to be
large.

The complexity of the second step when using a BDD-based
SAT solver is usually dependent mainly on the number and the
ordering of variables in the formula to be checked. Although the
worst-case complexity for this step can be exponential, experience
shows that such solvers can handle many practical problems effi-

the template that the annotations and the structure of the annotated€nt!y-

model is correct, we may have a case that a constraint is missing

in the feature model. The missing constraint could come either 6. Prototype Implementation
from the problem space (domain analysis) or it could be necessary|, order to establish the practical feasibility of our approach, we

because of the particular implementation of the feature model in
the model template (i.e., constraint determined by the solution
space). In that case, we can apply one of the existing formula
simplifiers from the field of hardware synthesis on the negation of

have implemented a template verifier according to the procedure
presented in this paper as partfofp2rsm[3], which is a plug-in
extending the IBM Rational Software Modeler (RSM) with feature-
based model templates. RSM is an Eclipse based environment for

the correctness formula and add the result to the feature model as aqp 2.0 modeling. Support for feature modeling witHimp2rsm

additional constraint. The latter action corresponds to propagating
a constraint from the solution space to the problem space.

5. Computational Complexity of the Approach

In this section, we characterize the complexity of our verification
procedure by analyzing both verification steps from Section 4.

In the case of step one, we need to only look at the space com-
plexity of evaluating an OCL expression according to its template

is provided through another Eclipse-based plug-in, namely Fea-
ture Modeling Plugin [1], which can run inside of RSMRigure 8
shows a screen shot of our prototype after detecting the dangling as-
sociation betweeRroduct andCategory. The template shown is

the one from Figure 1. The verifier reports the error and pinpoints it
by highlighting the association and the two classes. A sample con-
figuration that will result in the dangling association is also given.
The well-formedness constraints and the text to be shown if they
are not met can be given to the tool in a XML file. The complete

semantics since the size of the collections is the main performanceOCL constraint expressing the absence of dangling associations is

bottleneck of the evaluation. This complexity can be characterized
in terms of the sizes of the collections (e.g., sets of alternatives) in-
volved in the computation. In particular, the complexity is heavily

dependent on the kinds of operations and their usage patterns in the

expression. We classify some OCL operations that routinely occur
in well-formedness constraints (such as those for UML) in terms of
their worst-case space complexity in Table 2.

Looking at Table 2, we should be only concerned about the last
two entries. Binary operations such-&sand — can be a concern,
but only if they are used in certain undesirable patterns, such as
chaining them. For example, an expression of the ferm. . .+,
has the complexit (m™) (assumingn is the size of;), i.e, itis
only tractable for a smalt. Fortunately, we have not come across
the need to write such expression in well-formedness constraints
based on our analysis of the UML specification. The operatine
on collections has the worst complexity. Again, we found that we

as follows:

context Association inv:
memberEnd->size() > 1 and
memberEnd->forAll (type.isDefined)

(6)

We have implemented the template interpretation for OCL by
modifying an existing OCL evaluator, namely tBgesden OCL
Toolkit [16]. We reuse the OCL parser generated by Ansgar Kon-
nermann using the LALR(1) parser generaBableCC[7]. Our
current implementation of the evaluator using the template interpre-
tation supports object navigation; arithmetic, logic, and relational
operations; and collection operations includisize, isEmpty,
notEmpty, exists, forAll, collect, select, reject, and

10nline demonstrations of the fmp2rsm including the verifierarailable
athttp://gp.uwaterloo.ca/fmp/.

