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Abstract. This paper argues that the current OO technology does not support reuse and
configurability in an effective way. This problem can be addressed by augmenting OO analysis and
design with feature modeling and by applying generative implementation techniques. Feature
modeling allows capturing the variability of domain concepts. Concrete concept instances can then
be synthesized from abstract specifications.

Using a simple example of a configurable list component, we demonstrate the application of
feature modeling and how to implement a feature model as a generator. We introduce the concepts
of configuration repositories and configuration generators and show how to implement them using
object-oriented, generic, and generative language mechanisms. The configuration generator utilizes
C++ template metaprogramming, which enables its execution at compile-time.

1 Introduction
In the early days of OO, there used to be the belief that objects are reusable by their very
nature and that reusable OO software simply “falls out” as a byproduct of application
development. Today, the OO community widely recognizes that nothing could be further
from the truth. Reusable OO software has to be carefully engineered and engineering for
reuse requires a substantial investment. One of the weaknesses of current OO Analysis
and Design (OOA/D) is the inadequate support for variability modeling. As suggested by
the work in the reuse community (e.g. [CN98, GFA98, Cza98]), this problem can be
addressed by augmenting OOA/D with feature modeling. Feature modeling was
originally introduced in the Feature-Oriented Domain Analysis (FODA) method
[KCH+90] as a technique for modeling commonalities and variabilities within a domain.
Since reusable models may contain a significant amount of variability, rigid class
hierarchies are inappropriate for implementing such models. They are more adequately
implemented as flexible, highly parameterized component classes. Concrete component
configurations can be synthesized from abstract descriptions by a configuration
generator. An important aspect of such designs is the separation between the
components and the configuration knowledge, which is achieved using a configuration
repository. We demonstrate these concepts using a concrete example and also show how
to implement them using object-oriented and generic language mechanisms in C++. The



configuration generator utilizes C++ template metaprogramming, which enables its
execution at compile-time.

The rest of the paper is organized as follows. Section 2 discusses the weaknesses of
OOA/D in the context of reuse and configurability. Section 3 introduces the concept of
feature models. Section 4 makes the connection between feature models and object
synthesis. Section 5 contains a concrete example starting with a feature diagram and
concluding with a configuration generator. Section 6 lists extensions not included in the
example due to space limitations. Section 7 discusses two libraries implemented using
the techniques from this paper. Section 8 discusses related work. Section 9 concludes by
making the connection to active libraries and Generative Programming.

2 Problems of Object Technology in the Context of Software Reuse
Two important areas of OO technology addressing reuse are frameworks and design
patterns. A framework embodies an abstract design for a family of related systems in the
form of collaborating classes. Similarly, design patterns provide reusable solutions to
recurring design problems across different systems. Patterns, as a documentation form,
also proved useful in capturing reusable solutions in other areas such as analysis,
architecture, and organizational issues. Unfortunately, only very few OOA/D methods
provide any support for the development of frameworks.1 Similarly, there is little
systematic support in both finding and applying patterns.

Most OOA/D methods focus on developing single systems rather than families of
systems. Given this goal, these methods are inadequate for developing reusable software,
which requires focusing on classes of systems rather than single systems. A comparison
between Domain Engineering methods (e.g. ODM [SCK+96] or FODA [KCH+90]),
which are designed for engineering system families, and OOA/D methods reveals the
following deficiencies of the latter:

• No distinction between engineering for reuse and engineering with reuse: Taking
reuse into account requires splitting the OO software engineering process into
engineering for reuse (i.e. Domain Engineering) and engineering with reuse (i.e.
Application Engineering). OOA/D methods come closest to Application
Engineering, with the difference that Application Engineering focuses on reusing
available assets produced during Domain Engineering.

                                                       
1 As of writing, OOram [Ree96] is the only OOA/D method known to the authors which truly
recognizes the need for a specialized engineering process for reuse. The method includes a domain
scoping activity involving the analysis of different classes of consumers. However, the method
does not incorporate feature modeling.



• No domain scoping phase: Since OOA/D methods focus on engineering single
systems, they lack a domain scoping phase, where the target class of systems is
selected. Also, OOA/D focuses on satisfying “the customer” of a single system rather
than analyzing and satisfying stakeholders (including potential customers) of a class
of systems.

• Inadequate modeling of variability: The only kind of variability modeled in current
OOA/D is intra-application variability, e.g. variability of certain objects over time
and the use of different variants of an object at different locations within an
application. Domain Engineering, on the other hand, focuses on variability across
different systems in a domain for different users and usage contexts. Since modeling
variability is fundamental to Domain Engineering, Domain Engineering methods
provide specialized notations for expressing variability.

Thus, a general problem of all OOA/D methods is inadequate modeling of variability.
Although the various modeling techniques used in OOA/D methods support variability
mechanisms (e.g. inheritance, aggregation, and static parameterization), OOA/D
methods do not include an abstract and concise model of commonality, variability, and
dependencies. There are several reasons for providing such a model:

• Since the same variability may be implemented using different variability
mechanisms in different models, we need a more abstract representation of
variability (cf. Section 3).

• The user of reusable software needs an explicit and concise representation of
available features and variability.

• The developer of reusable software needs to be able to answer the question: why is a
certain feature or variation point included in the reusable software?

The lack of domain scoping and explicit variability modeling may cause two serious
problems:

• relevant features and variation points are missing; and

• many features and variation points are included but never used; this causes
unnecessary complexity and cost (both development and maintenance cost).

Covering the right features and variation points requires a careful balancing between
current and future needs. Thus, we need an explicit model that summarizes the features
and the variation points and includes the rationale and the stakeholders for each of them.
In Domain Engineering, this role is played by a feature model. A feature model captures
the reusability and configurability aspect of reusable software.



