
Modelling the ‘Hurried’ Bug Report
Reading Process to Summarize Bug
Reports

Rafael Lotufo, Zeeshan Malik, and Krzysztof Czarnecki
Generative Software Development Lab
University of Waterloo

ICSM. September 27, 2012



Introduction Motivation

Bug reports are consulted all the time

40% of sw. dev. efforts are spent in bug resolution;

Getting updates on bug diagnostics;

Consuling similar/related bugs;

Getting updates on resolution progress;

Upstream bugs;

2 / 32



Introduction Motivation

Bug reports should be easily
digestible

3 / 32



Introduction Motivation

4 / 32



Introduction Motivation

4 / 32



Introduction Motivation

4 / 32



Introduction Motivation

4 / 32



Introduction Motivation

4 / 32



Introduction Motivation

4 / 32



Introduction Motivation

4 / 32



Introduction Motivation

4 / 32



Introduction Motivation

4 / 32



Introduction Motivation

4 / 32



Introduction Motivation

That is an extractive summary of
a bug report

5 / 32



Introduction Motivation

6 / 32



Introduction Motivation

6 / 32



Introduction Motivation

6 / 32



Introduction Motivation

6 / 32



Introduction Motivation

6 / 32



Introduction Motivation

6 / 32



Introduction Motivation

6 / 32



Introduction Motivation

They are not easily digestible

The Debian community acknowledges problem:

“[A summary] is useful in cases where ... the bug has many
comments which make it difficult to identify the actual
problem.”

“Personally, I use a greasemonkey script that highlights
comments from people that are likely to be providing
useful information.”

7 / 32



Related Work Summarizing Bug Reports

State of the Art

8 / 32



Related Work Summarizing Bug Reports

Requires set of manually created summaries

Rastkar @ ICSE 2010

Extractive summary: selection of most important sentences;

Uses pre-existing email thread summarization approach;

Uses machine learning to classify sentences as relevant or not;

Golden summaries impose significant
overhead for usage.

9 / 32



Approach Modelling the Bug Report Reading Process

Objective

Create a general, unsupervised summarization technique;

Based on an improved understanding about how information evolves
in bug reports;

10 / 32



Approach Modelling the Bug Report Reading Process

How would someone read a

bug when in a hurry?

Reader has to choose the most relevant sentences to focus on;

Many portions will be left unread or only briefly looked at;

11 / 32



Approach Modelling the Bug Report Reading Process

Sentence relevance
≡

probability of being read

12 / 32



Approach Modelling the Bug Report Reading Process

PageRank solves a very similar problem

s0 s1

s2

s3 s4 s5

0.5

0.5

0.33

0.33

0.33

0.5

0.5

1.0

0.5

0.5

PR estimates the relevance of web
pages;

relevance(page) ≡ P(landing(page))

Random surfer model:
`web(pi , pj) = 1/Ni

How do we measure probability transitions?

13 / 32



Approach Modelling the Bug Report Reading Process

But how does a user choose the next sentence?

Qualitative investigation on 55 bugs;

Grounded theory [Strauss and Corbin];

“How does information evolve in bug reports?”

14 / 32



Approach Modelling the Bug Report Reading Process

A bug report has many threads of
conversations about different

topics

15 / 32



Approach Modelling the Bug Report Reading Process

Follow similar threads of topics: `tp

Deal with large number of topics being discussed;

Transition probability is higher the more two sentences talk about
the same topics;

Prioritizes sentences that talk about “hot” topics.

16 / 32



Approach Modelling the Bug Report Reading Process

Avoid parallel, off-topic discussions: `df

Relevance of a sentence is higher the more topics it shares with the bug
title and description.

Estimate topic similarity using cosine similarity

17 / 32



Approach Modelling the Bug Report Reading Process

Information evolves through

evaluative comments

Claims are disputed or confirmed;

Hypotheses are tested;

Proposals are evaluated.

18 / 32



Approach Modelling the Bug Report Reading Process

Follow evaluation relations: `ev

Transition probability is higher the stronger the evaluation relation
between two sentences.

19 / 32



Approach Modelling the Bug Report Reading Process

Identifying evaluation relations with

sentiment analysis

Evaluation ↔ positive or negative opinion;

Most promising previous results with classification;

Infer positive or negative polarity using emoticons ;) [Bo & Bhyani]

20 / 32



Approach Modelling the Bug Report Reading Process

Three heuristics

Follow similar threads of topics: `tp;

Follow topics similar to bug definition: `df;

Follow evaluation relations: `ev;

21 / 32



Approach Modelling the Bug Report Reading Process

Combining all heuristics (`all)

`all(si , sj) =

[
`tp(si , sj) + `df(si , sj) + `ev(si , sj)

]
3

`tp: follow similar topics

`df : follow topics similar to bug description

`ev: follow evaluation comments

22 / 32



Evaluation Methodology

Evaluation

23 / 32



Evaluation Methodology

Test heuristics:

`tp, `df, `ev, `all

Compare accuracy to accuracy of previous approach (email
summarizer);

Accuracy is based on expert created golden summaries.

