
Feature-Oriented Software Evolution
(Vision paper)

Leonardo Passos1 Krzysztof Czarnecki1 Sven Apel2

Andrzej Wąsowski3 Christian Käster4 Jianmei Guo1

Claus Hunsen2

1University of Waterloo 2University of Passau 3IT University 4CMU

The Seventh International Workshop on Variability Modelling of Software-intensive Systems

1/37

Software evolves. . .

2/37

Example

Automotive embedded software:

• Changing regulations

◦ ABS is now mandatory in the EU

• Market differentiating enhancements

◦ Electronic stability control (SC) improves ABS by preventing skidding

• New technology availability

◦ Laser-based distance sensors are more precise than radio-based ones

3/37

Example

Automotive embedded software:

• Changing regulations

◦ ABS is now mandatory in the EU

• Market differentiating enhancements

◦ Electronic stability control (SC) improves ABS by preventing skidding

• New technology availability

◦ Laser-based distance sensors are more precise than radio-based ones

3/37

Example

Automotive embedded software:

• Changing regulations

◦ ABS is now mandatory in the EU

• Market differentiating enhancements

◦ Electronic stability control (SC) improves ABS by preventing skidding

• New technology availability

◦ Laser-based distance sensors are more precise than radio-based ones

3/37

Example

Automotive embedded software:

• Changing regulations

◦ ABS is now mandatory in the EU

• Market differentiating enhancements

◦ Electronic stability control (SC) improves ABS by preventing skidding

• New technology availability

◦ Laser-based distance sensors are more precise than radio-based ones

3/37

Example

Automotive embedded software:

• Changing regulations

◦ ABS is now mandatory in the EU

• Market differentiating enhancements

◦ Electronic stability control (SC) improves ABS by preventing skidding

• New technology availability

◦ Laser-based distance sensors are more precise than radio-based ones

3/37

Example

Automotive embedded software:

• Changing regulations

◦ ABS is now mandatory in the EU

• Market differentiating enhancements

◦ Electronic stability control (SC) improves ABS by preventing skidding

• New technology availability

◦ Laser-based distance sensors are more precise than radio-based ones

3/37

Example

Automotive embedded software:

• Changing regulations

◦ ABS is now mandatory in the EU

• Market differentiating enhancements

◦ Electronic stability control (SC) improves ABS by preventing skidding

• New technology availability

◦ Laser-based distance sensors are more precise than radio-based ones

3/37

Understanding the evolution in
place is not easy. . .

4/37

Scenario

ABS + SC

5/37

Scenario

• Integration can scatter different artifacts

• Different levels of abstractions not mastered by all stakeholders

Sy
ste

m le
ve

l

Cod
e l

ev
el

Man
ag

em
en

t le
ve

l

5/37

Scenario

• Integration can scatter different artifacts

• Different levels of abstractions not mastered by all stakeholders

Sy
ste

m le
ve

l

Cod
e l

ev
el

Man
ag

em
en

t le
ve

l

5/37

Scenario

• Integration can scatter different artifacts

• Different levels of abstractions not mastered by all stakeholders

Sy
ste

m le
ve

l

Cod
e l

ev
el

Man
ag

em
en

t le
ve

l

5/37

Scenario

• Integration can scatter different artifacts

• Different levels of abstractions not mastered by all stakeholders

Sy
ste

m le
ve

l

Cod
e l

ev
el

Man
ag

em
en

t le
ve

l

⇐ Developers

5/37

Scenario

• Integration can scatter different artifacts

• Different levels of abstractions not mastered by all stakeholders

Sy
ste

m le
ve

l

Cod
e l

ev
el

Man
ag

em
en

t le
ve

l

⇐ System engineers

5/37

Scenario

• Integration can scatter different artifacts

• Different levels of abstractions not mastered by all stakeholders

Sy
ste

m le
ve

l

Cod
e l

ev
el

Man
ag

em
en

t le
ve

l

⇐ Project managers

5/37

In practical settings. . .

6/37

In practical settings. . .

Complex and large software systems have:

• Diverse set of stakeholders

• Diverse set of artifacts

• Different stakeholders have particular “views” over the software

Stakeholders need a common meeting point

7/37

In practical settings. . .