3 Feature Models
Domain concepts that we try to model in reusable software are inherently complex. Even
the implementation of a simple container object requires a multitude of design decisions,
e.g. type of elements, what kind of iterators it provides, ownership (i.e. whether the
container keeps the original elements or their copies and whether it is responsible for
deallocating the elements or not), memory allocation (on the stack, on the heap, in a
persistent store, etc.), memory management (e.g. whether growing is possible or not),
error detection (e.g. whether bounds checking is done or not), synchronization of
concurrent access, etc. If the container is to be reusable, many of these decisions have to
be changeable since different usage contexts will have different requirements. The
changeable design decisions span a design space containing variation points [JGJ98] at
which different design alternatives and options may be selected.

In Domain Engineering, each of the alternative design decisions is represented by a
feature.2 Following the conceptual modeling perspective, a feature is defined as an
important property of a concept. For example, the features of a list may include ordered,
singly linked, keeps track of its size, can contain elements of different types, etc. In the
context of Domain Engineering, features represent reusable, configurable requirements
and each feature has to make a difference to someone, e.g. a stakeholder or a client
program. For example, when we build an order processing system, one of the features of
the pricing component could be aging pricing strategy, e.g. you pay less for older
merchandise. This pricing strategy might be particularly interesting to companies selling
perishable goods.

Features are organized into feature diagrams [KCH+90], which reveal the kinds of
variability contained in the design space. An example of a feature diagram is shown in
Fig. 1. It describes a simple model of a car. The root of the diagram represents the
concept car. The remaining nodes are features. The diagram contains four kinds of
features (see [Cza98] for other kinds of features and a full description of the feature
diagram notation):3

• Mandatory features: Mandatory features are pointed to by simple edges ending with
a filled circle. The features car body, transmission, and engine are mandatory and
thus part of any car.

• Optional features: Optional features are pointed to by simple edges ending with an
empty circle, e.g. pulls trailer. A car may pull a trailer or not.

                                                       
2 Features and feature modeling have been propagated by the Feature-Oriented Domain-Analysis
(FODA) method [KCH+90].
3 Or-features are not part of the notation in [KCH+90]. They were introduced in [Cza98].



• Alternative features: Alternative features are pointed to by edges connected by an
arc, e.g. automatic and manual. Thus, a car may have an automatic or manual
transmission.

• Or-features: Or-features are pointed to by edges connected by a filled arc, e.g.
electric and gasoline. Thus, a car may have an electric engine, a gasoline engine, or
both.

A feature diagram is usually accompanied by additional information, such as short
semantic description of each feature, rationale for each feature, stakeholders and client
programs interested in each feature, examples of systems with a given feature,
constraints between features (e.g. which feature combinations are illegal and which
features imply the selection of which other features), default dependency rules (i.e. which
feature suggests the selection of which other features), availability sites (i.e. where,
when, and to whom a feature is available), binding modes (e.g. whether a feature is
bound dynamically or statically), open/closed attributes (i.e. whether new subfeatures are
expected), and priorities (i.e. how important is a feature). All this information together
constitutes a feature model (see [Cza98] for a detailed description).

automatic manual
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car

transmission engine

Fig. 1.  A sample feature diagram of a car



A feature model describes the configurability aspect of a concept at a high level of
abstraction. Indeed, feature models are more abstract than object diagrams. Fig. 2 shows
one possible implementation of the car feature diagram in UML. In order to be able to
represent our car as an UML class diagram, we had to make a number of concrete
decisions about which variability mechanisms to use. The implementation in Fig. 2 uses
static parameterization for the transmission, inheritance for the engine, and an
association with the cardinality 0..1 for the trailer. Of course, other implementation
choices are also possible. For example, we could also use inheritance or dynamic
parameterization for the transmission.

The fundamental flaw of the OOA/D methodology in the context of software reuse is to
start modeling in terms of variability implementation mechanisms such as inheritance,
dynamic parameterization, and static parameterization rather than more abstract
variability representations.

For this reason, as suggested by various researchers [CN98, GFA98, Cza98], we use
feature models in addition to other OO models.
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Fig. 2.  One possible implementation of the simple car from Fig. 1 using
a UML class diagram



4 Feature Models and Object Synthesis
We can implement the functionality represented by a feature model using a set of
implementation components. The idea is that the implementation components can be
configured to yield the different systems covered by a feature model. We can utilize
different technologies for implementing the components. One possibility is to use objects.

As stated, object-oriented designs support variability using different mechanisms and
techniques. Nearly every design pattern listed in [GHJV95] is about making some part of
a design variable, e.g. bridge lets you vary the implementation of an object; strategy
turns an algorithm into a parameter; state allows you to vary behavior depending on the
state; template method provides a way to vary computation steps while keeping the
algorithm structure constant. Most of the standard implementations of these patterns
utilize dynamic parameterization allowing parameters to vary at runtime. However,
reusable models are also full of static variation points, i.e. ones that vary from
application to application rather than within one application at runtime. Such variation
points are better implemented using static parameterization. We will see concrete
examples in Section 5.2.

What is the relationship between features and the implementation components? In this
context, we differentiate between three kinds of features:

• Concrete features: A concrete feature is directly implemented by one component,
e.g. sorting can be directly implemented by a sorting component.

• Aspect features: An aspect feature is implemented as an aspect in the sense of
Aspect-Oriented Programming [KLM+97]. An aspect is a kind of modularity which
affects many other components, e.g. a declarative description of the synchronization
of a number of components. Aspects are usually implemented using an aspect
weaver, i.e. a language processor which automatically implements the aspect by
coordinating (e.g. merging or interpretatively scheduling) the component code and
the aspect code.

