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ABSTRACT
In this paper, we develop a vision of software evolution based
on a feature-oriented perspective. From the fact that features
provide a common ground to all stakeholders, we derive a
hypothesis that changes can be effectively managed in a
feature-oriented manner. Assuming that the hypothesis holds,
we argue that feature-oriented software evolution relying
on automatic traceability, analyses, and recommendations
reduces existing challenges in understanding and managing
evolution. We illustrate these ideas using an automotive
example and raise research questions for the community.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures; D.2.9 [Software Engineering]: Management—soft-
ware configuration management ; K.6.3 [Management of
Computing and Information Systems]: Software Man-
agement—software maintenance

General Terms
Management, Measurement
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1. INTRODUCTION
Software systems evolve to meet changing requirements,

platforms, and other environmental pressures [23]. For ex-
ample, automotive embedded software undergoes continuous
evolution due to new regulations (e.g., the European Union
now requires all new cars to have an anti-lock brake system—
ABS), market-differentiating enhancements (e.g., electronic
stability control improves ABS by preventing skidding), and
the availability of new technology (e.g., laser-based distance
sensors for automatic braking are more precise than their
radio-frequency counterparts).

Understanding evolution of large software systems is far
from trivial. A change integrating the electronic stability
control into an existing ABS can be scattered across multi-
ple artifacts, requiring different kinds of expertise that are
unlikely to be mastered by all stakeholders. Software en-
gineers have a deep understanding of the changes at the
code level, but much less so at the system level, including
physical models. The contrary can be said of mechanical
and control engineers: they understand the physical models,
but the mathematical equations they wrote may look unrec-
ognizable to them at the code level, due to optimizations
and other low-level details. Similarly, product managers are
likely to understand the change in terms of user and market
impact rather than the technical details. The diversity of
stakeholders and development artifacts makes understanding
change drivers and the impact of change challenging, leading
to ineffective communication, software flaws, architectural
decay, and higher maintenance costs.

We hypothesize that managing change at the level of fea-
tures can address the challenges described above.

Features represent cohesive bundles of requirements ad-
dressing important capabilities of the system [12]. We believe
this predestines them as the ideal means of organization of
discourse about change: (i) requirements are an agreement
among all stakeholders on what the system should do. Since
requirements are generally understood by all stakeholders,
the tight relation between features and requirements make
features likely to be understood by all stakeholders. Fur-
thermore, features are more coarse-grained than individual
requirements, thus facilitating understanding (requires less
cognitive effort) and traceability of evolution. Even in situa-
tions in which individual requirements need to be traced and
understood, a feature view provides an initial point to locate
them; (ii) changes can be stated and understood relative to



features (e.g., introduction of new features, retirement of old
ones, etc.), providing a simple and common ground to all
stakeholders; (iii) features are the starting point to bootstrap
software product lines (SPLs). Managing evolution at the
feature level allows stakeholders to identify common and vari-
able features in system families, and thus the variation points
in the architecture required to support the necessary range
of feature variation; (iv) features make dependencies and
change-impact easier to be understood, providing a high-level
requirements view of how different parts are related.

Feature-oriented development is already part of existing
methodologies and systems [3]. In agile methods, such as
Feature Driven Development (FDD) [32], management is cen-
tered around user stories (short descriptions documenting a
feature), which then drive the architecture, coding scheduling,
effort estimation and test cases. In SPLs, features allow man-
aging software variants (valid feature combinations), with
an extensive catalog of successful case studies.1 Some open-
source systems also follow a feature-oriented process. The
feature-driven development of Linux kernel, for instance, en-
ables its scaling to an enormous size, both in the number of
features and contributors [28].

