
Towards a Generic Infrastructure for Framework-Specific
Integrated Development Environment Extensions

Herman Hon Man Lee, Michał Antkiewicz, Krzysztof Czarnecki
Generative Software Development Lab

University of Waterloo
Waterloo, Ontario, Canada

{hlee, mantkiew, kczarnec}@gsd.uwaterloo.ca

Abstract
Object-oriented frameworks are often difficult to use. Fra-
mework-specific extensions to integrated development en-
vironments (IDEs) aim to mitigate the difficulty by offer-
ing tools that leverage the knowledge about framework’s ap-
plication programming interfaces (APIs). These tools com-
monly offer support for code visualization, automatic and in-
teractive code generation, and code validation. Current prac-
tices, however, require such extensions to be custom-built
manually for each supported framework. In this paper, we
propose an approach to building framework-specific IDE ex-
tensions based on framework-specific modeling languages
(FSMLs). We show how the definitions of different FSMLs
can be interpreted in these extensions to provide advanced
tool support for different framework APIs that the FSMLs
are designed for.

Categories and Subject Descriptors D.2.6 [Software Engi-
neering]: Programming Environments/Construction Tools—
Graphical environments, Integrated environments, Interac-
tive environments, Programmer workbench; D.2.3 [Soft-
ware Engineering]: Coding Tools and Techniques—Object-
oriented programming, Program editors; D.2.13 [Software
Engineering]: Reusable Software—Reuse models

General Terms Languages

Keywords framework instantiation, framework-specific
models, IDE, domain-specific IDEs

1. Introduction
Object-oriented frameworks are widely used as bases for
building applications in many domains. Frameworks imple-
ment reusable designs and provide means for implementing
instances of domain abstractions, which we call framework-
provided concepts or concepts for short. Applications built
on top of these frameworks instantiate concepts through a
variety of mechanisms such as extending framework classes,
implementing framework interfaces, and making frame-
work API method calls (Antkiewicz et al. 2008). However,

writing application code that implements instances of the
framework-provided concepts is often challenging, since the
concepts are often not well documented and the code may
be cross-cutting (Hou et al. 2005).

Specialized extensions to integrated development envi-
ronments (IDEs) are often created to ease application devel-
opment with object-oriented frameworks by offering tools
that leverage the knowledge about the framework applica-
tion programming interface (API). To name a few, Spring
IDE was created to support the Spring Framework, Strut-
sIDE and Struts-It for the Apache Struts framework, Face-
sIDE for the Java Server Faces (JSF) framework, and Hi-
bernate Tools for the Hibernate framework. All of these ex-
ample extensions were built as plug-ins to the Eclipse IDE.
Similar extensions for these frameworks were also added to
the IntelliJ IDEA IDE by the IDE’s vendor, JetBrains.

However, current practices require these framework-
specific IDE extensions to be custom-built manually for
each framework. In this paper, we describe an approach to
building a generic infrastructure for framework-specific IDE
extensions for any framework formalized as a framework-
specific modeling language (FSML) (Antkiewicz 2008) de-
signed for that framework. With the generic infrastructure,
the only work required to provide tool support for a new
framework is to create an FSML for that framework. In
previous works, we have shown that automatic reverse, for-
ward, and round-trip engineering are possible by interpreting
the declarative specification of an FSML (Antkiewicz et al.
2008; Antkiewicz 2008). In this paper, we propose using
the same definitions of FSMLs to provide interactive tool
support typically found in framework-specific IDE exten-
sions, such as code visualization, automatic and interactive
code generation, and code validation. We also discuss the
potential to enhance these tools beyond the features found in
existing framework-specific IDE extensions.

The remainder of this paper is organized as follows: Sec-
tion 2 surveys some of the existing framework-specific IDE
extensions; Section 3 gives an overview of FSMLs; Section
4 presents our approach; Section 5 discusses open questions

ha
l-0

03
50

26
6,

 v
er

si
on

 1
 - 

6 
Ja

n 
20

09
Author manuscript, published in "Domain-Specific Program Development, Nashville : États-Unis d'Amérique (2008)"

http://hal.archives-ouvertes.fr/hal-00350266/fr/
http://hal.archives-ouvertes.fr


(a) StrutsIDE (b) Strut-It (c) IntelliJ IDEA’s Struts Assistant

Figure 1. Comparison of Graphical Editors for Struts Config

about the approach and describes future work; Section 6
presents the related work; and finally, Section 7 concludes
the paper.