• Abstract features: Abstract features do not have direct implementations whatsoever.
They are implemented by an appropriate combination of components and aspects.
Examples of abstract features are performance requirements, such as optimize for
speed or space or accuracy.

We say that features make up the problem space, whereas the implementation
components and aspects constitute the solution space. Both spaces have different
structures: abstract features have no directly corresponding components or aspects in the
solution space, and there may be some “implementation-detail” components and aspects
that have no direct correspondence in the problem space. Both spaces are also driven by
different, usually conflicting goals: The problem space consists of high-level concepts



and features which application programmers would like to work with, while the
components in the solution space are designed

• as elementary components combinable in as many ways as possible,

• to avoid any code duplication, and possibly

• to be reusable across many product lines.

The separation between problem and solution space allows us to satisfy both the problem
space goals and the solution space goals. It also promotes software evolution since both
spaces may be modified (to a certain degree) independently.

The mapping between the problem and the solution space is facilitated by configuration
knowledge, which consists of

• constraints specifying which feature combinations are illegal and which features
require the selection of which other features,

• default dependency rules specifying which feature suggests the selection of which
other features, and

• mapping rules specifying which feature combinations require which combinations of
components and aspects.

Since some of the variation points in the problem space are static, we need a way to
evaluate the configuration knowledge and compose the appropriate components and
aspects at compile time. What does this mean if we use objects to implement the solution
space? We need a metaprogramming facility which synthesizes objects according to
abstract featural descriptions at compile time. As with any new programming concept,
direct support in a programming language is desirable. Surprisingly, the concepts
outlined above can be implemented utilizing the OO and generic features of C++. We
demonstrate the necessary techniques in the following section.

5 Example: Synthesizing a List Container

5.1 Feature Model

Suppose we want to develop a reusable singly linked list. First, we need to analyze the
requirements different applications may have for a list in areas such as type of elements,
element traversal, storage layout, ownership, memory allocation and memory
management, error detection, synchronization of concurrent access, etc. We document
the variable features in different areas using feature diagrams. Finally, we should
prioritize the features according to project goals (e.g. target customers and applications).
For the purpose of this presentation, we show the implementation of a list covering the
features shown in Fig. 3. ElementType  is the type of the elements stored in the list and
is a free parameter (i.e. any type can be substituted for ElementType ), as indicated by



the square brackets. Ownership  indicates whether the list keeps references to the
original elements and is not responsible for element deallocation (i.e. external
reference ), or keeps references and is responsible for element deallocation (i.e.
owned reference ),  or keeps copies of the original elements and is responsible for
their allocation and deallocation (i.e. copy ). Morphology  describes whether the list is
monomorphic  (i.e. all elements have the same type) or polymorphic  (i.e. can contain
elements of different types). Each list element may also contain a length counter
allowing for a length operation of a constant time complexity. LengthType  is the type
of the counter. Finally, the list may optionally trace its operation, e.g. by logging
operation calls to the console. (Of course, this diagram could be extended with further
features.)

5.2 Implementation Components

As stated, we can apply different OO techniques to implement the variability contained
in the list feature diagram. Here we show an implementation using static
parameterization (including parameterized inheritance). Our implementation consists of
the following components:

• PtrList , which implements the basic list functionality including the accessing
operations for the head (head()  and setHead() ) and tail (tail()  and
setTail() );

external
reference

copy

LengthCounter[ElementType]

mono-
morphic

Ownership Morphology Tracing

List

int short long

[LengthType]

...

owned
reference

poly-
morphic

Fig. 3   Feature diagram of a simple list container



• LenList , which is a wrapper for adding a length counter to a list;

• TracedList , which is a wrapper for adding tracing to a list.

Additionally, there are three sets of small components for implementing ownership and
morphology:

• destroyers, which deallocate memory;

• type checkers, which check the type of the elements added to the list;

• copiers, which copy the elements.

The implementation components constitute a layered architecture (or a GenVoca
architecture [BO92]) shown in Fig. 4. Each rectangle represents a layer. A layer drawn
on top of another layer refines the latter by adding new functionality. In general, a layer
may contain more than one alternative component. A component from one layer takes
another component from the layer below as its parameter, e.g. LenList  may take

Counter Layer LenList

Tracing Layer

BasicList

Config

TracedList

ElementType : [ElementType]
Destroyer : EmptyDestroyer | ElementDestroyer
TypeChecker : DynamicTypeChecker | EmptyTypeChecker
Copier : PolymorphicCopier | MonomorphicCopier |

  EmptyCopier
LengthType : int | short | long | ...
ThisType

PtrList

Fig. 4   Target architecture of the list container

List : TracedList[ OptCounterList] | OptCounterList
OptCounterList : LenList[ BasicList] | BasicList
BasicList : PtrList[Config]
Config :
 ElementType : [ElementType]
 Destroyer : EmptyDestroyer | ElementDestroyer
 TypeChecker : DynamicT ypeChecker | EmptyTypeChecker
 Copier : PolymorphicCopier | MonomorphicCopier | EmptyCopier
 LengthType : int | short | long | ...
 ReturnType //the final list type

Fig. 5   GenVoca grammar of the list container



PtrList  as its parameter. A layer containing a dashed rectangle is optional (see
[Cza98] for details of this notation).  The bottom layer is referred to as a configuration
repository (abbr. Config ). A configuration repository provides types needed by the
other layers under standardized names. It works as a kind of registry, which components
may use to retrieve configuration information from and also to exchange such
information among each other. A configuration repository allows us to separate the
configuration knowledge from the components. It minimizes dependencies between
components since the components do not exchange types and constants directly, but
through the repository. As we show later, we implement a configuration repository as a
so-called traits class [Mye95]. The use of trait classes as configuration repositories was
first proposed in [Eis96].