These examples, however, also highlight a poor support
for effective feature-oriented evolution: although FDD is
centered on a feature-based software management, it does
not prescribe traceability, except when writing test cases [7].
In SPLs and systems like Linux, traceability is present across
different artifacts, but querying it to extract any meaningful
knowledge is complex, as there is no tool support. Moreover,
temporal traceability is not recorded over time. The exist-
ing approaches and systems have little support for feature-
interaction detection and impact analysis, while lacking any
support for strategic decision making and change recommen-
dations over the evolution history.

Vision: Assuming the validity of our hypothesis, we believe
that organizing software evolution around features, supported
by tracing, analyses and recommendations will address many
of the challenges in understanding and managing change.

By tracing, we envision automatic recovery and manage-
ment of traceability links among features and their associated
implementation artifacts, all summarized along a timeline.
Based on these links, analyses collect various measures over
features, which are aggregated to aid strategic decision mak-
ing. If put on a dashboard (see Fig. 1), the resulting data can
be used to highlight good and bad indicators of evolution
(e.g., there has been an increase in the number of feature
smells). Recommendations further enhance analyses, provid-
ing suggestions for feature refactorings, test-selection criteria,
feature retirement candidates, etc.

Since not all systems are built in a feature-oriented fashion,
features may not be explicitly represented in implementation
artifacts. In that case, existing techniques can leverage
feature localization [42, 17, 21, 29, 37, 11, 19, 41] to relate
(code) artifacts (or fragments of them) to the features of the
system (feature set). To a certain extent, this makes our
vision independent of any implementation technique.

In the remaining part of the paper, we present a motivating
example, and use it to guide the discussion of each part of
our vision of feature-oriented software evolution.
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Figure 1: Mock-up dashboard interface
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Figure 2: Feature model of the automotive example

2. MOTIVATING EXAMPLE
Consider an automotive product line supporting conven-

tional (Conv) and anti-locking braking (ABS), with stability
control (SC) as an optional feature. See the feature model in
Fig. 2. Stability control is a safety feature that interacts with
ABS to brake and help steering the vehicle according to the
driver’s intention. To detect mismatches between wheels and
steering wheel turns, SC requires a yaw-rate sensor (YRS),
which can be one of two possible kinds: YRS-M1 and YRS-M2.
In our example, both are based on the same technology, but
YRS-M2 has better precision measure, whereas YRS-M1 has
yaw-rate prediction support.

As time progresses, the product line evolves: at a given
point in time (t1) stakeholders decide that it is increasingly
expensive to keep two similar, but independent yaw-sensor
models, and thus decide to merge YRS-M1 into the existing
YRS-M2 sensor, cloning its yaw-rate prediction code. Later
on (t2), stakeholders decide to simplify the resulting feature
model: since YRS-M2 is now the only supported sensor, having
both YRS-M2 and YRS is redundant. To that end, stakeholders
combine the two features into a single new feature, naming it
YS (our stakeholders have a preference for two-letter feature
names). This leads to a new instant of evolution (t3).

3. TRACING
Suppose that after some time since the last change, stake-

holders start facing issues on how different features are con-
nected in time. For instance, after finding a bug in the new
YS sensor, stakeholders set to check whether the same issue
occurs in older sensors (still used in older car models) that
eventually contributed to the code of YS. To this end, stake-
holders verify all instants prior to the creation of YS, but
struggle to understand whether and how YRS-M1 (at t1) and
YRS-M2 (at t1 and t2) relate to YS, as such information was
not recorded during evolution. At best, stakeholders can only
inspect commit patches (textual diffs) based on changes to
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Figure 3: Traceability timeline
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Figure 4: Recovered traceability links at instant t1

different artifacts, which in turn, are not explicitly associated
with the features they realize. Communication issues also
appear along the way. A stakeholder, for instance, when ana-
lyzing the evolution of the feature model alone, may wrongly
conclude that YRS-M2 and YS have no yaw-rate prediction
support, as changes in the feature model do not report the
fact the yaw-rate prediction code was cloned from YRS-M1

into YRS-M2 (resulting in the snapshot at t2), and that YS

“inherits” it when merging with YRS-M2 (resulting in the
snapshot at t3).