2. Overview of Existing Framework-Specific
IDE Extensions

We begin by examining the common features found in exist-
ing framework-specific IDE extensions. For the purpose of
this paper, we only did a formal comparison between three
IDE extensions for Apache Struts: Struts-It, StrutsIDE, and
IntelliJ Struts Assistant. Struts is a popular framework for
developing web applications. A Struts application consists
of a Struts Config XML file and Java implementations of
actions, forwards, and forms. Forms accept inputs from the
user; actions process the inputs and return forwards that redi-
rect to forms, actions, or web pages. Actions, forwards, and
forms also needs to be declared in the configuration file,
which creates a consistency problem, since XML declara-
tions often must match class names or other attributes of the
Java source code. Information from the Struts Config file can
be used, for example, for visualization of the web page flow
of an application.

Table 1 compares the features found in three framework-
specific IDE extensions for Struts. A quick review of Hi-
bernate tools and Spring IDE revealed that both extensions
have many common features as the extensions for Struts. In
general, we can categorize the purpose of the features into
four broad categories: code visualization (1), automatic code
generation (2), interactive code generation (3), and code val-
idation (4).

Code visualization. Current IDE extensions often pro-
vide visualization of instances of framework-provided con-
cepts found in the application code through graphical edi-
tors, views, and diagrams. Figure 1 shows three implemen-
tations of the graphical editor for the Struts Config XML
file provided by the three framework-specific IDE extensions
from Table 1. Each editor offers document outline and forms
for editing the concepts’ attribute values. Note the Jump to

Extension Category Struts-
It

StrutsIDE IntelliJ
Struts
Assistant

Graphical Editor of XML Con-
fig file

1 Yes Yes Yes

Code Completion for XML
Config file

3 No Yes Yes

Visualization of page flows 1 No Yes Yes
Primitive Wizards for creating
framework concepts

2 Yes Yes No

Quick Fixes in XML Config file 4 No Yes Yes

Table 1. Feature Comparison of three Framework-Specific
IDE Extensions for Struts

Source functionality provided by the IntelliJ IDEA Struts
Assistant.

Automatic code generation. Current IDE extensions of-
fer code generation for concept instances specified using
wizards or graphical editors. Wizards are normally used to
create a new project or generate new classes. The generated
code is usually intended for manual customization.

Interactive code generation. Specialized code editors
implemented by IDE extensions often offer code completion,
which proposes and inserts available constructs at the given
cursor position. For example, the Struts Config editor offers
code completion based on the document schema when edit-
ing the XML document directly. None of the extensions that
we studied have framework-specific support for Java files in
this area.

Code validation. Specialized views and editors provided
by the IDE extensions often also provide API constraint
checking and error highlighting. Some extensions addition-
ally offer automated solutions to common errors called quick
fixes. However, similar to the code completion, the three IDE
extensions in Table 1 only provide quick fixes support in
Struts Config based on the document schema.

3. Framework-Specific Modeling Languages
This section describes framework-specific modeling lan-
guages (FSMLs) (Antkiewicz 2008), which are interpreted

ha
l-0

03
50

26
6,

 v
er

si
on

 1
 - 

6 
Ja

n 
20

09



by our proposed infrastructure for framework-specific IDE
extensions. Each FSML is designed for a particular frame-
work and formalizes that framework’s API concepts and
constraints. For example, Eclipse Workbench Part Interac-
tion (WPI) FSML describes concepts such as views and ed-
itors in the Eclipse Workbench API, whereas Struts FSML
describes concepts such as actions, forwards, and forms
in the Struts API. FSMLs are used to express framework-
specific models. A framework-specific model models how
an application uses a framework’s API by describing in-
stances of concepts from the framework’s FSML that are
implemented by the application.

In FSMLs, concepts are formalized as a cardinality-based
feature model (Czarnecki et al. 2004), in which a concept
is decomposed into a hierarchy of features. Each feature
is a property of a concept and has a cardinality constraint
attached to it. The cardinality constraint specifies the number
of instances the feature should exist in a concept instance. A
feature can also have a mapping definition attached, which
specifies how the feature can be implemented or located in
the code. Semantically, a feature model describes a set of
legal configuration of the features.

