
Optimizing Alloy for Multi-Objective Software
Product Line Configuration

Ed Zulkoski, Chris Kleynhans, Ming-Ho Yee, Derek Rayside, and Krzysztof
Czarnecki

University of Waterloo
Waterloo, Ontario, Canada

{ezulkoski, drayside, kczarnec}@gsd.uwaterloo.ca

Abstract. Software product line (SPL) engineering involves the model-
ing, analysis, and configuration of variability-rich systems. We improve
the performance of the multi-objective optimization of SPLs in Alloy by
several orders of magnitude with two techniques.

First, we rewrite the model to remove binary relations that map to
integers, which enables removing most of the integer atoms from the uni-
verse. SPL models often require using large bitwidths, hence the number
of integer atoms in the universe can be orders of magnitude more than the
other atoms. In our approach, the tuples for these integer-valued relations
are computed outside the sat solver before returning the solution to the
user. Second, we add a checkpointing facility to Kodkod, which allows
the multi-objective optimization algorithm to reuse previously computed
internal sat solver state, after backtracking.

Together these result in orders of magnitude improvement in using
Alloy as a multi-objective optimization tool for software product lines.

Keywords: Product Lines, Multi-objective Optimization, Kodkod, Alloy

1 Introduction

Alloy is used for a wide variety of purposes, from analyzing software designs to
checking protocols to generating test inputs and beyond. Recently, there has been
some interest in using Alloy for design exploration or product configuration [11,
13]. These specifications often involve constraints on sums of integers (or other
arithmetic expressions). For example, there might be a restriction on the total
weight of a car, or on the disk footprint of a configured operating system kernel.
Sometimes the user wishes to not only compute a viable product configuration,
but an optimal one [11], often in the presence of multiple conflicting objectives.

These specifications often require solving with fairly large bitwidths, to sup-
port large metric values. In the general case, where the specification involves
arbitrary constraints over relations containing integers, Alloy needs to create an
atom for every integer in the bitwidth. At higher bitwidths the number of integer
atoms dominate the number of other atoms, affecting solving time.

1 one sig Car {
2 e : Engine,
3 f : Frame,
4 w : Int,
5 }{
6 w = (e.x).plus[f.x]
7 w < 9
8 }

9

10 abstract sig Part { x : Int }
11 abstract sig Engine extends Part {}
12 one sig Petrol extends Engine {}{ x = 3 }
13 one sig Diesel extends Engine {}{ x = 4 }
14 abstract sig Frame extends Part {}
15 one sig Aluminum extends Frame {}{ x = 5 }
16 one sig Steel extends Frame {}{ x = 6 }

Fig. 1. An example design exploration model. The goal is to choose components (engine
and frame) for a car design according to some constraints (total weight < 9).

We observe that SPL specifications are not completely arbitrary, but usu-
ally associate equality constraints with each integer-valued relation (e.g., lines
12,13,15,16 of Fig. 1). We use these equality constraints to rewrite other parts
of the specification that refer to these integer-valued relations. If the rewritten
specification meets certain conditions (see Section 2), then most integer atoms
can be removed, thus producing much smaller sat formulas. After solving, we
use the equality constraints and the solution to the modified specification to
produce a model of the original specification.

The approach we use for multi-objective optimization, called the guided
improvement algorithm [13], requires many calls to Kodkod, first by adding con-
straints to find optimal solutions, and then backtracking. We have enhanced
Kodkod to allow the removal of constraints following a stack discipline. (Note
that Kodkod 2.0 already supports incremental addition of constraints.)

Together, these two enhancements to the Alloy toolchain result in several
orders of magnitude improvement for performing multi-objective optimization
of SPLs. We experienced an average of over 200X speedup on our experiments.

We focus on multi-objective optimization (MOO) on software product lines
(SPLs) for our experiments. The goal of SPL engineering is to facilitate the
modeling and analysis of variability-rich systems [3, 12]. These systems are typ-
ically represented as feature models: concise tree-like structures, whose products
are valid configurations of the system [7]. Features may additionally contain
attributes, indicating the effect of a feature on the overall quality of a product.

A natural analysis on attributed feature models is to identify optimal prod-
ucts with respect to the set of quality attributes. There may be many products
that are considered optimal, particularly when conflicting objectives exist (e.g.,
low cost vs. high performance). In such a case we say a product is Pareto optimal
if increasing its value in some objective decreases its value in another. The goal
of MOO is to discover all Pareto optimal solutions.

In this paper we work with a version of Alloy extended [11] with partial
instances [10] and the guided improvement algorithm (GIA), an exact algorithm
for MOO (see [13] for a full description). ClaferMOO [11] – an extension to
Clafer [1] for MOO of attributed feature models – has been built using the GIA.
We use a set of ClaferMOO specifications to evaluate our tool in Section 4.

(a) Original Spec.

1 one sig Car {
2 e : Engine,
3 f : Frame,
4 w : Int
5 }{
6 w = (e.x).plus[f.x]
7 w < 9
8 } ...