Complex and large software systems have:

• Diverse set of stakeholders

• Diverse set of artifacts

• Different stakeholders have particular “views” over the software

Stakeholders need a common meeting point

7/37

In practical settings. . .

Complex and large software systems have:

• Diverse set of stakeholders

• Diverse set of artifacts

• Different stakeholders have particular “views” over the software

Stakeholders need a common meeting point

7/37

In practical settings. . .

Complex and large software systems have:

• Diverse set of stakeholders

• Diverse set of artifacts

• Different stakeholders have particular “views” over the software

Stakeholders need a common meeting point

7/37

In practical settings. . .

Complex and large software systems have:

• Diverse set of stakeholders

• Diverse set of artifacts

• Different stakeholders have particular “views” over the software

Stakeholders need a common meeting point

7/37

Otherwise. . .
(no common meeting point)

Ineffective communication Software flaws

Architecture decay Higher maintenance costs

8/37

Otherwise. . .
(no common meeting point)

Ineffective communication

Software flaws

Architecture decay Higher maintenance costs

8/37

Otherwise. . .
(no common meeting point)

Ineffective communication Software flaws

Architecture decay Higher maintenance costs

8/37

Otherwise. . .
(no common meeting point)

Ineffective communication Software flaws

Architecture decay

Higher maintenance costs

8/37

Otherwise. . .
(no common meeting point)

Ineffective communication Software flaws

Architecture decay Higher maintenance costs

8/37

Hypothesis

9/37

Hypothesis

Managing evolution at the level of features can address
the challenges describe above

10/37

Hypothesis

Arguments favouring the hypothesis:

• Feature = cohesive requirements bundle

• Requirements are a common point among all stakeholders

• Features are more coarse-grained than individual requirements

◦ Facilitates understanding

• Evolution can be put in simple terms

◦ Add new feature, retire old ones, etc.

10/37

Hypothesis

Arguments favouring the hypothesis:

• Feature = cohesive requirements bundle

• Requirements are a common point among all stakeholders

• Features are more coarse-grained than individual requirements

◦ Facilitates understanding

• Evolution can be put in simple terms

◦ Add new feature, retire old ones, etc.

10/37

Hypothesis

Arguments favouring the hypothesis:

• Feature = cohesive requirements bundle

• Requirements are a common point among all stakeholders

• Features are more coarse-grained than individual requirements

◦ Facilitates understanding

• Evolution can be put in simple terms

◦ Add new feature, retire old ones, etc.

10/37

Hypothesis

Arguments favouring the hypothesis:

• Feature = cohesive requirements bundle

• Requirements are a common point among all stakeholders

• Features are more coarse-grained than individual requirements

◦ Facilitates understanding

• Evolution can be put in simple terms

◦ Add new feature, retire old ones, etc.

10/37

Hypothesis

Arguments favouring the hypothesis:

• Feature = cohesive requirements bundle

• Requirements are a common point among all stakeholders

• Features are more coarse-grained than individual requirements

◦ Facilitates understanding

• Evolution can be put in simple terms

◦ Add new feature, retire old ones, etc.

10/37

Hypothesis

Arguments favouring the hypothesis:

• Feature = cohesive requirements bundle

• Requirements are a common point among all stakeholders

• Features are more coarse-grained than individual requirements

◦ Facilitates understanding

• Evolution can be put in simple terms

◦ Add new feature, retire old ones, etc.

10/37

Hypothesis

Arguments favouring the hypothesis:

• Feature = cohesive requirements bundle

• Requirements are a common point among all stakeholders

• Features are more coarse-grained than individual requirements

◦ Facilitates understanding

• Evolution can be put in simple terms

◦ Add new feature, retire old ones, etc.