Alternatively, the list architecture can be described as a so-called GenVoca grammar (see
Fig. 5). The vertical bar separates alternatives and parameters are enclosed in square
brackets, e.g. List  is either TracedList  parameterized by OptCounterList  or
OptCounterList . The names exported by the configuration repository Config  are
listed below it. ReturnType  is the final type of a configured list.

We can implement PtrList  in C++ as follows:4

template<class Config_>
class PtrList
{
public:

//make Config available as a member type
typedef Config_ Config;

private:
//retrieve needed types from the configuration repository
typedef typename Config::ElementType ElementType;
typedef typename Config::SetHeadElementType SetHeadElementType;
typedef typename Config::ReturnType ReturnType;

typedef typename Config::Destroyer Destroyer;
typedef typename Config::TypeChecker TypeChecker;
typedef typename Config::Copier Copier;

public:
PtrList( SetHeadElementType& h, ReturnType *t = 0) :

head_(0), tail_(t)
{ setHead(h); }

~PtrList()
{ Destroyer::destroy(head_); }

void setHead( SetHeadElementType& h)
{ TypeChecker::check(h);

                                                       
4 The keyword typename  is required by ANSI C++ to tell the compiler that a member of a
template parameter is expected to be a type.



head_ = Copier::copy(h);
}

ElementType& head()
{ return * head_; }

void setTail( ReturnType *t)
{ tail_ = t; }

ReturnType *tail() const
{ return tail_; }

private:
ElementType* head_;
ReturnType * tail_;

};
PtrList  has two instance variables: head_  and tail_ . head_  points to the head
element and tail_  points to the rest of the list. Please note that the type of tail_  is
ReturnType , which is the final type of the list. We cannot use PtrList  as the type of
tail_  since we will derive a list with counter and a list with tracing from PtrList .
Whenever we derive classes from PtrList  and want to create instances of the most
refined type, tail_  has to be of the most refined type. Since this type is unknown in
PtrList , PtrList  retrieves it from the configuration repository (which is passed to
PtrList  as the parameter Config_ ).5

The next interesting point about PtrList  is that methods setting the head (i.e. the
constructor and setHead() ) use the type SetHeadElementType& . This type should
be either ElementType&  or const ElementType& , depending whether the list
stores references to elements or copies of elements. Since this is unknown in PtrList ,
PtrList  retrieves SetHeadElementType  from the configuration repository.

Finally, PtrList  delegates some of its work to other components: The destructor
delegates its job to the type name Destroyer , which is retrieved from the configuration
repository. Similarly, setHead()  delegates type checking and copying to
TypeChecker  and Copier , respectively. The type names Destroyer ,
TypeChecker , and Copier  may point to different components, as specified in   Fig. 5.

We have two destroyer components: ElementDestroyer  and EmptyDestroyer .
ElementDestroyer  deletes an element and is used if a list keeps element copies or
owned references. It is implemented as a struct rather than a class since it defines only
one public operation and struct members are public by default:
template<class ElementType>
struct ElementDestroyer
{ static void destroy(ElementType *e)

                                                       
5 Our example demonstrates how configuration repositories can help in typing recursive classes,
i.e. classes that are used directly or indirectly in their own definition (e.g. a list).



{ delete e; }
};
EmptyDestroyer  is used if a list keeps external references to the original elements.
EmptyDestroyer  does nothing. Since its destroy()  method is implemented inline,
an optimizing compiler will remove any calls to this method.
template<class ElementType>
struct EmptyDestroyer
{ static void destroy(ElementType *e)

{} //do nothing
};
DynamicTypeChecker  is used to assure that a monomorphic list contains elements of
one type only:
template<class ElementType>
struct DynamicTypeChecker
{ static void check( const ElementType& e)

{ assert( typeid(e)== typeid(ElementType)); }
};
EmptyTypeChecker  is used in a polymorphic list and it does nothing:
template<class ElementType>
struct EmptyTypeChecker
{ static void check( const ElementType& e)

{}
};
PolymorphicCopier  copies an element by calling the virtual function clone() :
template<class ElementType>
struct PolymorphicCopier
{ static ElementType* copy( const ElementType& e)

{ return e.clone(); } //call a virtual clone()
};
MonomorphicCopier  copies an element by calling its copy constructor:
template<class ElementType>
struct MonomorphicCopier
{ static ElementType* copy( const ElementType& e)

{ return new ElementType(e); } //call copy constructor
};
Finally, EmptyCopier  simply returns the original element:
template<class ElementType>
struct EmptyCopier
{ static ElementType* copy( ElementType& e) //pass by non- const

   //reference!
{ return &e; } //simply return the original

};

Next, we need the two wrappers LenList  and TracedList  implementing length
counter and tracing, respectively. LenList  is implemented as an inheritance-based



wrapper, i.e. a template class derived from its parameter.6 It overrides the method
setTail()  to keep track of the list length and adds the method length() . Please note
that the component retrieves the configuration repository from its parameter:
template<class BaseList>
class LenList : public BaseList
{
public:

//retrieve the configuration repository
typedef typename BaseList::Config Config;

private:
//retrieve the necessary types from the repository
typedef typename Config::ElementType ElementType;
typedef typename Config::SetHeadElementType SetHeadElementType;
typedef typename Config::ReturnType ReturnType;
typedef typename Config::LengthType LengthType;

public:
LenList( SetHeadElementType& h, ReturnType *t = 0) :