To illustrate, Figure 2 shows a fragment of the feature
model of the Struts FSML. The hierarchical nature of the
feature model is shown using indentation (subfeatures are
further right). Feature cardinality constraints are specified in
square brackets and mapping definitions are specified in an-
gle brackets after the name of a feature. For example, the fea-
ture ActionImpl (line 17) corresponds to a Java class and
the feature forwards (line 20) corresponds to the method
calls to the method findForward in the control flow of that
class. Any number of instances of both features is possi-
ble in a legal configuration as indicated by the cardinality
[0..*]. An example of a feature that corresponds to an
XML element is ForwardDecl (line 3). Its mapping defi-
nition specifies that each instance of the feature in a feature
configuration corresponds to an XML element on the path
global-forwards/forward, in the XML document that
an instance of its parent StrutsConfig corresponds to.

4. An Infrastructure for Framework-Specific
IDE Extensions

In previous works, we have shown that automatic reverse,
forward, and round-trip engineering of framework-based
applications (Antkiewicz et al. 2008; Antkiewicz 2008) is
possible by interpreting declarative definitions of FSMLs
through framework-specific extensions implemented on top
of a generic FSML infrastructure. In this section, we de-
scribe the existing framework-specific extensions and we
propose new ones. The new extensions also require certain
new services from the infrastructure. To date, we have pro-
totyped some of the new extensions and implemented the
required services.

1 StrutsApplication <project>
2 [1..1] StrutsConfig <xmlDocument: ’/WEB−INF/struts−config.xml’> <

xmlElement name: ’struts−config’>
3 [0..∗] ForwardDecl <xmlElements: ’global−forwards/forward’>
4 [1..1] name (String) <xmlAttribute>
5 [0..1] path (String) <xmlAttribute>
6 [1..1] target (ActionDecl) <where attribute: path equalsTo: ../path>
7 [0..∗] ActionDecl <xmlElements: ’action−mappings/action’>
8 [1..1] path (String) <xmlAttribute>
9 [0..1] name (String) <xmlAttribute>

10 [0..1] type (String) <xmlAttribute>
11 [1..1] actionImpl (ActionImpl) <where attribute: qualifiedName equalsTo: ../

type>
12 [0..∗] forwards <xmlElements: ’forward’>
13 [1..1] name (String) <xmlAttribute>
14 [0..1] path (String) <xmlAttribute>
15 [1..1] target (ActionDecl) <where attribute: path equalsTo: ../path>
16 [0..1] input (String) <xmlAttribute>
17 [0..∗] ActionImpl <class>
18 ![1..1] name (String) <className>
19 ![1..1] extendsAction <assignableTo: ’Action’>
20 [0..∗] forwards <callsTo: ’ActionForward ActionMapping.findForward(String)’>
21 [1..1] name (String) <valueOfArg: 1>
22 [1..1] forward
23 !<1−2>
24 [0..1] localForward (ForwardDecl) <where attribute: name equalsTo: ../../

name> <and attribute: ../type equalsTo: ../../../qualifiedName>
25 [0..1] globalForward (ForwardDecl) <where attribute: name equalsTo:

../../name> <andParentIs instanceOf: ’StrutsConfig’>
26 [0..∗] inputForwards <callsTo: ’ActionForward ActionMapping.getInputForward

()’>
27 [1..1] name (String) <valueOf attribute: input class: ’ActionDecl’> <where

attribute: type equalsTo: ../../qualifiedName>

Figure 2. Excerpt of the definition of the Struts FSML

(a) Framework-Specific Model
Editor

(b) Framework-Specific Outline

Figure 3. Framework-Specific Code Visualization

Code visualization. Currently, reverse engineering is
suppoted by all of Applet, Struts, WPI, and EJB FSMLs. Re-
verse engineering extracts framework-specific models from
application code with high precision and recall (Antkiewicz
et al. 2008). Additionally, reverse engineering establishes
traceability links, which enable forward navigation from a
feature instance to its implementation, similar to the Jump to
Source capability as seen in Figure 1(c). Figure 3(a) shows
our framework-specific model editor. Similar to the other
framework-specific IDE extensions’ graphical editors, our
editor also displays an outline of the Struts Config file. Un-
like the other editors, our editor additionally displays in-
formation about the Java implementations of the concept
instances, which allows the developers to maintain the con-

ha
l-0

03
50

26
6,

 v
er

si
on

 1
 - 

6 
Ja

n 
20

09



sistency between the XML declarations and Java implemen-
tations of the concept instances. As another example, Fig-
ure 4 shows an editor for Spring FSML in comparison with
the Spring Explorer (previously known as beans view) in
Spring IDE.