(c) Final Soln.

e = Petrol
f = Aluminum
w = 8

Alloy

Splitter

(b) Complete Universe

−16, −15, ..., 14, 15
Car
Petrol, Diesel
Aluminum, Steel

Kodkod

(e) Minimized Spec.

1 one sig Car {
2 e : Engine,
3 f : Frame,
4 }{
5 (e.x).plus[f.x] < 9
6 } ...

(d) Minimal Univ.

3, 4, 5, 6
Car
Petrol, Diesel
Aluminum, Steel

(f) Arithmetic Equality Constraints

6 Car.w = (e.x).plus[f.x]

CalculatorKodkod

(g) Partial Soln.

e = Petrol
f = Aluminum

Fig. 2. Contrast of a standard Alloy run (above the dotted line) and our approach
(below). The example model here is abridged from Fig. 1.

2 Eliding Integer Relations and Atoms

Fig. 2 contrasts the standard Alloy approach (above the dotted-line), and our
approach to eliding integer relations and atoms through substitutions (below
the dotted-line). Normally, Alloy generates the complete universe (Fig. 2b) and
Kodkod specification, after which Kodkod produces our final solution (Fig. 2c).

First we divide the integer relations into dependent and independent (de-
noted Splitter). Integer-valued relations are identified as independent if they are
bound to constants through equality constraints. Dependent integer relations
are defined by an expression involving independent relations (e.g., w in Fig. 1).
Standard substitution techniques are used to remove dependent relations (Fig.
2e), however the equality constraints are retained (Fig. 2f). Integer atoms that
are not explicitly named as constants in the specification may also be elided (Fig.
2d, see conditions below). A solution to the modified specification elicits values
for independent relations (Fig. 2g). Dependent integer relations are computed
from the retained equality constraints and the partial solution (Fig. 2c).

Conditions for when substitutions can be performed and relations can be elided:
1. The candidates for dependent integer-valued relations are functional (i.e.,

one-multiplicity in Alloy) binary relations that map atoms to integers.
2. If the dependent relations depend on each other (and not just the indepen-

dent relations), then they must do so according to some partial order.
3. The equality constraints must occur in top-level conjuncts, inside a single

universal (all) quantifier. Alloy’s appended facts meet this criteria.
4. The equality constraints must name just the dependent relation on one side

or the other. (This constraints could be relaxed in future.)

5. If there exists multiple constraints on the same dependent variable, e.g., w =
expr1 and w = expr2, we remove both but add the constraint expr1 = expr2.

Conditions for when integer atoms can be elided from the universe:
1. All dependent integer-valued relations must be elided.
2. There can be no quantification over the integers (e.g., {all x : Int | p(x)}).

3 Checkpointing

The GIA works through repeated calls to the solver, and then backtracking
to find other Pareto optimal points. When backtracking, constraints must be
removed in order to find new points. Checkpointing allows us to revert to a
previously saved state of the solver, without discarding all of the work that the
solver has performed. Removal of constraints can be achieved by checkpointing
before every constraint addition and reverting at a later time to remove that
constraint. In the case of the GIA, it is not necessary that we be able to remove
arbitrary constraints from the problem. It suffices to checkpoint after finding
each starting point before we begin the drive to the Pareto front. This allows us
to return to a solver state that only contains the problem constraints and the ex-
clusion constraints specified by the previously found Pareto optimal points. We
can then begin our search for a new starting point by adding the exclusion con-
straints from the last Pareto optimal point. To test the performance benefits of
adding checkpointing support to Kodkod on the guided improvement algorithm,
we have added the required support to version 2.2.0 of the MiniSat solver. This
implementation simply creates a copy of the entire MiniSat solver object and
stores it on a checkpoint stack. While simple, it is sufficient to show the benefits
of checkpointing as a concept.

4 Evaluation

Our evaluation was over a set of 93 variants of nine MOO-specifications of SPLs,1

compiled for work in [11], and originally described in [4, 14–16]. Each variant
specification modifies the original by adding additional objectives and/or ad-
justing attribute values. The number of objectives ranges from one to seven.

Table 1 summarizes the speedup produced by just checkpointing, just the
reductions (which include both formula changes and universe reductions), and
their combination. Both techniques always result in some speedup in all exper-
iments. Their combination results in an average speedup of over 200X, ranging
from 20X to almost 1500X. Fig. 3 gives a graphical view of the data underlying
the summary in Table 1. The x axis contains an entry for each of the 93 multi-
objective product line specifications, ordered by their baseline solving time.

1 The product line specifications can be found at:https://github.com/TeamAmalgam/
test-models/tree/f348271b005ee7d4929f73846e6ad8c4a19e0bd4/spl.

Table 1. Summary of speedups obtained on a 3.4GHz quad-core Intel i7, 16 GB RAM,
64-bit Ubuntu 12.04, Java SE 64-bit 1.7.0.12. GIA ‘magnifying glass’ turned off.

Min Max Mean Median Std. Dev.