BaseList( h,t), length_( computedLength())
{}

void setTail( ReturnType *t)
{ BaseList::setTail(t);

length_ = computedLength();
}

const LengthType& length() const
{ return length_; }

private:
LengthType computedLength() const
{ return tail() ? tail()->length()+1

: 1;
}

LengthType length_;
};

TracedList  is also implemented as an inheritance-based wrapper:
template<class BaseList>
class TracedList : public BaseList
{
public:

typedef typename BaseList::Config Config;

private:
typedef typename Config::ElementType ElementType;
typedef typename Config::SetHeadElementType SetHeadElementType;
typedef typename Config::ReturnType ReturnType;

                                                       
6 Inheritance-based wrappers are useful whenever we only want to override few methods and
inherit the remaining ones. Otherwise, we can use aggregation-based wrappers.



public:
TracedList( SetHeadElementType& h, ReturnType *t = 0) :

BaseList( h,t)
{ }

void setHead( SetHeadElementType& h)
{ cout << " setHead(" << h << ")"<< endl;

BaseList::setHead(h);
}

ElementType& head()
{ cout << "head()"<< endl;

return BaseList::head();
}

void setTail( ReturnType *t)
{ cout << " setTail(t)"<< endl;

BaseList::setTail(t);
}

};

5.3 Composing List Components

Now that we have created all components the question is how to produce a concrete
configuration, e.g. a monomorphic list keeping copies of elements of type Person  and
providing a length counter and tracing. For this purpose we have to define a
configuration repository with the necessary configuration information (see Fig. 6).

TracedCopyMonoBaseLenListConfig  is implemented as a so-called traits class
[Mye95], i.e. a class aggregating a number of types and constants to be passed to a

struct TracedCopyMonoBaseLenListConfig
{

//provide the different type names required by the components
typedef Person ElementType;
typedef const ElementType SetHeadElementType;
typedef int LengthType;
typedef ElementDestroyer<ElementType> Destroyer;
typedef DynamicTypeChecker<ElementType> TypeChecker;
typedef MonomorphicCopier<ElementType> Copier;

//wrap PtrList into LenList and TracedList
typedef

TracedList<
LenList<
PtrList< TracedCopyMonoBaseLenListConfig > > > ReturnType ;

};
//define a short name for our list
typedef TracedCopyMonoBaseLenListConfig::ReturnType MyList;

Fig. 6   Sample configuration repository



template as a parameter. MyList  contains the type we want to produce. The gray boxes
and arrows visualize the flow of types from the configuration repository to PtrList  to
LenList  and, finally, to TracedList . Among those types is ReturnType , which
represents the final list type. The list components can retrieve it from the repository. It is
interesting to note the circularity involving ReturnType : The components are actually
composed in the configuration repository and the repository is passed to the components.

It is also worth noting that, since all variation points were static, we used static
parameterization and inlining to avoid the unnecessary cost of virtual function calls and
the cost of function calls for small functions. Templates and inlining allow  composing
code fragments without any runtime cost. As a result, the composed types are as efficient
as manually coded concrete variants.

Without counting ElementType  and LengthType , the feature diagram in Fig. 3
defines 24 different list configurations. We can define a configuration repository for each
of them, e.g. a polymorphic list keeping external references to original elements of type
Person  or derived types:
struct RefPolyBaseListConfig
{

typedef Person ElementType;
typedef ElementType SetHeadElementType;
typedef EmptyDestroyer<ElementType> Destroyer;
typedef EmptyTypeChecker<ElementType> TypeChecker;
typedef EmptyCopier<ElementType> Copier;

typedef PtrList<RefPolyBaseListConfig> ReturnType;
};
typedef RefPolyBaseListConfig::ReturnType RefPolyBaseList;
Writing down the configuration repositories for all 24 list variants (we would
parameterize ElementType  and LengthType  for this purpose) is rather tedious. The
situation is worse if we have concepts with more variable features. For example, we
implemented a configurable matrix component, which covers 1840 different matrix
variants (see Section 7). Writing down all configuration repositories in this case is
impracticable. An alternative would be to let the application programmer write the
configuration repositories for the types he or she needs. This approach has its drawbacks.
Writing the lengthy configuration repositories is error prone and tedious. Furthermore,
configuration repositories mention implementation detail which is not relevant at the
level of the feature diagram in Fig. 3. For example, we have to explicitly define
SetHeadElementType , although it is not part of the feature diagram. Similarly,
selecting the appropriate destroyer, type checker, and copier is an implementation detail.
These choices, although they automatically follow from the selected abstract features,
have to be programmed manually! A much better solution is to generate the
configuration repositories from abstract specifications. This is described in the following
section.