Tracing how the features of the system evolve over time
mitigates these problems. If a timeline visualization was
available (Fig. 3), stakeholders could easily assess whether
a feature exists at a given time (marked as a bullet), when
it was deleted (marked as an X) and how it relates to other
features (e.g., by merging, marked as M). Queries could filter
specific traces.

Traces should be maintained automatically, as manual
maintenance is an expensive, error-prone and labour-intensive
activity [6]. Traceability recovery overcomes the effort of
manually keeping traces by automating their retrieval. Start-
ing from an initial point in time, recovery retrieves the links
among the different types of artifacts that are related to the
realization of each concrete feature. Figure 4 shows the links,
depicted as dashed arrows, created by the recovery process
for the example product line at the first point of its evolu-
tion (t1), assuming a feature model, build and source code
files. These links relate build and source files to their corre-
sponding feature, while also tracing specific build rules (e.g.,
YRS-M1 and YRS-M2) and code fragments (e.g., SC). These
fine-grained links are retrieved by analysing the variability
encoded inside each source and build file.

The difficulty of recovering links is directly related to how

Feature is implicit
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in code

Efficient feature-oriented evolution understanding/management

Traceability effort

Feature is fully modular
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Figure 5: Spectrum of features and traceability

features are implemented. In particular, there are three main
situations to consider when recovering a particular feature,
as shown in the spectrum in Fig. 5.

Feature is fully modular and explicit in code. If a feature
resides in a well defined module explicitly linked to a feature
of the system, then there is nothing to be done in terms of its
tracing, as the link is already given by a one-to-one mapping.
Examples of such features include Conv, ABS, YRS-M1 and
YRS-M2 in Fig. 4.

Feature is not fully-modular, but it is explicit in code. The
midpoint of the spectrum is when a feature is explicit in
code, but it is not fully modular, i.e., it has code fragments
scattered across the code base (for example SC). Due to scat-
tering, the feature must explicitly rely on variability encoding
(for instance, pre-processing directives) to guard its related
fragments. Recovering features in this part of the spec-
trum is more complex than when features are fully-modular
and explicit, as it requires possibly analysing multiple files,
whose implementation may contain complex and nested pre-
processing directives. Since variability encoding can create
arbitrary complex guard conditions in code, recovered links
often lead to multiple features (many-to-many mappings).

Feature is implicit in code. The last and most challenging sit-
uation in the spectrum occurs when a feature is implemented
in the source code, but is not related by any means to a
feature in the software feature set (it is implicit in code). In
this case, feature-location techniques are required to identify
which parts of code realize a given feature, along with which
compilation rules. Recovery then links each feature to its
associated located elements.

As evolution progresses, recovery has to update its initial
set of traces, while defining new ones resulting from newly
added features. Figure 6 illustrates this in the context of
the automotive product line: from t1, recovery identifies
the merge of the two sensors and the resulting deletion of
the build rule and source file related to YRS-M1, along with
the copy of its prediction code (shown in white squares) to
YRS-M2. From that, recovery reaches a new point in time
(t2), for which a new set of traces is obtained. It then creates
a link between YRS-M1 (at t1) and YRS-M2 (at t2) to capture
their temporal evolution.

Recovery proceeds to analyze the next evolution step, in
which YRS-M2 is combined with YRS to simplify structure,
while lifting all artifacts of YRS-M2 to YRS. In the same
evolution step (same commit), stakeholders also rename YRS

to YS. Given the limitation of existing source code man-
agement (SCM) systems, recovery cannot identify which of
these changes occurs first. Rather, it infers that the changed
features converge to a common target, and thus take them to
be a single merge towards YS. The newly obtained traces are
then stored in a new time frame. As before, recovery creates
temporal traces to map evolution across different points in



time, in this case from YRS and YRS-M2 (at t2) to the newly
added feature YS (at t3).