10/37

Our vision
(Assuming the validity of our hypothesis)

11/37

Feature-oriented evolution based on:

Tracing

Analyses

Recommendations

12/37

Feature-oriented evolution based on:

Tracing

Analyses

Recommendations

12/37

Feature-oriented evolution based on:

Tracing

Analyses

Recommendations

12/37

Purpose of our work

Research agenda based
on our vision for feature-oriented

software evolution

This presentation covers part of that agenda
(see paper for more details)

13/37

Motivating example

14/37

Motivating example

Car

 YRS

YRS-M
2

SC

ABS SC

SC Conv

F
ea

tu
re

 m
od

el

BRA

ABSConv

YRS SC

YRS-M
1

Merge + clone yaw rate prediction

15/37

Motivating example

Car

 YRS

YRS-M
2

SC

ABS SC

SC Conv

F
ea

tu
re

 m
od

el

BRA

ABSConv

YRS SC

YRS-M
1

Merge + clone yaw rate prediction

15/37

Motivating example

Car

 YRS

YRS-M
2

SC

ABS SC

SC Conv

F
ea

tu
re

 m
od

el

BRA

ABSConv

YRS SC

Merge + clone yaw rate prediction

15/37

Motivating example

Car

 YRS

YRS-M
2

SC

ABS SC

SC Conv

F
ea

tu
re

 m
od

el

BRA

ABSConv

YRS SC

Merge YRS-M2 into YRS + rename YRS to YS

15/37

Motivating example

Car

 YSSC

ABS SC

SC Conv

F
ea

tu
re

 m
od

el

BRA

ABSConv

 YS SC

Merge + clone yaw rate prediction

15/37

Tracing

16/37

Tracing

YRS-M2YRS-M1 YRS-M2 YS

(t1) (t2) (t3)

DYRS()1/2

17/37

Tracing

YRS-M2YRS-M1 YRS-M2 YS

(t1) (t2) (t3)

DYRS()1/2Bug found in YS

17/37

Tracing

YRS-M2YRS-M1 YRS-M2 YS

(t1) (t2) (t3)

?
DYRS()Does the bug exist in YRS-M2 (t2)?1/2

17/37

Tracing

YRS-M2YRS-M1 YRS-M2 YS

(t1) (t2) (t3)

? ?
Does the bug exist in YRS-M1/2 (t1)?

17/37

Tracing

YRS-M2YRS-M1 YRS-M2 YS

(t1) (t2) (t3)

? ? ?
() Does the bug exist in both t1 and t2?1/2

17/37

Tracing

YRS-M2YRS-M1 YRS-M2 YS

(t1) (t2) (t3)

? ? ?
DYRS() Answering requires tracing the evolution of single features1/2

17/37

Tracing

• Traceability has to be recovered from a multi-space setting:

◦ Recover traceability of different artifacts (e.g.: FM, Build files, C
code)

◦ Integrate the evolution history of those artifacts over time

◦ Draw an evolution history (timeline)

YRS-M1

YRS-M2

(t2)(t
1) (t

3)

YS

YRS

M M

M

17/37

Tracing

• Traceability has to be recovered from a multi-space setting:

◦ Recover traceability of different artifacts (e.g.: FM, Build files, C
code)

◦ Integrate the evolution history of those artifacts over time

◦ Draw an evolution history (timeline)

YRS-M1

YRS-M2

(t2)(t
1) (t

3)

YS

YRS

M M

M

17/37

Tracing

• Traceability has to be recovered from a multi-space setting:

◦ Recover traceability of different artifacts (e.g.: FM, Build files, C
code)

◦ Integrate the evolution history of those artifacts over time

◦ Draw an evolution history (timeline)

YRS-M1

YRS-M2

(t2)(t
1) (t

3)

YS

YRS

M M

M

17/37

Tracing

• Traceability has to be recovered from a multi-space setting:

◦ Recover traceability of different artifacts (e.g.: FM, Build files, C
code)

◦ Integrate the evolution history of those artifacts over time

◦ Draw an evolution history (timeline)

YRS-M1

YRS-M2

(t2)(t
1) (t

3)

YS

YRS

M M

M

17/37

Tracing

• Traceability has to be recovered from a multi-space setting:

◦ Recover traceability of different artifacts (e.g.: FM, Build files, C
code)

◦ Integrate the evolution history of those artifacts over time

◦ Draw an evolution history (timeline)

YRS-M1

YRS-M2

(t2)(t
1) (t

3)

YS

YRS

M M

M

17/37

Tracing
(Research questions)

18/37

Tracing (Research questions)

• Tracing certain artifacts can be daunting

◦ Individual build rules in build files (e.g., make is Turing-complete)

◦ Fine-grained variability analysis in code is costly

RQ: How to recover traceability links in build files and source
code in variability-aware systems?