A eCommerce

74 “oniine-B2C solution featureMdl 52 2 "online-B2C solution.emx | ‘24 oniine-B2C e | %

i e Catalog
i | B CatalogStucture

-0 Categories
Lo Mutievel
- @ MuliplsClassfication
= @ Description
- Productinformation
i AssociatedAssets

Modsling | Cort/Spec | Meta-Modeling |

In our experiments, the average time for creating the BDD for
the feature model from the case study on a Pentium IV M 1.7GHz
with 1 GB RAM was less than a minute. Checking for dangling
associations on the annotated class model took less than a second.
Checking for potential composition sharing (see the constraint in
Section 3) took about 10 seconds. Verifying the constraints for the
absence of dangling associations and composition sharing is linear

[8) online-B2C solution::Diagram1 53

with the number of associations in the model the constraint (6)
accesses only the close neighbors of a context obj€onstraints
that navigate over large portions of a model are usually more
expensive. For example, the following constraint ensures that no
template instance has an unused enumeration type:

(3 Product - - product.
o String name
o float price
| _° «PhysicalGoods» float weighdduct

«hssociatedAssets» «MultipleClassification, not Categories»
context Enumeration inv:
Class.alllnstances()->collect
(attribute.type)->includes(self)

«AssociatedAssets»
© Asset © catalog

«Categories™not MultipleClssification»
«Categories» Checking this constraint on the annotated class model took
about 30 seconds. Obviously, this time depends on the size of the
model.

=

1.7
«MultipleClagsification, not Categoriess»

«Categories»
- superCategory O Category |

1

«Muftllevals
- subCategory

8. Related Work

We are not aware of any existing work on (1) the verification of
! code or model templates whose input are feature models and (2)
- the verification of model templates in particular. Probably the clos-
e, | llendetion | oot estwork is that of Huang et al. [9] on verifying a particular flavor of
Java templates, which uses a simple metalanguage equipped with
Figure 8. Screenshot of the fmp2rsm tool with the integrated tem- selection and iteration. The input for these templates is also Java
plate verifier code, which must conform to a set of constraints expressed in pred-
icate logic and specified by the template developer. Furthermore,
the template developer specifies predicate logic constraints on the
includes. We check the satisfiability of the propositional formula the template instances. The template verifier can then check that
= (gem = (p™(¢) = pe)) using the JavaBDD package [18]. latter constraints will hold for any instance created from a correct
The currentimplementation of the verifier works as follows. Be- input. The latter statement also applies to our approach; however,
fore checking any constraints, the propositional formgia de- there are important differences. The focus of our approach is-diffe
scribing the correct configurations of the feature model is created ent since we want to support feature models created during domain
as a BDD. This step is done only once, as the result is reused whenanalysis for a product line as the description of template input. Fur-
checking the individual constraints. Next, the OCL constraints are thermore, we restricted the metalanguage for the purpose of the
evaluated using the modified OCL evaluator. Currently,théor- verification to selection only (i.e., presence conditions). While this
mula that results from each evaluation is represented as a stringmay seem very restrictive, a great deal of model templates needed
which is then parsed and converted into a BDD. The string repre- in the product-line context, such as templates for business process
sentation simplifies interfacing with different BDD packages. How- models, rarely require more than presence conditions. In particu-
ever, better performance could potentially be achieved by having |ar, adding iteration directive would likely make the templates too
the OCL evaluator build and manipulate BDDs directly, as the in- programming-oriented for business modelers. Using feature mod-
termediate propositional formulas would be possibly simplified im- els as the input structure coupled with the metalanguage being pres-
mediately. The BDD of each formula to be checked for satisfiability ence conditions in the form of propositional formulas over the fea-
is obtained by appropriately merging the BDDs of the constituent tures makes our approach computationally more tractable. In par-
formulas, namelyem, pt, andp™(c). Finally, each resulting BDD ticular, the Java template verifier has to call a theorem prover, while
is checked if it has any solutions. we only need a SAT solver. Furthermore, the Java template verifier
is not guaranteed to come up with a positive or negative answer for
7. Experimental Evaluation qll te_mplates and temp_late_ inputs. This is not the case fo_r our veri-
. fication procedure, which is both sound and complete. Finally, the
We have tested our prototype on business model templates for anjaya template verifier works on code templates, while our approach,
e-commerce platform, which were developed by a member of our {hrough the use of MOF and OCL, is geared towards modeling.
group who was not involved in the research on template verifica- However, our approach can also be used for code templates whose
tion. A detailed description of the templates is available [10]. The jnpytis described by feature models, in which case the abstract syn-

templates include a feature model with 214 features, 5 annotated;gy of the programming language would need be expressed using
class diagrams with 38 classes (28 annotated), and 17 activity di-\OF and OCL.