Traceability is a complex problem, as it has to be kept
across different artifact types, with different abstraction lev-
els. To our advantage, feature-centric traceability defines a
cross-cutting perspective to associate and track all artifacts.

Future directions and research questions
Although traceability has many challenges on on its own [24],
we leverage discussion to a feature-oriented perspective.

We argue that traceability research should focus on recov-
ery techniques to efficiently extract links of non-modular-
explicit features. Special attention should also be given to
improve or devise new feature-location techniques to boot-
strap traceability of implicit features in code (once a feature
is located, recovering its links is as difficult as tracing ex-
plicit features, modular or not). In contrast, tracing explicit-
modular features is easy, although such setting hardly occurs
outside academia (e.g., FeatureHouse benchmark [4]).

Establishing links for non-modular-explicit features re-
quires analysis over build rules and code fragments.

Build files are notoriously complex, as existing build lan-
guages allow dynamic creation of compilation rules during
the build process [38], beside being comparable to general
programming languages [18]. Tracing non-modular-explicit
features in code is also challenging, as annotated code is
often tangled with the presence of other features. Tracing it
requires analysis of all features that trigger the inclusion of
such a code in the corresponding set of variants. As there
are no recovery techniques in industry nor in academia that
retrieve links at the level of single build rules or individual
lines of code, we pose the following research question:

How to effectively recover traceability links in build files and
source code in variability-aware systems?

New techniques aiming to answer these questions can rely
on existing approaches on variability-aware parsing [26] and
build-file analysis [18].

Another research direction is how to leverage tracing to
the temporal dimension imposed by evolution:

How to efficiently recover temporal traceability links?

One approach is to explore patterns of evolution [34], i.e.,
structural changes in specific artifacts that allow us to heuris-
tically infer whether and how changes relate different features
(e.g., as it happened in the automotive product line, the dele-
tion of a feature and its implementation artifacts, together
with the cloning of part of its code to another feature is
likely to characterize a merge). This leads to three research
questions:

Which evolution operations/changes occur at the feature level
(e.g., add, rename, delete, merge, etc.) and how different
artifacts change as a result?

Which change patterns arise from such a change?

Can they be used to devise specific recovery heuristics?

Although existing research attempts to answer the first
question, its focus is on evolution that preserves behavior
and the set of variants [35, 31], or on cases where only the
feature model and its mapping to other assets are taken into
account [36]. Such question is also investigated by Passos et
al. [34], who present a preliminary set of evolution patterns
extracted from the Linux kernel evolution history.

Recovery can also rely on external data sources to increase
confidence of heuristic-based techniques, including documen-
tation, bug-tracking systems and mailing lists, each with
different levels of trust. That said, we pose two questions:

How to decide on conflicting information from different
sources?

Which information sources provide a higher degree of trust?

Future research shall also focus on how to incorporate
feature-based tracing in existing SCMs [43]. In this case,
SCMs could record changes on a feature level, linking them
to changes to the feature model (if existent). This guarantees
tracing to be kept at each commit, in addition to detecting
possible inconsistencies [39, 30] between the feature model
and related artifacts at commit time (e.g., a concrete fea-
ture cannot exist in the feature model without any artifact
realizing it), thus improving traceability quality.

4. ANALYSES
Let us return to our example. As the automotive product

line evolves, stakeholders notice that maintenance is taking
longer, development productivity has decreased, and bugs are
starting to rise. These symptoms are well known in software
evolution, and are related to the aging phenomenon. Software
aging is the result of a bad evolution, leading systems to
reduced performance, architecture decay, less reliability and
higher maintenance costs [33].

To countermeasure these issues, stakeholders set out to
understand what is causing them. They would like to improve
the maintenance process to prevent future problems. In that
sense, stakeholders ask questions like:

1) Are the feature models, build system, and code consis-
tent after changes?