RQ: Once recovered, how to update them to reflect the
temporal evolution in place?

19/37

Tracing (Research questions)

• Tracing certain artifacts can be daunting

◦ Individual build rules in build files (e.g., make is Turing-complete)

◦ Fine-grained variability analysis in code is costly

RQ: How to recover traceability links in build files and source
code in variability-aware systems?

RQ: Once recovered, how to update them to reflect the
temporal evolution in place?

19/37

Tracing (Research questions)

• Tracing certain artifacts can be daunting

◦ Individual build rules in build files (e.g., make is Turing-complete)

◦ Fine-grained variability analysis in code is costly

RQ: How to recover traceability links in build files and source
code in variability-aware systems?

RQ: Once recovered, how to update them to reflect the
temporal evolution in place?

19/37

Tracing (Research questions)

• Tracing certain artifacts can be daunting

◦ Individual build rules in build files (e.g., make is Turing-complete)

◦ Fine-grained variability analysis in code is costly

RQ: How to recover traceability links in build files and source
code in variability-aware systems?

RQ: Once recovered, how to update them to reflect the
temporal evolution in place?

19/37

Tracing (Research questions)

• Tracing certain artifacts can be daunting

◦ Individual build rules in build files (e.g., make is Turing-complete)

◦ Fine-grained variability analysis in code is costly

RQ: How to recover traceability links in build files and source
code in variability-aware systems?

RQ: Once recovered, how to update them to reflect the
temporal evolution in place?

19/37

Tracing (Research questions)

• Different artifacts = different sources to draw the evolution in place

◦ Mailing lists

◦ Commit patches and log messages

◦ Bug reports in bug tracking systems

RQ: Which sources are trustworthy?

19/37

Tracing (Research questions)

• Different artifacts = different sources to draw the evolution in place

◦ Mailing lists

◦ Commit patches and log messages

◦ Bug reports in bug tracking systems

RQ: Which sources are trustworthy?

19/37

Tracing (Research questions)

• Different artifacts = different sources to draw the evolution in place

◦ Mailing lists

◦ Commit patches and log messages

◦ Bug reports in bug tracking systems

RQ: Which sources are trustworthy?

19/37

Tracing (Research questions)

• Different artifacts = different sources to draw the evolution in place

◦ Mailing lists

◦ Commit patches and log messages

◦ Bug reports in bug tracking systems

RQ: Which sources are trustworthy?

19/37

Tracing (Research questions)

• Different artifacts = different sources to draw the evolution in place

◦ Mailing lists

◦ Commit patches and log messages

◦ Bug reports in bug tracking systems

RQ: Which sources are trustworthy?

19/37

Analyses

20/37

Analyses
(Back to the motivating example)

21/37

Analyses

After the evolution of the SPL, stakeholders noticed that:

• Maintenance is taking longer

• Productivity has decreased

• Bugs are starting to rise

Well-known phenomena of software aging

22/37

Analyses

After the evolution of the SPL, stakeholders noticed that:

• Maintenance is taking longer

• Productivity has decreased

• Bugs are starting to rise

Well-known phenomena of software aging

22/37

Analyses

After the evolution of the SPL, stakeholders noticed that:

• Maintenance is taking longer

• Productivity has decreased

• Bugs are starting to rise

Well-known phenomena of software aging

22/37

Analyses

After the evolution of the SPL, stakeholders noticed that:

• Maintenance is taking longer

• Productivity has decreased

• Bugs are starting to rise

Well-known phenomena of software aging

22/37

Analyses

After the evolution of the SPL, stakeholders noticed that:

• Maintenance is taking longer

• Productivity has decreased

• Bugs are starting to rise

Well-known phenomena of software aging

22/37

Analyses

We envision three analyses to prevent aging:

• Consistency checking analysis

• Change impact analysis

• Architectural analysis

22/37

Analyses

We envision three analyses to prevent aging:

• Consistency checking analysis

• Change impact analysis

• Architectural analysis

22/37

Analyses

We envision three analyses to prevent aging:

• Consistency checking analysis

• Change impact analysis

• Architectural analysis

22/37

Analyses

We envision three analyses to prevent aging:

• Consistency checking analysis

• Change impact analysis

• Architectural analysis

22/37

Analyses
(Consistency checking)

23/37

Analyses (Consistency checking)

Goal: prevent inconsistencies in different artifacts

DNpit

24/37

Analyses (Consistency checking)

Goal: prevent inconsistencies in different artifacts

...