agrams with 238 nodes (31 annotated). The models contain a total
of 138 annotations, which use 79 features. The templates are based
on the _busmess models of the lE,’M Webspherg Commerce prod- arity of an association because of the complexity of $iee operation.
UCtz which are part of the product's documemat'on' Th_erefore,_ we Fortunately, associations with an arity higher than threeeatremely rare
believe that the templates are representative of practical businessn practice. Also, checking for composition sharing is exguatial with the
templates in terms of their structure. Our verifier found 7 dangllng number of compositions in which a class participates. Simyilthls number
associations in the templates as given in [10]. is usually small in practice.

Checking the constraint for dangling association is exptiakwith the

The application of SAT solvers for creating configurations of
and verifying feature models is not new. In particular, the formal-

ization of feature models based on predicate logic presented in Sec-

tion 2 was inspired by Batory’s work [2], which also recommends
the use of SAT solvers. Furthermore, the use of BDD-based con-
straint solvers has also been proposed by van der Storm [17].

9. Conclusions and Future Work
In this paper, we proposed a well-formedness verification proce-

dure for feature-based model templates. The approach allows OCL
constraints to be written against the metamodel of the target nota-

tion for the template instances. These constraints can be evaluate
against a template using a novel template interpretation for OCL.
The result of this evaluation can then be fed into a SAT solver in or-
der to verify that no ill-formed template instances can be produced
based on a correct configuration. In addition to giving a formal def-
inition of our approach, we also validated its feasibility through a
prototype implementation.

Based on our early positive experience with applying the proto-
type on another project within our research group, in which busi-

ness model templates for an e-commerce platform are being devel-

oped, we believe that it greatly improves the usability of feature-

based model templates by catching common mistakes in templates

that otherwise would go unnoticed.

Ideas for future work include (1) extending the verification pro-
cedure to support additional metaprogramming facilities of the
feature-based template approach, in particular, meta-expression
and flow closure [3]; (2) exploring optimization opportunities such
as condition simplification in value-condition sets computed at in-
termediate steps of the template evaluation of an OCL expres-
sion; and (3) investigating the verification of semantic properties
of model templates, such as the verification of activity model tem-
plates using model checking technology.

Acknowledgments

We would like to thank Andrzej Wasowski and the anonymous
reviewers for their valuable comments on earlier drafts.

References

[1] M. Antkiewicz and K. Czarnecki. FeaturePlugin: Feataredeling
plug-in for Eclipse. INnOOPSLA'04 Eclipse Technology eXchange
(ETX) Workshop2004. Paper d@ittp://swen.uwaterloo.ca/
~kczarnec/etx04.pdf; software agp.uwaterloo.ca/fmp.

[2] D. S. Batory. Feature models, grammars, and propositianaidlas.
In Software Product Lines Conference (SPL@&lume 3714 of
LNCS pages 7-20. Springer-Verlag, 2005.

K. Czarnecki and M. Antkiewicz. Mapping features to madeh
template approach based on superimposed variant&efherative
Programming and Component Enginering (GPC#)lume 3676 of
LNCS pages 422-437. Springer-Verlag, 2005.

K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizeuglinality-
based feature models and their specializati®@oftware Process
Improvement and Practicd0(1):7-29, 2005.

K. Czarnecki and C. H. P. Kim. Cardinality-based featuredeling
and constraints: a progress report. Ifternational Workshop on
Software FactorigsSan Diego, California, Oct 2005. Paper available
athttp://www.ece.uwaterloo.ca/~kczarnec/sf05.pdf.

[3

—_

[4

[l

5

—_

[6 In

—_

M. de Jonge and J. Visser. Grammars as feature diagrams.
ICSR7 Workshop on Generative Programmipgges 23-24, 2002.
http://www.cwi.nl/events/2002/GP2002/GP2002.html.

[7 E. Gagnon. Sablecc: An object-oriented compiler framework.
Master’s thesis, School of Computer Science, McGill Uniitgrs

Montreal, Mar. 1998http://sablecc.org.