2) Which features and which artifacts are affected by chang-
ing a given feature?

3) Does changing a feature cause unexpected behavior?

4) Is the software modularized (architecturally aligned)
according to the features it implements?

5) How are features evolving and how is evolution taking
place?

6) Are features becoming more complex? In which respect
(coupling, size, scattering, etc.)?

These questions address three specific concerns: software
consistency (1), change-impact analysis (2, 3) and architec-
tural analysis (4, 5, 6). We explain each of these from a
feature-based perspective.

Consistency checking
Using features to organize code and feature models as the
high-level description of the implemented system introduces
a risk that the two get out of sync. Consistency monitoring
is needed to prevent such situations. Fig. 7 illustrates the
problem. In the first fragment, feature ABS contains a code
block guarded by the presence of feature Conv. Implementers
of ABS provided software support for switching to conven-
tional braking in case ABS fails. According to the feature
model of the automotive example, that code is dead [39,
30], as Conv is always absent when ABS is present (they are
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Figure 6: Traceability recovery in the automotive example

inside a mutex-group). Therefore, the feature model and the
implemented code are inconsistent.

In the second fragment of Fig. 7, ABS control checks whether
stability control (SC) is supported. If so, it requests some
data to later check over-steering. Since this check is outside
the ifdef blocking initializing the data variable, checking over-
steering will cause a null pointer exception at runtime if SC is
absent. Such issues can be addressed using variability-aware
flow analyses, as in [10].

The third fragment illustrates a parsing error caused when
SC and YRS-M1 are both present, since the declaration state-
ment inside the ifdef block does not contain a semicolon.

The fourth fragment shows a type error, as p will be taken
as an integer primitive type if both SC and YRS-M1 are absent,
preventing any method call from it. Recent tools addresses
syntax and type errors that arise under certain configurations
of features, manifesting divergence between the model and
implementation (e.g., [26, 22]). A similar problem is solved by
Czarnecki and Pietroszek [16], who verify the consistency of
configurations against structural constraints in OCL. Classen
et al. [15] achieve the same for temporal constraints (which is
also close to program analysis techniques mentioned above).
Thüm et al. [40] show a manual proof technique, based on
proof composition, using as an example proving consistency
between Java code and feature models.

Although existing research and tools have managed to
adapt existing analysis techniques to take variability into
account, there is still open issues that need to be addressed.

Future directions and research questions
Although existing tools [39, 30] have managed to scale incon-
sistency detection to large programs (e.g., Linux), variability-
aware type checking [27, 13, 25] and flow analyses have not
yet been demonstrated in large and complex real-world sys-
tems. Similarly model checking techniques for product lines
have been developed at the theoretical level [15, 14, 5], but
hardly bridged to realistic systems.

Do existing variability-aware type checking, model checking
and flow analyses scale to large systems?

Furthermore, existing flow analyses are intra-procedural.
Inter-procedural analysis is yet a challenge, and existing
research needs to address it [9]:

How to adapt existing inter-procedural analyses to handle
variability?

Another important aspect is how to leverage existing
variability-aware error detection techniques (inconsistencies,
dead code, parsing, etc.) to take evolution into account. Even
when faced with small changes, the proposed techniques re-
quire recomputing results from scratch, as such techniques
are not incremental. That said, we ask:

How to make existing variability-aware error detection tech-
niques incremental?

Change impact analysis
Before making changes, stakeholders must be able to assess
or estimate the impact they will have on other features of
the system. Change-impact analysis provides a sound basis
to judge whether a change is worth the effort, or if inevitable,
which features should be changed as a consequence.

A complete impact analysis is achieved by the traceability
links retrieved during recovery, allowing us to calculate all
feature dependencies among different artifacts and across
time. For instance, if stakeholders decide to change the ser-
vice interface of the stability control, ABS has to be adapted
as a consequence. Since older versions of the system still need
to be maintained (older cars still use them), stakeholders
decide that the new API should also be used across differ-
ent versions of the system, as this facilitates maintenance
and communication within the development team. Impact
analysis, in this case, completely depends on the recovered
temporal links.

