Feature-Oriented Software Evolution
(Vision paper)

Leonardo Passos’ Krzysztof Czarnecki® Sven Apel?

Andrzej Wasowski® Christian Kaster* Jianmei Guo?
Claus Hunsen?

LUniversity of Waterloo 2University of Passau 3IT University 4CMU

The Seventh International Workshop on Variability Modelling of Software-intensive Systems

1/37

Software evolves. . .

2/37

Example

Automotive embedded software:

3/37

Example

Automotive embedded software:

e Changing regulations

3/37

Example

Automotive embedded software:
e Changing regulations

o ABS is now mandatory in the EU

3/37

Example

Automotive embedded software:
e Changing regulations
o ABS is now mandatory in the EU

e Market differentiating enhancements

3/37

Example

Automotive embedded software:
e Changing regulations
o ABS is now mandatory in the EU
e Market differentiating enhancements

o Electronic stability control (SC) improves ABS by preventing skidding

3/37

Example

Automotive embedded software:

e Changing regulations
o ABS is now mandatory in the EU

e Market differentiating enhancements

o Electronic stability control (SC) improves ABS by preventing skidding

e New technology availability

3/37

Example

Automotive embedded software:
e Changing regulations
o ABS is now mandatory in the EU
e Market differentiating enhancements

o Electronic stability control (SC) improves ABS by preventing skidding

e New technology availability

o Laser-based distance sensors are more precise than radio-based ones

3/37

Understanding the evolution in
place is not easy. ..

Scenario

ABS + SC

Scenario

o Integration can scatter different artifacts

5/37

Scenario

o Integration can scatter different artifacts

o Different levels of abstractions not mastered by all stakeholders

5/37

Scenario

o Integration can scatter different artifacts

o Different levels of abstractions not mastered by all stakeholders

5/37

Scenario

o Integration can scatter different artifacts

o Different levels of abstractions not mastered by all stakeholders

< Developers

5/37

Scenario

o Integration can scatter different artifacts

o Different levels of abstractions not mastered by all stakeholders

< System engineers

5/37

Scenario

o Integration can scatter different artifacts

o Different levels of abstractions not mastered by all stakeholders

< Project managers

5/37

In practical settings. ..

In practical settings. ..

Complex and large software systems have:

7/37

In practical settings. ..

Complex and large software systems have:

e Diverse set of stakeholders

7/37

In practical settings. ..

Complex and large software systems have:
e Diverse set of stakeholders

e Diverse set of artifacts

7/37

In practical settings. ..

Complex and large software systems have:
e Diverse set of stakeholders
e Diverse set of artifacts

o Different stakeholders have particular “views" over the software

7/37

In practical settings. ..

Complex and large software systems have:
e Diverse set of stakeholders
e Diverse set of artifacts

o Different stakeholders have particular “views" over the software

Stakeholders need a common meeting point

7/37

Otherwise. . .

(no common meeting point)

8/37

Otherwise. . .

(no common meeting point)

Ineffective communication

8/37

Otherwise. . .

(no common meeting point)

Ineffective communication Software flaws

8/37

Otherwise. . .

(no common meeting point)

Ineffective communication Software flaws

Architecture decay

8/37

Otherwise. . .

(no common meeting point)

Ineffective communication Software flaws

Architecture decay Higher maintenance costs

8/37

Hypothesis

Hypothesis

Managing evolution at the level of features can address
the challenges describe above

10/37

Hypothesis

Arguments favouring the hypothesis:

