
The Syntax and the Semantics of FUDA
Templates

1 Definition
A template is a representation of the implementation steps that are necessary to instan-
tiate a given concept. A part of a template for the concept drawing a figure in a GEF
editor on top of the Eclipse GEF framework is shown in Figure 1. A FUDA template
has the form of a textbook-like example in Java-based pseudo-code.

2 The Templates’ Content
Templates specify the following implementation steps:

• Packages to import (l. 1–4 in Figure 1);

• Framework classes to subclass (l. 5, l. 22);

• Interfaces to implement (l. 15);

• Methods to implement (l. 16);

• Objects to create (l. 7, 17, 26, 29, 31); and

• Methods to call (l. 9, 11, 12, 19, 28, 30, 32).

In addition to the basic implementation steps, the template also reflects:

• Call nesting, e.g., setModel() is called directly or indirectly by createEditPart()
(l. 19);

• Call order, e.g., paletteRoot (l. 29) is first created before calling its setDefaultEntry()
method (l. 30);

• Parameter passing patterns, e.g., the defaultEditDomain object passed to
the setEditDomain() method (l. 32) is obtained by a prior call to new
DefaultEditDomain() (l. 31).

1

import org.eclipse.gef.editpolicies.GraphicalNodeEditPolicy;1
import org.eclipse.gef.EditPart;2
import org.eclipse.gef.EditPartViewer;3
import org.eclipse.ui.part.WorkbenchPart;4

/* FRL 01 */ public class AppComponentEditPolicy extends ComponentEditPolicy {5
/* FRL 02 */ public Command createDeleteCommand(GroupRequest) {6
/* FRL 03 */ AppGraphicalNodeEditPolicy appGraphicalNodeEditPolicy =7

new AppGraphicalNodeEditPolicy();8
/* FRL 04 */ EditPart editPart = appComponentEditPolicy.getHost(); // REPEATED!9

/* UNKNOWN ORDER FOR THE FOLLOWING INSTRUCTIONS */10
/* FRL 05 */ Object object1 = editPart.getModel(); // MAY REPEAT!11
/* FRL 06 */ EditPart editPart = editPart.getParent();12

}13
}14

/* FRL 07 */ public class AppditPartFactory implements EditPartFactory {15
/* FRL 08 */ public EditPart createEditPart(editPart)||(appAbstractGraphicalEditPart) {16
/* FRL 09 */ AppAbstractGraphicalEditPart appAbstractGraphicalEditPart =17

new AppAbstractGraphicalEditPart();18
/* FRL 10 */ appAbstractGraphicalEditPart.setModel(object1)||(editPart); // REPEATED!19

}20
}21

/* FRL 11 */ public class AppGraphicalNodeEditPolicy extends GraphicalNodeEditPolicy {22
}23
public class SomeClass {24

public void someMethod() {25
/* FRL 12 */ TemplateTransferDragSourceListener templateTransferDragSourceListener =26

new TemplateTransferDragSourceListener(EditPartViewer)||(EditPartViewer,Transfer);27
/* FRL 13 */ EditPartViewer.addDragSourceListener(templateTransferDragSourceListener);28
/* FRL 14 */ PaletteRoot paletteRoot = new PaletteRoot();29
/* FRL 15 */ paletteRoot.setDefaultEntry(ToolEntry);30
/* FRL 16 */ DefaultEditDomain defaultEditDomain = new DefaultEditDomain(IEditorPart);31
/* FRL 17 */ GraphicalEditor.setEditDomain(defaultEditDomain);32

}33
}34

Figure 1: Part of a template generated by FUDA for the concept drawing figures
in a GEF editor

Note that the specified steps involve only the elements of the framework API and
implementation steps that are specific to a particular sample application are not re-
flected in the template.

It is also worth mentioning that the classes of the template only include the methods
that are actually executed when the desired concept is invoked at runtime. For example,
the body of the class AppGraphicalNodeEditPolicy is empty and it shows that
none of its methods is called when the figure drawing concept is executed.

2.1 The Meaning of Comments
• The comments REPEATED (e.g., l. 9) and MAY REPEAT (l. 11) indicate that the

commented step appeared more than once in every or some of the traces used to
generate the template, respectively.

• The comments in the form of /* FRL n */ are used to provide traceability
between the templates and the sample applications’ source code from which the
templates are generated. In these comments, n represents the number of the
implementation step in the template. More specifically, we have manually com-

2

mented all the lines of the sample applications’ source code with /* FRL n

*/ that correspond to the nth implementation step in the template. Therefore,
you can search the sample applications’ source code with FRL n to see how that
template’s implementation step is actually implemented in the provided sample
applications.

• Some templates have a comment in the form of /* UNKNOWN ORDER FOR
THE FOLLOWING INSTRUCTIONS */ (e.g., l. 10). This comment shows
that FUDA was not able to automatically identify an exact order for the instruc-
tions that follow this comment.

3 Differences from Ordinary Java
There are two main differences between templates and ordinary Java programs:

1. Using the notion of ‘||’: FUDA uses a special syntax to show that a method
with a given name was called with different argument types. For example,
setModel(object1)||(editPart) (l. 19 in Figure 1) is due to multiple
calls to setModel() with different arguments. As another example, l. 27 il-
lustrates that the class TemplateTransferDragSourceListener can be
instantiated with different types of arguments.

2. All variables are global: What appears to be a local variable declaration in Java,
such as object1 (l. 11), actually has global meaning in the template. For that
reason, object1 can be used as a method argument in another method scope
(l. 19).

4 The class SomeClass and the method someMethod
in the Template

The method someMethod of class SomeClass hosts instructions that FUDA was
unable to automatically identify an exact place for them. Please note that the instruc-
tions in this method may or may not come together in the concept’s implementa-
tion. You may specify the place of each instruction yourself.

5 Possibility of False Positives and False Negatives
A template is an approximation of the necessary implementation steps, and it can be
incomplete or unsound or both. In particular, implementation steps can be missing
(false negatives) or unrelated steps (false positives) can be present in some cases. Given
two sample applications, FUDA will filter out any steps that are not common to both
sample applications. However, based on the experiments we did, false positives are
more likely to happen than false negatives.

3

Furthermore, some implementation detail is still missing in a template. For exam-
ple, the presented template in Figure 1 only presents the implementation steps on top
of the Eclipse GEF framework. However, there might be some instructions on top of
other frameworks that are necessary to see the correct functionality of the drawing fig-
ure concept. Since they are on top of other frameworks (e.g., draw2d framework), they
are not included in the template. As another example, whereas the calls in lines l. 9 and
l. 11 are marked as candidates to be repeated, the template does not reflect the fact that
they should be repeated as a block, rather than individually.

4