#ifdef Conv

 // switch

 // to Conv

 // if ABS

 // fails

#endif

...

...

sensor_data_t data ;

#ifdef SC

 data = get_value(data) ;

#endif

if (data->check_oversteering())

 react_oversteering() ;

...

...

#ifdef SC && YRS_M1

 double predicted_value

 ...

#endif

...

abs.c (1) abs.c (2) abs.c (3)

...

#ifdef SC && YRS_M1

 predictor_t p ;

#else

 int p = 0;

#endif

...

predicted_value=p->get() ;

abs.c (4)

DNpit

24/37

Analyses (Consistency checking)

Goal: prevent inconsistencies in different artifacts

...

#ifdef Conv

 // switch

 // to Conv

 // if ABS

 // fails

#endif

...

...

sensor_data_t data ;

#ifdef SC

 data = get_value(data) ;

#endif

if (data->check_oversteering())

 react_oversteering() ;

...

...

#ifdef SC && YRS_M1

 double predicted_value

 ...

#endif

...

abs.c (1) abs.c (2) abs.c (3)

...

#ifdef SC && YRS_M1

 predictor_t p ;

#else

 int p = 0;

#endif

...

predicted_value=p->get() ;

abs.c (4)

Dead code DNpit

24/37

Analyses (Consistency checking)

Goal: prevent inconsistencies in different artifacts

...

#ifdef Conv

 // switch

 // to Conv

 // if ABS

 // fails

#endif

...

...

sensor_data_t data ;

#ifdef SC

 data = get_value(data) ;

#endif

if (data->check_oversteering())

 react_oversteering() ;

...

...

#ifdef SC && YRS_M1

 double predicted_value

 ...

#endif

...

abs.c (1) abs.c (2) abs.c (3)

...

#ifdef SC && YRS_M1

 predictor_t p ;

#else

 int p = 0;

#endif

...

predicted_value=p->get() ;

abs.c (4)

Null pointer exception DNpit

24/37

Analyses (Consistency checking)

Goal: prevent inconsistencies in different artifacts

...

#ifdef Conv

 // switch

 // to Conv

 // if ABS

 // fails

#endif

...

...

sensor_data_t data ;

#ifdef SC

 data = get_value(data) ;

#endif

if (data->check_oversteering())

 react_oversteering() ;

...

...

#ifdef SC && YRS_M1

 double predicted_value

 ...

#endif

...

abs.c (1) abs.c (2) abs.c (3)

...

#ifdef SC && YRS_M1

 predictor_t p ;

#else

 int p = 0;

#endif

...

predicted_value=p->get() ;

abs.c (4)

Syntax errorDNpit

24/37

Analyses (Consistency checking)

Goal: prevent inconsistencies in different artifacts

...

#ifdef Conv

 // switch

 // to Conv

 // if ABS

 // fails

#endif

...

...

sensor_data_t data ;

#ifdef SC

 data = get_value(data) ;

#endif

if (data->check_oversteering())

 react_oversteering() ;

...

...

#ifdef SC && YRS_M1

 double predicted_value

 ...

#endif

...

abs.c (1) abs.c (2) abs.c (3)

...

#ifdef SC && YRS_M1

 predictor_t p ;

#else

 int p = 0;

#endif

...

predicted_value=p->get() ;

abs.c (4)

DNpit Type error

24/37

Analyses (Consistency checking)

Goal: prevent inconsistencies in different artifacts

...

#ifdef Conv

 // switch

 // to Conv

 // if ABS

 // fails

#endif

...