10/37

Hypothesis

Arguments favouring the hypothesis:

e Feature = cohesive requirements bundle

10/37

Hypothesis

Arguments favouring the hypothesis:
e Feature = cohesive requirements bundle

e Requirements are a common point among all stakeholders

10/37

Hypothesis

Arguments favouring the hypothesis:
e Feature = cohesive requirements bundle
e Requirements are a common point among all stakeholders

e Features are more coarse-grained than individual requirements

10/37

Hypothesis

Arguments favouring the hypothesis:
e Feature = cohesive requirements bundle
e Requirements are a common point among all stakeholders

e Features are more coarse-grained than individual requirements

o Facilitates understanding

10/37

Hypothesis

Arguments favouring the hypothesis:
e Feature = cohesive requirements bundle
e Requirements are a common point among all stakeholders

e Features are more coarse-grained than individual requirements
o Facilitates understanding

e Evolution can be put in simple terms

10/37

Hypothesis

Arguments favouring the hypothesis:
e Feature = cohesive requirements bundle
e Requirements are a common point among all stakeholders

e Features are more coarse-grained than individual requirements

o Facilitates understanding

e Evolution can be put in simple terms

o Add new feature, retire old ones, etc.

10/37

Our vision
(Assuming the validity of our hypothesis)

11/37

Feature-oriented evolution based on:

Tracing

12/37

Feature-oriented evolution based on:

Tracing

Analyses

12/37

Feature-oriented evolution based on:

Tracing

Analyses

Recommendations

12/37

Purpose of our work

Research agenda based
on our vision for feature-oriented
software evolution

This presentation covers part of that agenda
(see paper for more details)

13/37

Motivating example

15/37

Motivating example

C SC = ABS
ar Conv = —1 SC

/(L\OYRS < SC

BRA SC YRS

AL A

Conv ABS YRS-M, YRS-M,

Feature model

15/37

Motivating example

C SC = ABS
At Conv = —1 SC

/(L\OYRS — SC

BRA sC YRS
/0\ S
Conv ABS @

Merge + clone yaw rate prediction

Feature model

15/37

Motivating example

C SC = ABS
ar Conv = —1 SC

/(L\OYRS < SC

BRA SC YRS

2N |

Conv ABS YRS-M,

Feature model

15/37

Motivating example

C SC = ABS
At Conv = —1 SC
mﬁé\@ SC
©
S]
g
= BRA sc
2
: /0\
i
Conv ABS

Merge YRS-M5 into YRS + rename YRS to YS

15/37

Motivating example

C SC = ABS
ar Conv = —1 SC

mYS — SC

BRA SC YS

A

Conv ABS

Feature model

16/37

Tracing

'TW‘ 1)‘
l_.u&;; L 4
YRS L'w \’l%ﬁ-rjz, Y!%S}-L1;> YS

17/37

Tracing
4 (t2) '3
0 = 7
l__u&z, "
YRS-M; YRS-M, YRS

Bug found in YS

17/37

17/37

Tracing

(tq) (o) (tg)

YRS-M; YRS-Mj YRS-M,
,@?

Does the bug exist in YRS-M; (t2)?

Tracing

YRS-Mj YRS-My YRS-My
e &

Does the bug exist in YRS-My > (t1)?

17/37

Tracing

(t4) (to) (t3)

YRS-Mj YRS-My YRS-My
€ & @

Does the bug exist in both t; and t,?

17/37

Tracing

YRS-Mj YRS-My YRS-My
€ & @

Answering requires tracing the evolution of single features

17/37

Tracing

e Traceability has to be recovered from a multi-space setting:

17/37

Tracing

e Traceability has to be recovered from a multi-space setting:

o Recover traceability of different artifacts (e.g.: FM, Build files, C
code)

17/37

Tracing

e Traceability has to be recovered from a multi-space setting:

o Recover traceability of different artifacts (e.g.: FM, Build files, C
code)

o Integrate the evolution history of those artifacts over time

17/37

Tracing

e Traceability has to be recovered from a multi-space setting:

o Recover traceability of different artifacts (e.g.: FM, Build files, C
code)

o Integrate the evolution history of those artifacts over time

o Draw an evolution history (timeline)

17/37

Tracing

e Traceability has to be recovered from a multi-space setting:

o Recover traceability of different artifacts (e.g.: FM, Build files, C
code)

o Integrate the evolution history of those artifacts over time
o Draw an evolution history (timeline)

)

17/37

Tracing

(Research questions)