Standard precision and recall;

Pyramid precision and recall [Nenkova 2007].

24 / 32



Evaluation Results

0.71

0.71

0.3

0.41

0.9

0.23

Pyramid Score

Precision

Recall

F−Score

Pyramid Precision

Pyramid Recall

lall

Email
ltp

`all � email

Pr(`tp) > Pr(email)

Rec(`tp) < Rec(email)

`df > email

`ev ∼ email

Individual heuristics ∼ previous approach

Combined heuristics � previous approach

25 / 32



Evaluation Results

0.71

0.71

0.3

0.41

0.9

0.23

Pyramid Score

Precision

Recall

F−Score

Pyramid Precision

Pyramid Recall

lall

Email
ltp

`all � email

Pr(`tp) > Pr(email)

Rec(`tp) < Rec(email)

`df > email

`ev ∼ email

Individual heuristics ∼ previous approach

Combined heuristics � previous approach

25 / 32



Evaluation Results

0.71

0.71

0.3

0.41

0.9

0.23

Pyramid Score

Precision

Recall

F−Score

Pyramid Precision

Pyramid Recall

lall

Email
ldf

`all � email

Pr(`tp) > Pr(email)

Rec(`tp) < Rec(email)

`df > email

`ev ∼ email

Individual heuristics ∼ previous approach

Combined heuristics � previous approach

25 / 32



Evaluation Results

0.71

0.71

0.3

0.41

0.9

0.23

Pyramid Score

Precision

Recall

F−Score

Pyramid Precision

Pyramid Recall

lall

Email
lev

`all � email

Pr(`tp) > Pr(email)

Rec(`tp) < Rec(email)

`df > email

`ev ∼ email

Individual heuristics ∼ previous approach

Combined heuristics � previous approach

25 / 32



Evaluation Results

0.71

0.71

0.3

0.41

0.9

0.23

Pyramid Score

Precision

Recall

F−Score

Pyramid Precision

Pyramid Recall

lall

Email
lev

`all � email

Pr(`tp) > Pr(email)

Rec(`tp) < Rec(email)

`df > email

`ev ∼ email

Individual heuristics ∼ previous approach

Combined heuristics � previous approach

25 / 32



Evaluation Results

Evaluation with 58 developers

Invited 250 developers from Mozilla, Chrome, Launchpad, and
Debian;

Asked them to evaluate summary for bug they had worked on;

58 developers participated (∼25%)

26 / 32



Evaluation Results

Devs. find summaries useful

80% said at least very useful when:

looking for solution or workaround for a bug;
searching for similar or duplicates bugs;
understand status of bug and open issues;

27 / 32



Evaluation Results

Interlaced view Condensed view

28 / 32



Evaluation Results

Interlaced view Condensed view

28 / 32



Evaluation Results

Interlaced view

“I would never trust an
automated summary, and
would always need to refer
to the original. By
highlighting the important
sentences, it allows me to
speed read a long report
with many comments and
status updates.”

Condensed view

28 / 32



Evaluation Results

Interlaced view

“I would never trust an
automated summary, and
would always need to refer
to the original. By
highlighting the important
sentences, it allows me to
speed read a long report
with many comments and
status updates.”

Condensed view

“Interlaced works when
there aren’t pages of
irrelevant data. For a bug
with *lots* of comments,
a condensed view would
help.”

28 / 32



Conclusion Future Directions

Future Directions

29 / 32



Conclusion Future Directions

Improving Relevance Estimates

Better topic similarity metrics;

Different weights for different topics;

Customize per user interest or preferences;

Train polarity classifier on bug reports instead of Twitter messages;

Consider all sentences previously read, not just last;

30 / 32



Conclusion Future Directions

Moving past extractive summaries

Better understanding of content allows restructuring bug reports;

31 / 32



Conclusion Future Directions

Conclusion

Create general bug report summarization approach;

Tested three heuristics for how to read a bug report when in a hurry;

Runs better than previous approach and is general;

Evaluation on developers shows usefulness and suggests interesting
future directions.

Live @ http://bugsumm.appspot.com/debian/[bug id]

http://bugsumm.appspot.com/mozilla/[bug id]

32 / 32


	Introduction
	Motivation

	Related Work
	Summarizing Bug Reports

	Approach
	Modelling the Bug Report Reading Process

	Evaluation
	Methodology
	Results

	Conclusion
	Future Directions