...

sensor_data_t data ;

#ifdef SC

 data = get_value(data) ;

#endif

if (data->check_oversteering())

 react_oversteering() ;

...

...

#ifdef SC && YRS_M1

 double predicted_value

 ...

#endif

...

abs.c (1) abs.c (2) abs.c (3)

...

#ifdef SC && YRS_M1

 predictor_t p ;

#else

 int p = 0;

#endif

...

predicted_value=p->get() ;

abs.c (4)

Other types of analysis exist: e.g., model-checkingDNpit

24/37

Consistency checking
(Research questions)

25/37

Consistency checking (Research questions)

• Variability aware-analysis is costly.

RQ: Do existing approaches for variability-aware type-
checking, flow-analysis and model-checking scale to large
systems?

• Existing flow-analysis is intra-procedural.

RQ: How to adapt existing inter-procedural analyses to
handle variability?

26/37

Consistency checking (Research questions)

• Variability aware-analysis is costly.

RQ: Do existing approaches for variability-aware type-
checking, flow-analysis and model-checking scale to large
systems?

• Existing flow-analysis is intra-procedural.

RQ: How to adapt existing inter-procedural analyses to
handle variability?

26/37

Consistency checking (Research questions)

• Variability aware-analysis is costly.

RQ: Do existing approaches for variability-aware type-
checking, flow-analysis and model-checking scale to large
systems?

• Existing flow-analysis is intra-procedural.

RQ: How to adapt existing inter-procedural analyses to
handle variability?

26/37

Consistency checking (Research questions)

• Variability aware-analysis is costly.

RQ: Do existing approaches for variability-aware type-
checking, flow-analysis and model-checking scale to large
systems?

• Existing flow-analysis is intra-procedural.

RQ: How to adapt existing inter-procedural analyses to
handle variability?

26/37

Analyses
(Impact analysis)

27/37

Impact analysis

Goal: assess impact of changes

Scenario:

• To identify bugs, stakeholders in our SPL have created formal
specifications of the system’s features

• Support for cruise control (CC)

Car

 YRS

YRS-M
2

SC

ABS SC

SC Conv

F
ea

tu
re

 m
od

el

BRA

ABSConv

YRS SC

YRS-M
1

CC

28/37

Impact analysis

Goal: assess impact of changes

Scenario:

• To identify bugs, stakeholders in our SPL have created formal
specifications of the system’s features

• Support for cruise control (CC)

Car

 YRS

YRS-M
2

SC

ABS SC

SC Conv

F
ea

tu
re

 m
od

el

BRA

ABSConv

YRS SC

YRS-M
1

CC

28/37

Impact analysis

Goal: assess impact of changes

Scenario:

• To identify bugs, stakeholders in our SPL have created formal
specifications of the system’s features

• Support for cruise control (CC)

Car

 YRS

YRS-M
2

SC

ABS SC

SC Conv

F
ea

tu
re

 m
od

el

BRA

ABSConv

YRS SC

YRS-M
1

CC

28/37

Impact analysis

Stability-control behaviour property: No subsystem increases
acceleration when SC is engaged

1. CC cruise speed
is set

2. Engage CC

3. Drivers looses
control

4. Engage SC
5. CC accelerates to
achieve cruise speed

Adding CC violates the given property

(Impact analysis aims to detect that promptly)

29/37

Impact analysis

Stability-control behaviour property: No subsystem increases
acceleration when SC is engaged

1. CC cruise speed
is set

2. Engage CC

3. Drivers looses
control

4. Engage SC
5. CC accelerates to
achieve cruise speed

Adding CC violates the given property

(Impact analysis aims to detect that promptly)

29/37

Impact analysis

Stability-control behaviour property: No subsystem increases
acceleration when SC is engaged

1. CC cruise speed
is set

2. Engage CC

3. Drivers looses
control

4. Engage SC
5. CC accelerates to
achieve cruise speed

Adding CC violates the given property

(Impact analysis aims to detect that promptly)

29/37

Impact analysis

Stability-control behaviour property: No subsystem increases
acceleration when SC is engaged

1. CC cruise speed
is set

2. Engage CC

3. Drivers looses
control

4. Engage SC
5. CC accelerates to
achieve cruise speed

Adding CC violates the given property
(Impact analysis aims to detect that promptly)

29/37

Impact analysis (Research questions)

• Currently, consistency between implementation assets (code) and
the system’s specified property is mostly intractable.

