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Example

Automotive embedded software:
e Changing regulations
o ABS is now mandatory in the EU
e Market differentiating enhancements

o Electronic stability control (SC) improves ABS by preventing skidding

e New technology availability

o Laser-based distance sensors are more precise than radio-based ones
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Understanding the evolution in
place is not easy. ..



Scenario

ABS + SC
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o Integration can scatter different artifacts

o Different levels of abstractions not mastered by all stakeholders
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In practical settings. ..

Complex and large software systems have:
e Diverse set of stakeholders
e Diverse set of artifacts

o Different stakeholders have particular “views" over the software

Stakeholders need a common meeting point
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Otherwise. . .

(no common meeting point)

Ineffective communication Software flaws

Architecture decay Higher maintenance costs
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Hypothesis

Managing evolution at the level of features can address
the challenges describe above
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Hypothesis

Arguments favouring the hypothesis:
e Feature = cohesive requirements bundle
e Requirements are a common point among all stakeholders

e Features are more coarse-grained than individual requirements

o Facilitates understanding

e Evolution can be put in simple terms

o Add new feature, retire old ones, etc.
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Our vision
(Assuming the validity of our hypothesis)
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Feature-oriented evolution based on:

Tracing
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Purpose of our work

Research agenda based
on our vision for feature-oriented
software evolution

This presentation covers part of that agenda
(see paper for more details)
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Tracing
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Tracing
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Bug found in YS
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Tracing

YRS-Mj YRS-My YRS-My
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Does the bug exist in YRS-My > (t1)?
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Tracing

(t4) (to) (t3)
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Does the bug exist in both t; and t,?
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Tracing

YRS-Mj YRS-My YRS-My
€ & @

Answering requires tracing the evolution of single features
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o Recover traceability of different artifacts (e.g.: FM, Build files, C
code)

o Integrate the evolution history of those artifacts over time
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Tracing (Research questions)

e Tracing certain artifacts can be daunting
o Individual build rules in build files (e.g., make is Turing-complete)

o Fine-grained variability analysis in code is costly

RQ: How to recover traceability links in build files and source
code in variability-aware systems?

RQ: Once recovered, how to update them to reflect the
temporal evolution in place?
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e Different artifacts = different sources to draw the evolution in place

o Mailing lists
o Commit patches and log messages

o Bug reports in bug tracking systems

RQ: Which sources are trustworthy?
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Analyses

(Back to the motivating example)
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After the evolution of the SPL, stakeholders noticed that:
e Maintenance is taking longer
e Productivity has decreased

e Bugs are starting to rise

Well-known phenomena of software aging
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Goal: prevent inconsistencies in different artifacts

abs.c (1) abs.c (2) abs.c (3) abs.c (4)
#ifdef Conv sensor data t data ; $ifdef SC && YRS_M1 #ifdef SC && YRS_M1

7/ switch $ifdef sC double predicted_value predictor_t p ;

// to Conv data = get_value(data) ; e telse

// if BBS fendif - #endif int p = 0;

7/ fails #endif
4endif if (data->check_oversteering())

react_oversteering() ;
- predicted_value=p->get() ;

Null pointer exception
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Analyses (Consistency checking)

Goal: prevent inconsistencies in different artifacts

abs.c (1) abs.c (2) abs.c (3) abs.c (4)
#ifdef Conv sensor data t data ; $ifdef SC && YRS_M1 #ifdef SC && YRS_M1

7/ switch $ifdef sC double predicted_value predictor_t p ;

// to Conv data = get_value(data) ; e telse

// if BBS #endif tendif int p = 0;

7/ fails #endif
#endif if (data->check_oversteering())

react_oversteering() ;
- predicted_value=p->get() ;

Other types of analysis exist: e.g., model-checking
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Consistency checking (Research questions)

e Variability aware-analysis is costly.

RQ: Do existing approaches for variability-aware type-
checking, flow-analysis and model-checking scale to large
systems?

e Existing flow-analysis is intra-procedural.

RQ: How to adapt existing inter-procedural analyses to
handle variability?
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Scenario:

e To identify bugs, stakeholders in our SPL have created formal
specifications of the system's features

e Support for cruise control (CC)

SC = ABS
Car Cony = —1 SC
_ YRS < SC
° BRA SC YRS
Conv ABS YRS-M, YRS-M,
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Impact analysis

Stability-control behaviour property: No subsystem increases
acceleration when SC is engaged

1. CC cruise speed 2. Engage CC

: is set

3. Drivers looses

5. CC accelerates to
achieve cruise speed

Adding CC violates the given property
(Impact analysis aims to detect that promptly)



Impact analysis (Research questions)

e Currently, consistency between implementation assets (code) and
the system's specified property is mostly intractable.

30/37
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e Currently, consistency between implementation assets (code) and
the system's specified property is mostly intractable.

RQ: How to verify that the system implementation does not
break its specified properties?
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(Architectural analysis)
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Architectural analysis

o Feature model = view of the system architecture
e From the recovered traces, one can track the “health of the system”

o Different indicators can be collected to assess the system evolution:

o code metrics o feature-model based metrics
o process metrics o product-line based metrics

o feature-based
metrics
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Architectural analysis

e Evidence relating scattering and defects is rather preliminary.
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Architectural analysis

e Evidence relating scattering and defects is rather preliminary.

RQ: Can we provide more evidence for the relationship
between scattering and defects?
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Consistency:

e Fix recommendations for different artifacts types

RQ: How to devise a fixing recommender integrating
different artifacts, with different abstraction levels?

Impact analysis:

e Point which features are more likely to have defects after a change

RQ: Which feature-based metrics are good defect predictors?
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Recommendations + research question

Architectural analysis:

e Propose merges (features are too similar)
e Suggest feature retirement

e Suggest which features to modularize

RQ: Which scenarios should be supported (are required in
practice)?
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Conclusion

e We hypothesized that feature-oriented evolution can mitigate
existing challenges in evolving large-complex systems

e From that hypothesis, we presented our vision based on tracing,
analyses and recommendations

e \We are have started working on the realization of that vision
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Thanks for listening!
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