5.4 Generating Lists from Abstract Specifications

Our goal now is to generate list configurations from abstract specifications, i.e. sets of
features defined in Fig. 3. This requires writing some code which is executed at compile
time. We can use template metaprogramming for this purpose [Vel95a, CE98, Cza98].
Template metaprograms consist of class templates operating on numbers and/or types as
data.7 Algorithms are expressed using template recursion as a looping construct and class
template specialization as a conditional construct. Template recursion involves the direct
or indirect use of a class template in the construction of its own member type or member
constant. In other words, C++ templates constitute a Turing-complete sublanguage of
C++, which is interpreted by the compiler at compile time. As an example, consider a
template which computes the factorial of a non-negative integral number:
template<int n>
struct Factorial
{ enum { RET = Factorial<n-1>::RET * n };
};

//the following template specialization terminates the recursion
template<>
struct Factorial<0>
{ enum { RET = 1 };
};
We can use this class template as follows:
void main()
{ cout << Factorial<7>::RET << endl; //prints 5040
}
The important point about this program is that Factorial<7>  is instantiated at
compile time. During the instantiation, the compiler also determines the value of
Factorial<7>::RET  (RET  is an abbreviation for RETURN ). Thus, the code generated
for this main()  function by the C++ compiler is the same as the code generated for the
following main() :
void main()
{ cout << 5040 << endl; //prints 5040
}
We can regard Factorial<>  as a metafunction which is evaluated at compile time.
Factorial<>  is a metafunction since, at compilation time, it computes constant data of
a program which has not been generated yet. Template metafunctions can also take types

                                                       
7 The ability to use the template instantiation process to perform compile-time computations was
observed by Erwin Unruh. He wrote a small C++ program generating prime numbers at compile
time, which the compiler would output as a sequence of warnings. This program [Unr94] was
circulated as a “curiosity” during an ANSI C++ standardization committee meeting in 1994.



as parameters and return types. The following metafunction takes a Boolean and two
types as its parameters and returns a type:8

template<bool cond, class ThenType, class ElseType>
struct IF
{ typedef ThenType RET;
};

template<class ThenType, class ElseType>
struct IF<false, ThenType, ElseType>
{ typedef ElseType RET;
};
This function corresponds to an if statement: it has a condition parameter, a “then”
parameter, and an “else” parameter. If the condition is true , it returns ThenType  in
RET . This is encoded in the base definition of the template. If the condition is false , it
returns ElseType  in RET . Thus, this metafunction can be viewed as a meta-control
statement. Implementing other meta-control statements such as switch and looping
constructs is also possible [CE98]. Indeed, even a simple Lisp was implemented using
these techniques [CE98, Cza98].

We can use IF<>  to implement a metafunction which takes a number of flags
representing the features from Fig. 3 and returns a ready-to-use list type. First, we define
the flags representing the list features:
enum Ownership { ext_ref, own_ref, cp};
enum Morphology {mono, poly};
enum CounterFlag{ with_counter, no_counter};
enum TracingFlag{ with_tracing, no_tracing};
Next, we present the metafunction LIST_GENERATOR<>  implementing a configuration
generator, which takes an abstract description of a list and generates a ready-to-use list
type. Using LIST_GENERATOR<> , we can declare a monomorphic list keeping copies of
elements of type Person  and providing a length counter and tracing as follows:
LIST_GENERATOR<Person, cp, mono, with_counter, with_tracing>::RET list1;
A polymorphic list keeping external references to original elements of type Person  or
derived types can be declared as follows:
LIST_GENERATOR<Person, ext_ref, poly>::RET list2;
Here is the definition of the metafunction:
template<

class ElementType_ = int,
Ownership ownership = cp,
Morphology morphology = mono,
CounterFlag counterFlag = no_counter,
TracingFlag tracingFlag = no_tracing,
class LengthType_ = int

>

                                                       
8 A different IF<>  implementation which does not require partial template specialization is
described in [Cza98].



class LIST_GENERATOR
{
public:

typedef LIST_GENERATOR<
ElementType_,
ownership,
morphology,
counterFlag,
tracingFlag,
LengthType_> Generator;

private:
enum {

isCopy = ownership==cp,
isOwnRef = ownership==own_ref,
isMono = morphology==mono,
hasCounter = counterFlag==with_counter,
doesTracing = tracingFlag==with_tracing };

typedef
IF<isCopy || isOwnRef,

ElementDestroyer< ElementType_>,
EmptyDestroyer< ElementType_>

>::RET Destroyer_;

typedef
IF<isMono,

DynamicTypeChecker<ElementType_>,
EmptyTypeChecker< ElementType_>

>::RET TypeChecker_;

typedef
IF<isCopy,

IF<isMono,
MonomorphicCopier< ElementType_>,
PolymorphicCopier< ElementType_> >::RET,

EmptyCopier< ElementType_>
>::RET Copier_;

typedef
IF<isCopy,

const ElementType_,
ElementType_

>::RET SetHeadElementType_;

typedef PtrList<Generator> List;

typedef
IF<hasCounter,

LenList<List>,
List

>::RET List_with_counter_or_not;

typedef
IF<doesTracing,

TracedList< List_with_counter_or_not>,
List_with_counter_or_not



>::RET List_with_tracing_or_not;
public:

typedef List_with_tracing_or_not RET;

struct Config
{

typedef ElementType_ ElementType;
typedef SetHeadElementType_ SetHeadElementType;
typedef Destroyer_ Destroyer;
typedef TypeChecker_ TypeChecker;
typedef Copier_ Copier;
typedef LengthType_ LengthType;
typedef RET ReturnType;

};
};
LIST_GENERATOR<>  evaluates the input flags, computes the types for the configuration
repository, wraps PtrList  (if necessary), and returns the final list type in RET . The last
part of LIST_GENERATOR<>  is the configuration repository. Please note that we pass
Generator  to PtrList  as parameter. Since Config  is a member of Generator ,
PtrList  can retrieve Config  from Generator . For this reason, we need to slightly
modify two lines of PtrList  (the modifications are highlighted):
template<class Generator >
class PtrList
{
public:

typedef typename  Generator::Config  Config;
//the rest as previously
//...
An important aspect of the separation between the problem-space-oriented feature
description and the implementation components is that we can make useful extensions to
the components (e.g. modify the component structure or add new components) without
the need to change existing client code. This is certainly possible as long as the abstract
feature space can still be mapped on the new components. Moreover, we can even make
certain extensions to the feature space without the need to change existing client code.
For example, we could append new parameters, e.g. memory allocation, to the parameter
list expected by the generator. By choosing appropriate defaults for the new parameters,
existing calls to the generator will still work properly. Similarly, if we model all features
as template structs, we can also add new nested features (cf. the following section).