—

[8] J. Greenfield and K. Short. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Todléley,
Indianapolis, IN, 2004.

[9] S. S. Huang, D. Zook, and Y. Smaragdakis. Statically sabgmam
generation with safegen. (Benerative Programming and Component
Enginering (GPCE) volume 3676 ofLNCS pages 422-437.
Springer-Verlag, 2005.

[10] S. Q. Lau. Domain analysis of e-commerce systems usingréeatu
based model templates. Master’s thesis, University of Waderl
Ontario, Canada, Jan. 2006t tp://gp.uwaterloo.ca.

[11] Object Management GroupMeta-Object Facility 2002. http:
//wuw.omg.org/technology/documents/formal/mof . htm.

d[12] Object Management GroupModel-Driven Architecture2004.

http://www.omg.org/mda.

[13] Object Management GroupJnified Modeling Language 2.@005.
http://www.omg.org/docs/formal/05-07-04.pdf.

[14] OMG. UML 2.0 OCL Specificatiqr2003. http://www.omg.org/
docs/ptc/03-10-14.pdf.

[15] M. Richters. A Precise Approach to Validating UML Models and
OCL Constraints PhD thesis, Universit Bremen, 2002. Logos
Verlag, Berlin, BISS Monographs, No. 14.

[16] Technische Universit Dresden. Dresden OCL Toolkjt2005.
http://dresden-ocl.sourceforge.net/.

[17] T. van der Storm. Variability and component compositiom |
International Conference on Software Reuse (ICSR8ume 3107
of LNCS pages 157-166. Springer-Verlag, 2004.

[18] J. Whaley. JavaBDD, 2003-2006. Library available atr8ekorge,
http://javabdd.sourceforge.net/.

S

A. Formalization of Feature-Based Model
Templates

The following subsections give a formal definition of feature-based
model templates, which includes feature models, annotated models,
and the template instantiation process.

A.1 Feature Models
A feature model can be formally represented by the structure
FM = (F, E,G, |||, D) o

where (i) F is a finite set of features; (ily ¢ F? is a set of edges;

(iiiy G C (2 \ 0) is a set of feature groups represented as sets of
edges; (iv)||-|| : G — Z* is a total function assigning cardinalities
to groups; (v) and is a set of additional constraints expressed as
propositional formulas oveF'. The setd” and E form a tree with

r € F as its root. All edges in a group must have the same source
feature. For simplicity, we treat a solitary feature as a group of one.
Consequently, every edge belongs to some group. Furthermore, all
groups inG are pair-wise disjoint. Finally, for every € G, the
corresponding cardinality{g|| = (m,n) has to be well-formed,
i.,e.,0 < m < n <|g|. For example, the cardinality function for
the feature model in Figure 1(a) is as follows:

(1,1) ifg={(pi,aa)}
lgll = 4 (1,2) ifg={(aai2),(aa,i3)}
(0,1) otherwise

The semantics of a feature model can be defined using an ap-
propriate grammar or logic [2, 4, 6]. In this work, we use an inter-
pretation of feature models using propositional logic in a similar
style as defined by Batory [2]. In this interpretation, a configura-
tion ¢ is defined as a particular assignmentrak or falseto every
feature inF, i.e.,¢ € ®, where® is the set of all total functions
with the signature’” — {true, false}. A configuration¢ is cor-
rectiff @ &= grm, i.€., grem is true for¢. Given a feature model

FM (F,E,G, ||, D), the propositional formularu can be
computed as follows:

grM =1 AN Qe Nqa N 49D

a= N\ (h<h)
(f1,f2)€E
96 = N (f = choic@n,n(f1,- .-, fx))
geG
g={(f,f1)s-,(fifr)}
llgll=(m,n)
o=/ d

deD

A.2 Model Templates

Our formalization of annotated models uses an existing formaliza-
tion of class models that is given in the OCL 2.0 specification [14,
Appendix A]. This formalization is based on Mark Richter's PhD
thesis [15]. In that formalization, a class motlisl represented by
the structure:
M=