RQ: How to verify that the system implementation does not
break its specified properties?

30/37

Impact analysis (Research questions)

• Currently, consistency between implementation assets (code) and
the system’s specified property is mostly intractable.

RQ: How to verify that the system implementation does not
break its specified properties?

30/37

Analyses
(Architectural analysis)

31/37

Architectural analysis

• Feature model = view of the system architecture

• From the recovered traces, one can track the “health of the system”

• Different indicators can be collected to assess the system evolution:

◦ code metrics

◦ process metrics

◦ feature-based
metrics

◦ feature-model based metrics

◦ product-line based metrics

32/37

Architectural analysis

• Evidence relating scattering and defects is rather preliminary.

RQ: Can we provide more evidence for the relationship
between scattering and defects?

33/37

Architectural analysis

• Evidence relating scattering and defects is rather preliminary.

RQ: Can we provide more evidence for the relationship
between scattering and defects?

33/37

Recommendations

34/37

Recommendations + research question

Suggestions for:

• Consistency analysis

• Impact analysis

• Architectural analysis

35/37

Recommendations + research question

Suggestions for:

• Consistency analysis

• Impact analysis

• Architectural analysis

35/37

Recommendations + research question

Suggestions for:

• Consistency analysis

• Impact analysis

• Architectural analysis

35/37

Recommendations + research question

Suggestions for:

• Consistency analysis

• Impact analysis

• Architectural analysis

35/37

Recommendations + research question

Consistency:

• Fix recommendations for different artifacts types

RQ: How to devise a fixing recommender integrating
different artifacts, with different abstraction levels?

Impact analysis:

• Point which features are more likely to have defects after a change

RQ: Which feature-based metrics are good defect predictors?

35/37

Recommendations + research question

Consistency:

• Fix recommendations for different artifacts types

RQ: How to devise a fixing recommender integrating
different artifacts, with different abstraction levels?

Impact analysis:

• Point which features are more likely to have defects after a change

RQ: Which feature-based metrics are good defect predictors?

35/37

Recommendations + research question

Consistency:

• Fix recommendations for different artifacts types

RQ: How to devise a fixing recommender integrating
different artifacts, with different abstraction levels?

Impact analysis:

• Point which features are more likely to have defects after a change

RQ: Which feature-based metrics are good defect predictors?

35/37

Recommendations + research question

Consistency:

• Fix recommendations for different artifacts types

RQ: How to devise a fixing recommender integrating
different artifacts, with different abstraction levels?

Impact analysis:

• Point which features are more likely to have defects after a change

RQ: Which feature-based metrics are good defect predictors?

35/37

Recommendations + research question

Architectural analysis:

• Propose merges (features are too similar)

• Suggest feature retirement

• Suggest which features to modularize

RQ: Which scenarios should be supported (are required in
practice)?

35/37

Recommendations + research question

Architectural analysis:

• Propose merges (features are too similar)

• Suggest feature retirement

• Suggest which features to modularize

RQ: Which scenarios should be supported (are required in
practice)?

35/37

Recommendations + research question

Architectural analysis:

• Propose merges (features are too similar)

• Suggest feature retirement

• Suggest which features to modularize

RQ: Which scenarios should be supported (are required in
practice)?

35/37

Recommendations + research question

Architectural analysis:

• Propose merges (features are too similar)

• Suggest feature retirement

• Suggest which features to modularize

RQ: Which scenarios should be supported (are required in
practice)?

35/37

Recommendations + research question

Architectural analysis:

• Propose merges (features are too similar)

• Suggest feature retirement

• Suggest which features to modularize

RQ: Which scenarios should be supported (are required in
practice)?

35/37

Conclusion

• We hypothesized that feature-oriented evolution can mitigate
existing challenges in evolving large-complex systems

• From that hypothesis, we presented our vision based on tracing,
analyses and recommendations

• We are have started working on the realization of that vision

36/37

Thanks for listening!

37/37