6 Extensions
The previous section demonstrated the basic techniques using a very simple example.
Applying these techniques to larger problems requires several extensions:

• Nested features: Our sample generator expects a flat list of features although feature
diagrams are trees. This was acceptable for this small example, but in general
configuration generators accept tree-like structures. We can represent tree-like



feature structures in C++ using types and templates. For example, we could model
counterFlag  as a type parameter with the values no_counter  and
with_counter<> . no_counter  would be a struct and with_counter<>  a
template struct expecting LengthType  as its parameter.

• Multistage configuration generators: Large feature models may contain many
constraints and default dependency rules. In this case, a configuration generator
consists of several stages: specification completion stage (computes defaults for the
unspecified features based on default dependency rules and constraints), feature
combination checking stage (checks whether the feature combinations satisfy the
constraints), and component assembly stage (assembles components into the final
type). The dependency rules and constraints are specified using a kind of decision
tables. For this reason, we implemented a table evaluation metafunction, which
allows us to directly type in the tables in the C++ source code [Cza98, Kna98]. This
function utilizes both IF<>  and template recursion.

• Nested configuration repositories: Avoiding name clashes in the configuration
repository may require introducing separate name scopes within the repository. For
example, two different components retrieve the type name ElementType , but each
of them should be supplied a different type. This can be resolved by providing a
separate name scope for each of these components in the repository. We can model
such nested name scopes in C++ as nested classes.

• Metafunctions as part of configuration repositories: Sometimes one component is
used more than once in a configuration and each instance needs different
configuration parameters. In this case, the component does not retrieve the required
type from the configuration repository directly, but it retrieves a metafunction. Each
instance can then supply a different parameter to the metafunction to compute the
needed type. In C++, class templates can be defined as members of other classes.
This way it is possible to pass around a metafunction as a type, which corresponds to
the idea of higher-order metafunctions.

• Configuration repository as a part of the generated type: Each component exports
the configuration repository under the name Config . Thus, we can also retrieve
Config  from the final type. e.g. MyList::Config . This feature can be used by
other generators, e.g. for generating customized algorithms operating on the
generated types. An algorithm generator can retrieve the properties of a type from its
Config  (e.g. ElementType , Ownership , etc.) and use this information to
generate optimized algorithms. For example, we have used the configuration
repository of a matrix type in order to generate optimized matrix operation code
using expression templates [Cza98].

• Traits templates for encoding metainformation: Metainformation about types can be
encoded as traits templates [Mye95], which basically correspond to metafunctions



taking types as parameter and returning their properties. For example, our
polymorphic copier in Section 5.2 assumes that the element type provides the virtual
clone()  method. If a particular element type does not provide this method, we can
use an adapter. In this case, we could use a traits template on element type to
retrieve the appropriate (user-provided) adapter. Furthermore, we could use a traits
template to make sure that DynamicTypeChecker  is used only for types having a
virtual function table.

We used the above extensions in the implementation of two applications described in the
following section.

The generator approach described here can be also used to synthesize frameworks.
Frameworks can be modeled as compositions of collaborations and the latter can be
implemented as mixin layers [SB98]. In C++, a mixin layer may be implemented as a
class containing a number of nested classes. Each of the nested classes implements a
particular role. The nested classes can inherit from their parameters, so that they can be
used to extend other classes. A mixin layer takes another layer as its parameter, accesses
the classes nested in the parameter and uses them as superclasses of some of its own
nested classes (see [SB98] for details). Just as we used our configuration generator to
compose parameterized classes, we can also use it to compose mixin layers.

7 Applications
The techniques described in previous sections were use to develop two medium size
libraries demonstrating their applicability to generating efficient abstract data types and
algorithms:

• Generative Matrix Computation Library (GMCL) [GMCL, Cza98, Neu98] contains
a matrix generator (in the style of our list generator from Section 5.4) able to
generate matrices with a selected combination of features such as element types (real
numbers), density (dense and sparse), storage formats (row- and column-wise,
several sparse formats), memory allocation (dynamic and static), error checking
(bounds, compatibility, memory allocation), and operations (addition, subtraction,
multiplication). GMCL contains another generator for generating efficient
implementations of matrix expressions (e.g. “(A+B)*(C+D)”). The expression
generator is based on expression templates [Vel95b]. It reads out the properties of
the operands from their configuration repositories in order to generate optimized
code. The C++ implementation of the matrix component comprises 7500 lines of
C++ code (6000 lines for the configuration generator and the matrix components
and 1500 lines for the operations). The matrix configuration feature diagram covers
more than 1840 different kinds of matrices. Despite the large number of provided
matrix variants, the performance of the generated code is comparable with the



performance of manually coded variants. This is achieved by the exclusive use of
static binding, which is often combined with inlining.

• Generative matrix factorization library [Kna98] contains a generator synthesizing
different instances of the LU factorization algorithm family (e.g. Gauss, Cholesky,
LDLT) with different pivoting strategies (e.g. partial, full, symmetric, diagonal) and
for different matrix shapes. The different parts of the algorithms are implemented as
methods of class templates organized in a layered architecture. The templates are
configured by a configuration generator.