(CLASS, ATT,, OP., ASSOG associategoles, multiplicities <)
where (i) Q.ASS s a set of classes; (i) W, is a set of operation
signaturess; : t. — t for functions mapping an object of class
¢ to an associated attribute value withbeing the attribute name,
t. being the OCL type corresponding to the clasand¢ being
the attribute type; (iii) @. is a set of signatures for user-defined
operations of a class (iv) Associs a set of association names;
(v) associatess a function mapping each association name to a
list of participating classes; (viplesis a function assigning each
end of an association a role name; (vipltiplicitiesis a function
assigning each end of an association a multiplicity specification;
and (viii) < is a partial order on Cassreflecting the generalization
hierarchy of classes. All these sets and functions are precisely
defined in the specification [14, pp. 187-194]. Thus, a metamodel
for a model template is given > and a se© of additional well-
formedness constraints expressed in OCL.

The semantics oM is a set oBystem statesr instances of class
modelM. model template because we ustas the metamodel for
the template. A system state for a modél is the structure [14, p.
194

g (JCLA557 OATT; UAssoc)

where (i) for every clasg € CLASS, the finite setociass(c)
contains all objects of existing in the system state; (ii) for each
attributea : t. — t € ATT, where A'T; is the set of operation
signatures for attribute functions for all attributes@fincluding
the inherited ones, the functiomn:r(a) : ocuass(c) — I(t) assigns
an attribute value (which may he) to each object, wheré(t) is
the interpretation of the typg (iii) the finite setsoassoc cOntain

andL r is the set of all propositional formulas ovErwith the usual
propositional operatorss, V, —, =, and<, as well axhoice, .

A.3 Template Instantiation

Before we give a precise definition of template instantiation, we
definep® : oé.ass — Lr, Which is a total function computing the
accumulated presence condition for every template element:

A

cc€wholegc)

p*(c) = plc) A p(ce)

In the above definitionwholegc) denotes the set of all objects
in o ass that directly or indirectly containc according to the
containment associations j¥.

Figure 2(b) shows an instance of the template in Figure 2(a) for
the configuration in Figure 1(b). The instance is obtained through
template instantiatiomefined by the functiofi’. Given a template
oT and a configuratiog, T computes a new system state (i.e., a
new instance of the metamodel) in which objects whose accumu-
lated presence conditions are false with respect to the configuration
¢ are removed. The rationale for using the accumulated presence
conditions rather than just presence conditions is that removing an
element should also remove all the elements contained in it, inde-
pendently of the presence condition of the contained elements. In
addition to removing objects fromc ass, 7' also needs to remove
these objects from the links #ssoc, and from the domains of the
attribute functions irrarr. If the object removal from a link results
in an object sequence with less than two objects, the entire link is
also removed. More formally is defined as follows:

T((o,p),¢) = o, where

= (UCLAss7 OATT, O'Assoc)
o' = (0Ciass) TArrr TAsso
O—é:LAss(c) = {Q | ce UCLASS(C) A (b): p"< (g)}
ofna)(©) = oar(a)(c) andofy(a) : oty e — (1)
Onssod@s) = {l] (c1...cn) € oassodas)A

l=mgppe (e ({e---en))N
[>1

}

In the above definitiony g« ;) ({c1 - . . cn)) projects all compo-
nentsc;, ¢ € {1,...,n}, of the sequencéc; . ..c,) for which
¢ = p*(ci).

The result of template instantiation may not be well-formed
with respect to the target notation. In particular, the result may
violate the multiplicities of the metamodel and/or the additional
OCL constraints in0D. Although reducingrciass and the domain
of oarr Will result in o ¢ ,ss andoa,; that satisfy the class model of
M, removing objects from the links ifassoc may result incassoc
that violates the multiplicities oM.

links connecting objects. Links are instances of associations andg, Template Interpretation of OCL
are represented as sequences of objects. A link set must satisfy

all multiplicity specifications defined for an association\u. The
complete definition of the object state structures (i—iii) is given in
the specification [14, pp. 193-194].