In addition to framework-specific editors, we prototyped
a new extension to support framework-specific outline view,
as presented in Figure 3(b). Similar to the standard Java
outline view that displays members of the currently edited
class, the framework-specific outline view displays features
of the currently edited concept instance. The framework-
specific outline view uses reverse navigation to highlight
features in the view based on the cursor position in the code
editor. Reverse navigation is accomplished by interpreting
the traceability links established during reverse engineering
in the reverse direction.

(a) Spring Explorer (previously Beans View) in Spring IDE

(b) Spring Framework-Specific Model Editor

Figure 4. Spring Framework-Specific Model Editor vs.
Spring Explorer

Automatic Code Generation. Two FSMLs, WPI and
Applet, have been shown previously to fully support forward-
and round-trip engineering (Antkiewicz 2008). In this paper,
we describe the preliminary use of the Struts FSML in for-
ward engineering. Forward engineering creates an imple-
mentation for a given framework-specific model by execut-
ing code transformations for feature instances. Round-trip
engineering, on the other hand, propagates changes between
the existing code and the model by executing model updates
and code transformations. Round-trip engineering, as cur-
rently implemented, supports feature addition, modification,
and removal at the model side and code pattern addition at
the code side. The Model-Code Synchronization view dis-
plays results of the comparison between the current model
and the current code. For each detected difference, the user
decides whether it should be propagated to the code or to
the model and invokes the Model-Code Reconcile action,
which executes model updates or code transformations as

requested. Figure 5 shows example results of the compari-
son between the model and the code.

Figure 5. Model-Code Synchornization

A problem with automatic forward and round-trip engi-
neering is that, for some features, the code can be created
in many different places and the location depends on the ap-
plication logic. For example, a method call to the method
findForward (which implements an instance of the fea-
ture forwards (line 20)) is by default inserted at the end
of the method execute of a Struts action class. However,
such a method call is typically used inside an if statement
inside the method’s body so that different pages can be dis-
played under different conditions. Therefore, after the code
is inserted, the developer needs to move it to the appropriate
place. In such cases, interactive code generation may be a
better approach.

Interactive Code Generation. Using the generic FSML
infrastructure, we have prototyped two new extensions to
support framework-specific content assist and framework-
specific keyword programming in the Java code editor. Al-
though we do not currently have content assist support for
Struts Config XML files, we believe that the technique for
framework-specific content assist in Java files can be easily
extended to XML files.

Framework-specific content assist first identifies all fea-
tures implemented at the given cursor position using the re-
verse navigability as described before. Next, by interpreting
the definition of the FSML corresponding to the identified
features, it proposes the creation of instances of subfeatures
of the identified features as content proposals. After the de-
veloper chooses a proposal, code transformations are exe-
cuted for the chosen features and all of their mandatory sub-
features (with the lower bound of the cardinality greater than
zero). Furthermore, content assist offers subsequent propos-
als if a choice needs to be made by the developer. The pro-
cess continues until all required features are instantiated.

For example, if the content assist is invoked when the
cursor is placed in a Java class that instantiates the con-
cept ActionImpl (Figure 2, line 17), the reverse navigation
will first identify that concept’s instance in the framework-
specific model. Next, by interpreting the Struts FSML, con-
tent assist will propose the features that can be instanti-
ated in the current concept instance, forwards (line 20)
and inputForwards (line 26), as shown in Figure 6. If the
developer selects the proposal forwards, a wizard is dis-
played requesting the user to enter a value for the feature in

ha
l-0

03
50

26
6,

 v
er

si
on

 1
 - 

6 
Ja

n 
20

09



Figure 6. Framework-Specific Content Assist for Struts

Figure 7. Framework-Specific Keyword Programming

order to satisfy the cardinality constraint of the subfeature
name (line 21). Next, the mandatory feature forward (line
22) and its two subfeatures specify that for each forward
name used in the code, a corresponding forward declaration
must exist in the Struts Config file. Line 23 specifies that
at least one and at most two such declarations must exist.
The features localForward (line 24) and globalForward