In addition to assessing change-impact analysis based on
structural dependencies among artifacts and the elements
they contain, one can lift analysis to the level of modular
formal feature requirements specifications [14]. In this case,
before committing to a change, stakeholders investigate which
features will be affected, how, and in which variants, assessing
whether the change breaks existing temporal properties; thus
introducing undesired feature interactions. To illustrate this,
consider that the stakeholders of the automotive product
line formalize the specification of each individual feature
attempting to detect possible bugs. At a given point, they
decide to introduce support for the cruise control (CC) feature,
and as such, write its related specification, stating:



...
#ifdef Conv
   // switch
   // to Conv
   // if ABS
   // fails
#endif
...

...
sensor_data_t data ;
#ifdef SC 
  data = get_value(data) ;
#endif

if (data->check_oversteering()) 
   react_oversteering() ;
...

...
#ifdef SC && YRS_M1
   double predicted_value
   ...
#endif
...

abs.c (1) abs.c (2) abs.c (3)

...
#ifdef SC && YRS_M1
   predictor_t p ;  
#else
   int p = 0;
#endif
...

predicted_value=p->get() ;

abs.c (4)

Figure 7: Example errors hidden by variability encoding

CC should increase the car’s speed until it reaches the
driver’s set cruise speed.

In addition, the specification of the stability control declares:

When detecting loss of steering control, SC brakes the car to
adjust steering to match the driver’s intention. At this point,

no subsystem should increase acceleration.

In this case, introducing CC causes an undesirable feature
interaction in variants with CC and SC, as their composition
cannot guarantee that no subsystem will increase acceleration
when SC takes over control. The following sequence illustrates
this: (1) the driver sets the cruise speed (thus engaging
cruise control); (2) driver looses control of the car (SC is
engaged); (3) cruise control continues to accelerate to achieve
cruise speed. By eliciting the consequence of the change,
stakeholders refrain from committing it. In turn, they set to
improve it to prevent inconsistencies.

Similarly, impact analysis can verify whether changes in
formal specifications will contradict the implemented software
(or one of its variants), and vice-versa. Again, it preventively
acts to avoid inconsistencies from being introduced.

Future directions and research questions
When reporting impact analysis, new tools could project
slices of the feature model to provide a view containing only
the impacted features. Each of these features would in turn,
be connected to a second view made of program slices that
correspond to the elements to be changed.

Although feature model slicing is not new [1], creating
code slices as described is a goal for future research:

How to effectively create a code-slices view for each feature
affected by a change?

Another major challenge is how to enable impact analysis
to verify consistency between formal feature specifications
and their realization in code, as currently this is mostly
intractable and does not scale.

How to guarantee consistency between formal feature specifi-
cation and their corresponding realization?

Architectural analysis
Architectural analysis aims to track the “health” of the fea-
tures in the evolving system. Considering feature models to
be one view of the software architecture, such tracking allows
stakeholders to understand and manage the evolution of the
architectural aspects at the feature level. In systems that
do not rely on feature models, stakeholders can still follow
whether the evolving software is aligned with the planned
architecture (e.g., one class implementing ideally one feature,
requiring scattering to be kept at a low pace, etc.).

Enabled by the traceability among all artifacts and across
time, different metrics can be collected to provide indicators
of the evolution in place and trend analysis based on the
evolution history.

Metrics can be based on the aggregation of existing code
(code size, cyclomatic complexity, etc.) and process metrics
(number of bugs, number of developers, number of changes,
etc.) on a feature basis, in addition to feature specific met-
rics like scattering, tangling, coupling and cohesion [20, 2].
Metrics can also be collected at the feature model level, on a
feature basis (e.g., in/out degree dependencies), per subsys-
tem/subtree (e.g., degree of orthogonality), or relative to the
whole product line (variability factor, homogeneity, etc.) [8].