Now we can give a precise definition of a model template, which
is the structure:

ol (o,p)

wherep : odass — Lr is a total function assigning presence
conditions to template elements. pis signature g¢, s is the set
of all objects in the system state i.e.,

*
OCLass = U UCLASS(C)
ceCLASS

3The OCL semantics specification [14, Appendix A 1] uses tha tebject
model” instead of “class model”. However, we prefer the laitteorder to
be consistent with the terminology used at the UML model level.

Before giving the template interpretation of OCL, we need to
briefly discuss how the standard interpretation of OCL expres-
sions is formally defined in the OCL specification [14, Appendix
A.3.1]: An evaluation context for an expression is given by an en-
vironmentr = (o, 3) consisting of a system stateand a variable
assignment3 : Var: — I(t), whereVar; is the set of vari-
ables of typet, andI(¢) denotes the interpretation of typee.g.,
I(Boolear = {true, false L }. The system state provides access

to the set of currently existing objects, their attribute values, and
association links between objects. The variable assigntheraps
names of OCL variables to values. Given the set of all environ-
mentsEny, 7 € Eny, the standard semantics of an OCL expression
is given by the interpretation functioe] : Env — I(t), which

is precisely defined in the OCL specification [14, Definition A.30].
Furthermore, the specification defines the interpretation fundtion
for all OCL types and their operations.

Our proposed template interpretation of an OCL expression
is given by the new interpretation functioi’ [e] : Env'' —
I™(t). The evaluation context for an expression is now given by
atemplate environment” = (o7, 87) consisting of a template
oT = (o,pc), and a variable assignmeft : Var, — I7(t),
where the functiod” gives the template interpretation of types and
their operations. We first discuss hdW is defined before giving
the definition forI ™ [¢].

The template interpretatiofi” (t) of a typet has to take into

Here is the template interpretation &fEmpty : Sett) —
Boolean

IT (isEmpty)(s) =

{(true, true) } if s=0
{(true7 pr AL A "pn):
(falsepl Voo VPn)} if s = {(xlvpl)v RN (x’"«?p’n)} An Z 1
Let us take a look at two examples of operations with the
signaturew : Seft) x Sett) — Seft). The operatiorunionhas a

account that it needs to represent a collection of possible resultsstraightforward definition:

for an expression evaluation rather than just a single result. For

non-collection types, i.e., the basic typeseger Real Boolean
andString as well asTupleand object types, we need to represent
a set ofalternativevalues since for a given configuratiahone

and only one alternative has to be selected. For the collection types

Sett) andBag(t), we need to represent a collection of the same

kind, i.e., a set or a bag, respectively, but containing values for

multiple selectiongather than alternatives since a subset of the
values needs be selected for a givenSuch a representation is

IT(UI'liOI'1)(S17 32) = s1 Us2
However,intersectionis a bit more complex:
I7 (intersection (s1, s2) =

{(z,p) | Y(z1,p1) € 51 : V(22,p2) € 52 :
1 =x2 Az =21 Ap=(p1 Ap2)}

The template interpretation of OCL expressions is similar to
the standard interpretation given in Definition A.30, itemsv.,

more efficient than a set of alternative collections. Consequently, in the OCL specification. The itemis-vii. from that definition

for a non-collection type, we define
() = F(I{t) xLp)
whereF (.S) denotes the set of all finite subsets of a givenSset
For example, sincé&(Boolear) = {true, falsg L}, I” (Boolean =
F({true false 1} x Lr). Since I (t) is a set of alternatives,
we additionally require that for everf(vi, p1), ..., (vn,pn)} €
I™(t), wheret is a non-collection type, the propositional formula
choica 1(p1, ..., pn) is valid. For the collection typeSeft) and
Bag(t), we have the following definition’:
IT(Sett)) = FU{) xLp)
IT(Bag(t)) = B(I(t) x LF)
where B(S) denotes the set of all finite multisets ov&rand
1(t) is the standard OCL interpretation ©of
The template interpretation of an operation ¢1,...,t, — ¢
is given by the functionl ™ (w) : I7(t1),..., 17 (t,) — IT(t),
with n > 0.
For a unary operatio, such as—, abs floor, round, not,

and the string operatiorsze toUpper, andtoLower, the template
interpretation is defined according to the following schema:
I"(W){(z1,p1), -, (@n,Pn)}) =
{U(@)(=1),p1), ..., (I(w)(zn),Pn)}
For binary operations, such as —, x, /, min, max <, >, <