18/37

Tracing (Research questions)

e Tracing certain artifacts can be daunting

19/37

Tracing (Research questions)

e Tracing certain artifacts can be daunting

o Individual build rules in build files (e.g., make is Turing-complete)

19/37

Tracing (Research questions)

e Tracing certain artifacts can be daunting

o Individual build rules in build files (e.g., make is Turing-complete)

o Fine-grained variability analysis in code is costly

19/37

Tracing (Research questions)

e Tracing certain artifacts can be daunting

o Individual build rules in build files (e.g., make is Turing-complete)

o Fine-grained variability analysis in code is costly

RQ: How to recover traceability links in build files and source
code in variability-aware systems?

19/37

Tracing (Research questions)

e Tracing certain artifacts can be daunting
o Individual build rules in build files (e.g., make is Turing-complete)

o Fine-grained variability analysis in code is costly

RQ: How to recover traceability links in build files and source
code in variability-aware systems?

RQ: Once recovered, how to update them to reflect the
temporal evolution in place?

19/37

Tracing (Research questions)

e Different artifacts = different sources to draw the evolution in place

19/37

Tracing (Research questions)

e Different artifacts = different sources to draw the evolution in place

o Mailing lists

19/37

Tracing (Research questions)

e Different artifacts = different sources to draw the evolution in place

o Mailing lists

o Commit patches and log messages

19/37

Tracing (Research questions)

e Different artifacts = different sources to draw the evolution in place

o Mailing lists
o Commit patches and log messages

o Bug reports in bug tracking systems

19/37

Tracing (Research questions)

e Different artifacts = different sources to draw the evolution in place

o Mailing lists
o Commit patches and log messages

o Bug reports in bug tracking systems

RQ: Which sources are trustworthy?

19/37

20/37

Analyses

(Back to the motivating example)

21/37

Analyses

After the evolution of the SPL, stakeholders noticed that:

22/37

Analyses

After the evolution of the SPL, stakeholders noticed that:

e Maintenance is taking longer

22/37

Analyses

After the evolution of the SPL, stakeholders noticed that:
e Maintenance is taking longer

e Productivity has decreased

22/37

Analyses

After the evolution of the SPL, stakeholders noticed that:
e Maintenance is taking longer
e Productivity has decreased

e Bugs are starting to rise

22/37

Analyses

After the evolution of the SPL, stakeholders noticed that:
e Maintenance is taking longer
e Productivity has decreased

e Bugs are starting to rise

Well-known phenomena of software aging

22/37

Analyses

We envision three analyses to prevent aging:

22/37

Analyses

We envision three analyses to prevent aging:

e Consistency checking analysis

22/37

Analyses

We envision three analyses to prevent aging:
e Consistency checking analysis

e Change impact analysis

22/37

Analyses

We envision three analyses to prevent aging:
e Consistency checking analysis
e Change impact analysis

e Architectural analysis

22/37

Analyses
(Consistency checking)

23/37

Analyses (Consistency checking)

Goal: prevent inconsistencies in different artifacts

24/37

Analyses (Consistency checking)

Goal: prevent inconsistencies in different artifacts

abs.c (1) abs.c (2) abs.c (3) abs.c (4)
#ifdef Conv sensor data t data ; $ifdef SC && YRS_M1 #ifdef SC && YRS_M1

7/ switch $ifdef sC double predicted_value predictor_t p ;

// to Conv data = get_value(data) ; e #else

// if aBS #endif fendis int p = 0;

// fails e #endif
#endif if (data->check_oversteering()) e

react_oversteering() ;
- predicted_value=p->get() ;

24/37

Analyses (Consistency checking)

Goal: prevent inconsistencies in different artifacts

abs.c (1) abs.c (2) abs.c (3) abs.c (4)
#ifdef Conv sensor data t data ; $ifdef SC && YRS_M1 #ifdef SC && YRS_M1

// switch $ifdef sC double predicted_value predictor_t p ;