8 Related Work
Variability modeling The need for variability modeling in framework design has been
recognized in the form of “hot spots” [Pre95]. Hot spots represent variation points.
Unfortunately, they are not supported in current OOA/D methods. Furthermore, they
make no distinction between different kinds of variation points (e.g. dimensions,
dimensions with optional features, extension points, etc. [Cza98]) and do not model the
information contained in feature models. Reuse-Driven Software Engineering Business
(RSEB) [JGJ98] extends UML with the concept of variation points and defines a reuse-
driven development process. However, it still lacks feature modeling. Feature modeling
is the corner stone of Domain Engineering (DE) and efforts aimed at integrating OO and
DE methods [CN98, GFA98, Cza98] augment OO modeling techniques with feature
modeling.

Layered Designs and Fragment-Based Component Models GenVoca is a layered
architecture model based on parameterized layers of refinement [BO92]. Recent work by
Smaragdakis and Batory [SB98] views GenVoca layers as so-called mixin layers, i.e.
layers containing classes whose superclasses are parameters. Parameterized inheritance
has also been used to express collaboration-based designs [VHN96]. The technique of
exchanging types between components at compile time is extensively used in the
Standard Template Library (STL) [MS96]. Fragment-based designs have been studied in
the context of OO, among others, in [Pre97, Mez97, ML98]. Our work extends these
approaches with configuration repositories, which among others provide an effective
approach for typing synthesized recursive classes. Furthermore, our configuration
generator is capable of synthesizing layered and fragment-based designs from abstract
specifications.

Metaprogramming There is a large body of work on static metaprogramming for code
composition. Most of this work is has been done in the context of procedural languages
such as C (e.g. [SG97, Eng97]). There are also examples of static metaprogramming
systems for C++, e.g. Open C++ [Chi95] and MPC++ [IHS+96]. All of these systems
require special language extensions. Our approach, on the other hand, uses standard C++
language features and thus is widely available. Template metaprogramming has been



used to develop a number of libraries including Blitz++ [Vel97], POOMA [POOMA],
and MTL [SL98]. Unfortunately, it lacks debugging and error-reporting facilities. An
example of a commercial metaprogramming environment supporting the full
development cycle is Intentional Programming (IP) [Sim96]. IP is currently under
development at Microsoft Research.

9 Conclusions and Outlook
The development of truly reusable software requires the parameterization of a multitude
of design decisions. We showed that modeling the variability of domain concepts is
inadequately supported by current OO modeling notations. We also showed that this
problem can be addressed by using feature models in addition to OO models.
Furthermore, we demonstrated that the implementation of feature models requires three
ingredients: domain-level interface (e.g. a domain-specific language, a domain-specific
GUI, etc.) allowing the application programmer to describe concepts at the abstract
domain level, configuration knowledge mapping between abstract descriptions and
concrete component configurations, and elementary implementation components, which
can be configured in a vast number of ways. We showed that the design of the problem
and the solution space starts with feature modeling and the solution space is structured
according to some appropriate architecture (in our example, we used a layered
architecture). We also found it important to have a direct programming language support
for these concepts. We showed concrete examples in C++; however, the concepts are not
limited to C++. Indeed, the examples demonstrate the importance of parameterized
inheritance in avoiding rigid inheritance hierarchies and the value of generic, STL-style
techniques for implementing efficient and highly configurable components. The newly
introduced concept of configuration repositories allows the separation between the
components and the configuration knowledge and also facilitates an efficient approach to
typing recursive classes. Finally, the built-in metaprogramming capabilities of C++ allow
the configuration generators to be part of the same library as the implementation
components. The presented example concentrated on static configuration and binding,
but similar designs based on dynamic configuration and binding can be implemented in
C++ and in other languages (e.g. Smalltalk, CLOS, Java9). Indeed, we want to
parameterize configuration time and binding time. The latter is easily done in C++
[Eis97], but the former requires the ability to write metacode which can be executed both
by the compiler and at runtime – a feature not supported by current languages. One of
the conclusions of our work is the need for industrial strength metaprogramming
environments. Template metaprogramming (TM) has the important advantage that is
readily available to users as a built-in part of C++. But since TM is a child of accident
                                                       
9 Java does not support parameterized inheritance. Therefore, whenever we need a parameterized
relationship in Java, we have to use dynamic parameterization.



rather than the result of conscious language design, it suffers from several deficiencies in
the areas of debugging and error-reporting, code readability, long compilation times,
various compiler limits, and portability [Cza98, Neu98, Kna98]. Currently, the size of
template metaprograms is limited by compiler limits, compilation times, and debugging
problems. However, compiler limits and portability problems will decrease as more and
more compiler vendors adopt the new C++ ISO standard. Adequate metaprogramming
support opens new possibilities to raise “the level” of programming using domain-
specific abstractions. For example, domain-specific abstractions in Intentional
Programming [Sim96] are active at any time (including programming and compilation
time) and generate efficient, optimized code. This perspective forces us to redefine the
conventional interaction between compilers, libraries, and applications and to
acknowledge the need for active libraries [CEG+98], which “are not passive collections
of routines or objects, as are traditional libraries, but take an active role in generating
code. Active libraries provide abstractions and can optimize those abstractions
themselves. They may generate components, specialize algorithms, optimize code,
automatically configure and tune themselves for a target machine, and check source code
for correctness. They may also describe themselves to tools such as profilers and
debuggers in an intelligible way.” The effective application of metaprogramming in
software engineering requires new analysis and design approaches. The integration of
modeling and implementation technologies based on domain-specific abstractions and
metaprogramming into a coherent paradigm is the goal of the emerging area of
Generative Programming [CE99, CEG+98, Eis97].
Note: The source code for the list example is available at http://nero.prakinf.tu-
ilmenau.de/~czarn/ecoop99
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