(line 25) represent referential integrity constraints and they
are references that point at the corresponding local or global
forward declarations in the model. Therefore, in order to
satisfy the framework-specific constraint, code assist dis-
plays a wizard allowing the developer to choose a for-
ward type: a localForward or a globalForward. After
the developer selects the forward type, the referential in-
tegrity constraint is evaluated. For example, if the devel-
oper selects globalForward, a global forward declaration
with the same name as the name specified previously will
be matched. If such a declaration does not exist, code as-
sist will automatically create a new instance of the fea-
ture ForwardDecl (line 3) and set the value of its subfea-
ture name (line 4) to the value of the feature name (line
21). For example, assuming that the user entered the value
"success" as the forward name, a method call mapping.-
findForward("success") is generated at the cursor posi-
tion and an XML declaration
<global-forwards>

<forward name="success"></forward>

</global-forwards>

is generated in Struts-Config.xml.
The support for framework-specific keyword program-

ming filters possible content proposals to those that contain
the user-entered keywords in the feature’s name and it is
an improvement to the traditional prefix-based auto com-
pletion. For example, Figure 7 shows framework-specific
content proposals for the keyword Listener for a different
FSML, the Java Applet FSML. Based on the cursor position
and the entered keyword, content assist identified three fea-
tures, representing the different kinds of listeners that can be
instantiated.

We have also added support for interactive code genera-
tion into the model editor. The model editor grays out con-

cept instances that are not yet implemented in the code and
suggests code content and code location for these concept
instances based on previous instances of the same concept.
Beside the unpredictability of a concept’s code location as
described previously, code content also varies for framework
concepts because of reasons such as method overloading and
object inheritances.

Code Validation. In the generic FSML infrastructure,
we implemented model validation that evaluates cardinal-
ity and other constraints specified in an FSML. Since the
model represents the usage of the API by an application,
constraint violation in the model indicates a constraint vi-
olation in the code. For example, since a framework-specific
model of a Struts application contains features related to
both XML (Figure 2, lines 2-16) and Java (lines 17-27),
referential integrity constraints can be checked. We encode
such constraints as mandatory features. For example, the fea-
ture actionImpl on line 11 corresponds to the constraint
that for every action declaration, which is an instance of the
feature ActionDecl, a corresponding action implementa-
tion must exist. Figure 8 shows an example of the result of
model validation when a forward declaration is missing for
an instance of the feature forwards. The feature forward

(line 22) will only be present if at least an instance of the fea-
ture localForward or globalForward is present (as spec-
ified by the essential feature group on line 23).

Figure 8. Framework-Specific Model Validation

Using the model validation, we can implement API error
highlighting by continuously running reverse engineering in
the background to obtain an updated model of the code and
creating problem markers in the code editor for the concept
instances with constraint violation.

5. Discussion and Future Work
At the core of our approach is the idea that framework-
specific IDE extensions can be implemented generically
and parameterized with an FSML definition. All framework-
specific extensions based on FSMLs interpret the same lan-
guage definition. However, they require different infrastruc-
ture services, such as reverse engineering, traceability links,
or incremental code addition. Sometimes, the services need
to be adapted to support new extensions. For example, ex-
isting incremental code addition for Java was extended to
generate code in the middle of a method body to support
content assist. The core of the generic FSML infrastructure
is independent from the types of source artifacts and sup-

ha
l-0

03
50

26
6,

 v
er

si
on

 1
 - 

6 
Ja

n 
20

09



ports pluggable mapping interpreters that process mapping
definitions. For example, adding support for Java and XML
requires plugging in appropriate mapping interpreters. As a
result, feature instances in a model can correspond to code
patterns spanning multiple source artifacts of different types.
In comparison, the existing framework-specific IDE exten-
sions we analyzed typically are implemented manually and
support only one artifact type: XML.

The main advantage of our approach is that generic ex-
tensions, once implemented, can be easily used for multiple
frameworks under the condition that the frameworks’ APIs
are formalized as FSMLs. The main disadvantages are that
the implementation of generic services and extensions is not
trivial and that an FSML needs to be built for a given frame-
work. However, since FSMLs are specified declaratively,
the effort is mostly limited to modeling API concepts and
constraints as feature models and specifying mapping defi-
nitions. An FSML design method is available (Antkiewicz
2008, Ch. 3).