// to Conv data = get_value(data) ; e telse

// if BBS #endif B tendif int p = 0;

// fails #endif
#endif if (data->check_oversteering()) e

react_oversteering() ;
- predicted_value=p->get() ;

Dead code

24/37

Analyses (Consistency checking)

Goal: prevent inconsistencies in different artifacts

abs.c (1) abs.c (2) abs.c (3) abs.c (4)
#ifdef Conv sensor data t data ; $ifdef SC && YRS_M1 #ifdef SC && YRS_M1

7/ switch $ifdef sC double predicted_value predictor_t p ;

// to Conv data = get_value(data) ; e telse

// if BBS fendif - #endif int p = 0;

7/ fails #endif
4endif if (data->check_oversteering())

react_oversteering() ;
- predicted_value=p->get() ;

Null pointer exception

24/37

24/37

Analyses (Consistency checking)

Goal: prevent inconsistencies in different artifacts

abs.c (1)

abs.c (2)

abs.c (3)

abs.c (4)

#ifdef Conv
// switch
// to Conv
// if ABS
// fails
#endif

sensor_data_t data ;
#ifdef sC

data = get_value(data) ;
#endif

if (data->check_oversteering())

react_oversteering() ;

#ifdef SC && YR57MI
double predicted_value

#endif

#ifdef SC && YRS_M1
predictor_t p ;
#else
int p = 0;
#endif

predicted_value=p->get() ;

Syntax error

24/37

Analyses (Consistency checking)

Goal: prevent inconsistencies in different artifacts

abs.c (1)

abs.c (2)

abs.c (3)

abs.c (4)

#ifdef Conv
// switch
// to Conv
// if ABS
// fails
#endif

sensor_data_t data ;
#ifdef sC

data = get_value(data) ;
#endif

if (data->check_oversteering())

react_oversteering() ;

#ifdef SC && YRS_M1
double predicted_value

#endif

#ifdef SC && YRSiMl
predictor_t p ;
#else
int p = 0;
#endif

predicted_value=p->get()

Type error

Analyses (Consistency checking)

Goal: prevent inconsistencies in different artifacts

abs.c (1) abs.c (2) abs.c (3) abs.c (4)
#ifdef Conv sensor data t data ; $ifdef SC && YRS_M1 #ifdef SC && YRS_M1

7/ switch $ifdef sC double predicted_value predictor_t p ;

// to Conv data = get_value(data) ; e telse

// if BBS #endif tendif int p = 0;

7/ fails #endif
#endif if (data->check_oversteering())

react_oversteering() ;
- predicted_value=p->get() ;

Other types of analysis exist: e.g., model-checking

24/37

Consistency checking

(Research questions)

25/37

Consistency checking (Research questions)

e Variability aware-analysis is costly.

26/37

26/37

Consistency checking (Research questions)

e Variability aware-analysis is costly.

RQ: Do existing approaches for variability-aware type-
checking, flow-analysis and model-checking scale to large
systems?

Consistency checking (Research questions)

e Variability aware-analysis is costly.

RQ: Do existing approaches for variability-aware type-
checking, flow-analysis and model-checking scale to large
systems?

e Existing flow-analysis is intra-procedural.

26/37

Consistency checking (Research questions)

e Variability aware-analysis is costly.

RQ: Do existing approaches for variability-aware type-
checking, flow-analysis and model-checking scale to large
systems?

e Existing flow-analysis is intra-procedural.

RQ: How to adapt existing inter-procedural analyses to
handle variability?