=

>, concat and, or, xor, andimplies the corresponding schema is
as follows:

IT(W)({(zlvpicl)v ce (zmvp-'ﬂm)}v {(ylypyl)v R (yn7p?/n)}) =

{ (I(w)(21,Y1), Py APy1)s (I(w)(®1,yn), P21 A Py,),

(@) (@m, Y1); P A Py1), (I(@)(@m,s Yn): Poym A Pyn)
For nullary operations, such d® for Integer or "foo” for
String we have the following schema:

IT(w)() = {I(w)(), true)}

are carried over to the template interpretation. For example, the
template interpretation of variables (corresponds to itgns as
follows:

M) = 8% (v)
However,if-then-elseitem v.) is defined differently. Here we only

give the definition for the case when andes are of non-collection
types:

IT[if e1 thenes elsees endif(77) =
{(x,p) | Y(z,p2) € IT[ex](rT) : Vpy : (true,pt) € IT[e1](77T) :
p = (pt Ap2)}U
{(z,p) | V(z,p3) € IT[e3](v7) : Vpy : (false py) € [T [ex](rT) :
p=(py Ap3)}U
{(@,p1) € IT[ea] (") |z = L}

The itemvi. remains unchanged except for replactnge and
falseby I7 (true) and I” (false), respectively. Finally, the defini-
tion of iterate (item vii.) needs a small change in the environment
definition, which we do not further explain here. Although itera-
tion operations on collections suchfasAll andcollectcan be ex-
pressed usingjerate, more efficient, direct definitions can be given.
For exampleforAll can be defined as follows:

IT[ey->forAll(vlex)](rT) =

{(true, true) } it IT[ei](zT) =0
if IT[[elﬂ(TT) =
{(z1,p1), - (@n, Pn)IA
{(true, p1 = pey(ay)=tN Vi=1,...,2n
<o APn = Pey(wn)=t)s RAXIT [e2] ((¢7,

BT {v/{(zi, true)}}))) =
{(true, pey (a)=t)>
(falsg pey (2;)=1)>

(LyPeg(a=1)}

(false p1 = Peg (z1)=F/
< APn = Peg(an)=F)»
(L1 = Peg(ay)=1 A
- AP = pe2(:l;n):L)}

where (i) (o7, 87 {v/{(z:, true)}}) represents the environment

77 updated with a variable binding fromto {(z;, true)} and (ii)
Pes(z;)—t denotes the condition under whieh evaluates to true

Template semantics for operations on collection types are more for z;. Furthermore, (iii) the functioRdx: 17 (t) — I" (¢), where

complex and varied, but still relatively straightforward to define.
Here we only show some examples. The operagiaa: Sett) —

t is a non-collection type, takes a set of alternatives and returns an
equivalent set of alternatives in which pairs with the same value

Integer computes the size of a set. Its template interpretation is Were merged, e.g.:

defined as follows:

IT(Size)({(an,pl), cos(Tn,pn)}) =

{(0, choicey,o(p1,---,pn)), - -, (n,choice, n(p1,...,pn))}
41t is important to note that every OCL tygeincludes_L in the standard
OCL interpretation, i.e.,.L € I(t). While the template interpretation of
non-collection types takes this fact into account, for sinify, we do not
considerL for template interpretation of collections. Also, in praeti.L is
less useful for collections since an empty collection candelunstead.

10

Rd)({(lvpl)1 (11]72)7 (27733)}) = {(Lpl VP2), (2’173)}

Now we can give the precise definition of step one of our
verification approach from Section 4.2. Given the tempielteand
objectc, the template semantics is given as

Rdx(I"[e]) (")
wherer” = (o7, {self/{(c, true)}}).