Baseline 2473 ms 3,515,676 ms 145,523 ms 15,800 ms 449758

Checkpointing 1.32 X 19.23 X 2.53 X 2.57 X 1.75
Reductions 13.25 X 1014.93 X 161.70 X 193.52 X 104.09
Combined 22.81 X 1458.82 X 221.02 X 276.18 X 134.23

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80 90

lo
g

1
0

(m
s)

Experiment Number

Time in Sat and Unsat Calls

Baseline
Checkpointing

Reductions
Reductions + Checkpointing

Fig. 3. Solving times of 93 multi-object product line models. Each point on the x axis
represents a different model. The models are ordered by their baseline solving time.

5 Related Work

A variety of researchers have used equality constraints to rewrite formulas for im-
proved performance. The idea is perhaps as old as the Knuth-Bendix completion
algorithm [8]. In recent years the idea has been used in a number of smt solvers
[2, 5, 17, 6] and bounded model checkers [9]. For example, stp [6] is intended to
solve constraints generated from the static analysis of software that makes use
of arrays. stp uses rewriting to reduce these constraints into a form suitable for
a sat solver. In addition, solvers such as Z3 [17] support checkpointing as well.

In our work the efficiency gains come more from reducing the size of the
universe than from the rewriting per se: the rewriting is a transformation that
enables the universe size reduction. Smaller universes correspond to smaller sat
formulas with faster solving times.

6 Conclusions

For Alloy specifications that characterize multi-objective product lines, rewrit-
ing based on equality constraints facilitates the elision of both integer-valued
relations and integer atoms. This elision results in an average speedup of over
150X. Further, adding checkpointing to the underlying sat solver results in a
2X speedup. The combined speedup is over 200X.

References

1. B ↪ak, K., Czarnecki, K., W ↪asowski, A.: Feature and Meta-Models in Clafer: Mixed,
Specialized, and Coupled. In: Malloy, B., Staab, S., van den Brand, M. (eds.) Proc.
3rd SLE. LNCS, vol. 6563. Springer-Verlag (2010)

2. Brummayer, R.: Efficient SMT solving for bit vectors and the extensional theory
of arrays. Ph.D. thesis, JKU Linz (2010)

3. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2001)

4. Esfahani, N., Malek, S.: Guided Exploration of the Architectural Solution Space in
the Face of Uncertainty. Tech. rep., George Mason U., Dept. of C.S. (March 2011)

5. Franzen, A.: Efficient solving of the satisfiability modulo bit-vectors problem and
some extensions to SMT. Ph.D. thesis, Univ. of Trento (2010)

6. Ganesh, V., Dill, D.L.: A Decision Procedure for Bit-Vectors and Arrays. In: Proc.
CAV. LNCS, vol. 4590, pp. 524–536. Springer-Verlag (Jul 2007)

7. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) feasibility study. Tech. rep., SEI-CMU (1990)

8. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebra. In: Proc.
Conf. on Computational Problems in Abstract Algebra. Pergamon Press (1970)

9. Merz, F., Falke, S., Sinz, C.: LLBMC: Bounded Model Checking of C and C++
Programs Using a Compiler IR. In: Joshi, R., Müller, P., Podelski, A. (eds.) Proc.
VSTTE. LNCS, vol. 7152. Springer-Verlag (2012)

10. Montaghami, Vajihollah., Rayside, D.: Extending Alloy with partial instances. In:
Derrick, J., Fitzgerald, J.A., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S.,
Riccobene, E. (eds.) Proc. 3rd ABZ. LNCS, vol. 7316. Springer-Verlag (Jun 2012)

11. Olaechea, R., Stewart, S., Czarnecki, K., Rayside, D.: Modelling and Optimization
of Quality Attributes in Variability-Rich Software. In: NFPinDSML Workshop at
MODELS Conference (2012)

12. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag (2005)

13. Rayside, D., Estler, H.-Christian., Jackson, D.: A Guided Improvement Algorithm
for Exact, General Purpose, Many-Objective Combinatorial Optimization. Tech.
Rep. MIT-CSAIL-TR-2009-033, MIT CSAIL (2009)

14. Siegmund, N., Kolesnikov, S., Kastner, C., Appel, S., Batory, D., Rosenmuller, M.,
Saake, G.: Predicting performance via automated feature-interaction detection. In:
Murphy, G., Pezze, M. (eds.) Proc. 34th ICSE. Zurich, Switzerland (2012)

15. Siegmund, N., Rosenmuller, M., Kastner, C., Giarrusso, P.G., Apel, S., Kolesnikov,
S.S.: Scalable prediction of non-functional properties in software product lines. In:
Schaefer, I., John, I., Schmid, K. (eds.) SPLC Workshops. ACM (2011)

16. Siegmund, N., Rosenmuller, M., Kuhlemann, M., Kastner, C., Apel, S., Saake,
G.: SPL Conqueror: Toward optimization of non-functional properties in software
product lines. Software Quality Journal 1(3), 1–31 (June 2011)

17. Wintersteiger, C., Hamadi, Y., de Moura, L.: Efficiently solving quantified bit-
vector formulas. Formal Methods in System Design 42(1), 3–23 (2013)