26/37

Analyses

(Impact analysis)

27/37

Impact analysis

Goal: assess impact of changes

28/37

Impact analysis

Goal: assess impact of changes

Scenario:

e To identify bugs, stakeholders in our SPL have created formal
specifications of the system's features

e Support for cruise control (CC)

28/37

Impact analysis

Goal: assess impact of changes
Scenario:

e To identify bugs, stakeholders in our SPL have created formal
specifications of the system's features

e Support for cruise control (CC)

SC = ABS
Car Cony = —1 SC
_ YRS < SC
° BRA SC YRS
Conv ABS YRS-M, YRS-M,

28/37

Impact analysis

Stability-control behaviour property: No subsystem increases
acceleration when SC is engaged

20/37

20/37

Impact analysis

Stability-control behaviour property: No subsystem increases
acceleration when SC is engaged

1. CC cruise speed 2. Engage CC

: is set

3. Drivers looses

5. CC accelerates to
achieve cruise speed

Impact analysis

Stability-control behaviour property: No subsystem increases
acceleration when SC is engaged

1. CC cruise speed 2. Engage CC

: is set

3. Drivers looses

5. CC accelerates to
achieve cruise speed

Adding CC violates the given property

20/37

20/37

Impact analysis

Stability-control behaviour property: No subsystem increases
acceleration when SC is engaged

1. CC cruise speed 2. Engage CC

: is set

3. Drivers looses

5. CC accelerates to
achieve cruise speed

Adding CC violates the given property
(Impact analysis aims to detect that promptly)

Impact analysis (Research questions)

e Currently, consistency between implementation assets (code) and
the system's specified property is mostly intractable.

30/37

Impact analysis (Research questions)

e Currently, consistency between implementation assets (code) and
the system's specified property is mostly intractable.

RQ: How to verify that the system implementation does not
break its specified properties?

30/37

Analyses

(Architectural analysis)

31/37

Architectural analysis

o Feature model = view of the system architecture
e From the recovered traces, one can track the “health of the system”

o Different indicators can be collected to assess the system evolution:

o code metrics o feature-model based metrics
o process metrics o product-line based metrics

o feature-based
metrics

32/37

Architectural analysis

e Evidence relating scattering and defects is rather preliminary.

33/37

Architectural analysis

e Evidence relating scattering and defects is rather preliminary.

RQ: Can we provide more evidence for the relationship
between scattering and defects?

33/37

34/37

Recommendations + research question

Suggestions for:

35/37

Recommendations + research question

Suggestions for:

e Consistency analysis

35/37

Recommendations + research question

Suggestions for:
e Consistency analysis

e Impact analysis

35/37

Recommendations + research question

Suggestions for:
e Consistency analysis
e Impact analysis

e Architectural analysis

35/37

Recommendations + research question

Consistency:

e Fix recommendations for different artifacts types

35/37

Recommendations + research question

Consistency:

e Fix recommendations for different artifacts types

RQ: How to devise a fixing recommender integrating
different artifacts, with different abstraction levels?

35/37

Recommendations + research question

Consistency:

e Fix recommendations for different artifacts types

RQ: How to devise a fixing recommender integrating
different artifacts, with different abstraction levels?

Impact analysis:

e Point which features are more likely to have defects after a change

35/37

Recommendations + research question

Consistency:

e Fix recommendations for different artifacts types

RQ: How to devise a fixing recommender integrating
different artifacts, with different abstraction levels?

Impact analysis:

e Point which features are more likely to have defects after a change

RQ: Which feature-based metrics are good defect predictors?

35/37

Recommendations + research question

Architectural analysis:

35/37

Recommendations + research question

Architectural analysis:

e Propose merges (features are too similar)

35/37

Recommendations + research question

Architectural analysis:

e Propose merges (features are too similar)

e Suggest feature retirement

35/37

Recommendations + research question

Architectural analysis:

e Propose merges (features are too similar)
e Suggest feature retirement

e Suggest which features to modularize

35/37

Recommendations + research question

Architectural analysis:

e Propose merges (features are too similar)
e Suggest feature retirement

e Suggest which features to modularize

RQ: Which scenarios should be supported (are required in
practice)?

35/37

Conclusion

e We hypothesized that feature-oriented evolution can mitigate
existing challenges in evolving large-complex systems

e From that hypothesis, we presented our vision based on tracing,
analyses and recommendations

e \We are have started working on the realization of that vision

36/37

Thanks for listening!

37/37