By quantifying and monitoring these feature-based ar-
chitectural quality attributes, stakeholders can assess the
evolution in place and have better decision making support
in devising maintenance activities.

Future directions and research questions
Existing tools do not aggregate feature-related metrics, nor
do they provide trend analysis over the evolution history.

In addition, it not clear how feature-based metrics relate
to one another. For instance, Eaddy et al. [20] provide initial
evidence that scattering is related to defects. Although
promising, their results were collected in small to medium
size programs, and analysis was focused on a single version of
the subjects under analysis. Moreover, the authors manually
traced the code to the features2 of the investigated systems,
but did not manage to trace it entirely. Keeping traceability
among artifacts along the evolution timeline and monitoring
how scattering evolves along the way would likely provide a
better understanding on their hypothesis in a more realistic
setting. We then set to ask:

Can we provide more evidence for the relationship between
scattering and defects?

Considering that scattering is one effect of architecture
misalignment, we set a more general question:

Is there a relation between architecture misalignment and
defects?

5. RECOMMENDATIONS
Building on top of tracing and analyses, recommenda-

tions aim to assist stakeholders by concrete suggestions for
consistency, impact and architectural analyses.

Future directions and research questions
When variability encoding causes inconsistencies, a recom-
mender system can propose fixes. Different fixing strategies

2In their study, the authors refer to features as concerns.



must be used for different artifact types, and must not cause
new inconsistencies to appear in any artifact (independent of
its type and abstraction). That said, we pose the following
research question:

How to devise a fixing recommender that integrates different
types of artifacts, with different levels of abstraction, whose
proposed fixes do not cause new inconsistencies in any of
those artifacts?

Impact analysis recommendations can suggest which fea-
tures are more likely to contain bugs after a certain change
occurs, listing which artifacts and code elements deserve
more attention.

Building on top of the collected metrics related to architec-
tural analysis, the recommender system should also suggest
to stakeholders which features are likely to have defects, or
alternatively, provide a ranking of which features should be
tested first (this is not connected to any specific change).
That leads to the following question:

Which feature-based metrics are good defect predictors?

Another direction for future research is on proposing refac-
torings. Some concrete scenarios include: (a) features are
too similar: when features become increasingly similar, the
recommender system can propose their merge. This requires
measuring similarity along the evolution timeline, and re-
quires monitoring different artifacts with different levels of
abstraction; (b) feature retirement: when a feature has been
superseded by another feature in terms of its functional-
ity, and has been reported to contain more bugs over time,
the recommender system can suggest it to be retired; (c)
feature modularization: when a feature is scattered, the rec-
ommender system can propose it to be put inside its own
module. Scattering here, however, should not be blindly
used, as not all features are worth modularizing (impact
analysis can help on this)—if a feature is scattered, but the
features containing its fragments never change, it possibly
signals that modularization does not provide an immediate
value.

Future research has to address which scenarios are likely
to be required in practice and how to support them.

6. CONCLUSION
Controlling and executing change is a major challenge for

most software projects. We have postulated that feature
orientation of software design, and of the software develop-
ment process is able to handle change more effectively than
previous methods.

To this end, we have envisioned a feature-oriented project
management and system development platform supporting
traceability, feature-oriented analyses of implementation arti-
facts, and feature-oriented project-specific recommendation
systems. For each of these areas, we have listed examples
of existing work, which indicate that achieving our vision is
feasible. We have also specified a number of existing research
challenges within these fields.

In the future, we intend to work towards realizing this
vision. We plan to execute empirical studies to verify our
hypothesis, by studying change from the feature-oriented
perspective. We also intend to build tools for handling
traceability, analyses and recommendation for the suggested
feature-oriented project management and system develop-
ment platform.
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