There are several possible directions for future work.
Incremental reverse engineering. Currently, reverse en-

gineering always processes the entire application, which is
too slow for supporting highly interactive extensions such
as error highlighting and content outline. Reverse engineer-
ing should be performed incrementally, only for the changed
source artifacts.

Smart keyword programming. Support for more advanced
keyword programming, such as the use of synonyms, and a
formal evaluation of the value of framework-specific models
in keyword programming as opposed to the extraction of
keywords from source code (Little and Miller 2007) remains
future work.

Full framework-specific IDE. Beyond the four categories
of features in framework-specific IDE extensions described
previously, an IDE, in the traditional sense, should support
all phases of software development including compilation,
debugging, testing, deployment, and version control. This
area of research remains future work. However, for version
control, we have implemented support for model compari-
son, similar to the one used in round-trip engineering.

6. Related Work
The creation of language programming tools and IDEs based
on programming language description has long been the sub-
ject of research, dating back to the 80’s (Reps and Teitel-
baum 1984). Of these, recent efforts include Eclipse IDE
Meta-tooling Platform (IMP) (Charles et al. 2007), TOP-
CASED (Farail et al. 2006), and Textual Generic Editor
(TGE) (ATLAS 2008). These existing works focus on pro-
viding direct editing support for programs written in a given
programming or modeling language, whereas our work ex-
poses two abstraction levels for editing at the same time: the
code and its abstractions as models.

Another class of programming environments is one that
integrate hand-written code with code generated from mod-
els targeting frameworks. The integration can happen through
different mechanisms, such as protected blocks, subclass-
ing, calls, aspects, open-classes, or partial-classes. For ex-
ample, Cook described the use of protected blocks in his
keynote about domain-specific IDEs (Cook 2008). In our
work, we do not explicitly separate between the hand-written
and the generated code: the developers can navigate to the
fragments of code implementing feature instances from the
model through traceability links and they can freely move
fragments of code as long as that does not violate API con-
straints.

7. Conclusion
In this paper, we presented an approach to creating framework-
specific IDE extensions based on a generic FSML infras-
tructure. Instead of rewriting all the extensions for each new
framework, we propose a set of generic framework-specific
IDE extensions that interpret the definition of any FSML.
We have examined the common features in current custom-
built framework-specific IDE extensions and demonstrated
the feasibility of the approach by describing the approach in
terms of these features on a popular framework.

References
Michal Antkiewicz. Framework-Specific Modeling Languages.

PhD thesis, University of Waterloo, 2008.

Michal Antkiewicz, Thiago Tonelli Bartolomei, and Krzysztof
Czarnecki. Fast extraction of high-quality framework-specific
models from application code. Journal of Automated Software
Engineering, 2008. Accepted and recommended for publication.

ATLAS. ATLAS Megamodel Management (AM3) home page,
2008. http://www.eclipse.org/gmt/am3/.

Philippe Charles, Robert M. Fuhrer, and Stanley M. Sutton Jr. IMP:
A meta-tooling platform for creating language-specific IDEs in
Eclipse. In ASE, pages 485–488, 2007.

Steve Cook. The domain-specific IDE, 2008. Keynote at Code
Generation.

Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker.
Staged configuration using feature models. In SPLC, pages 266–
283, 2004.

Patrick Farail, Pierre Gaufillet, Agusti Canals, Christophe Le Ca-
mus, David Sciamma, Pierre Michel, Xavier Crégut, and Marc
Pantel. The TOPCASED project: a toolkit in open source for
critical aeronautic systems design. In ERTS, 2006.

Daqing Hou, Kenny Wong, and H. James Hoover. What can
programmer questions tell us about frameworks? In IWPC,
pages 87–96, 2005.

Greg Little and Robert C. Miller. Keyword programming in Java.
In ASE, pages 84–93, 2007.

Thomas Reps and Tim Teitelbaum. The synthesizer generator.
SIGSOFT Softw. Eng. Notes, 9(3):42–48, 1984.

ha
l-0

03
50

26
6,

 v
er

si
on

 1
 - 

6 
Ja

n 
20

09

http://www.eclipse.org/gmt/am3/

	Introduction
	Overview of Existing Framework-Specific IDE Extensions
	Framework-Specific Modeling Languages
	An Infrastructure for Framework-Specific IDE Extensions
	Discussion and Future Work
	Related Work
	Conclusion

