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Abstract Framework-specific models represent the design of application code
from the framework viewpoint by showing how framework-provided concepts
are instantiated in the code. Retrieving such models quickly and precisely is
necessary for practical model-supported software engineering, in which devel-
opers use design models for development tasks such as code understanding,
verifying framework usage rules, and round-trip engineering. Also, comparing
models extracted at different times of the software lifecycle supports software
evolution tasks.

We describe an experimental study of the static analyses necessary to auto-
matically retrieve framework-specific models from application code. We reverse
engineer a number of applications based on three open-source frameworks and
evaluate the quality of the retrieved models. The models are expressed using
framework-specific modeling languages (FSMLs), each designed for an open-
source framework. For reverse engineering, we use prototype implementations
of the three FSMLs.

Our results show that for the considered frameworks and a large body of
application code rather simple code analyses are sufficient for automatically
retrieving framework-specific models with high precision and recall. Based on
the initial results, we refine the static analyses and repeat the study on a
larger set of applications to provide more evidence and confirm the results.

This paper is an extended version of the paper “Automatic extraction of framework-specific
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neering, 2007.

M. Antkiewicz, T. Tonelli Bartolomei, K. Czarnecki
Generative Software Development Lab
University of Waterloo
200 University Ave. West
Waterloo, N2L 3G1, ON, Canada
E-mail: {mantkiew, ttonelli, k2czarne}@uwaterloo.ca
http://gsd.uwaterloo.ca



2

The refined static analyses provide precision and recall of close to 100% for
the analyzed applications.

Keywords reverse engineering, framework-specific models, framework-
specific modeling languages, static analysis, object-oriented frameworks

1 Introduction

Object-oriented frameworks are widely used to implement reusable designs
that can be completed to build custom applications. An object-oriented frame-
work consists of core classes that implement core functionality and applica-
tion programming interface (API) classes that can be extended or instanti-
ated in the application code. Domain concepts provided by a framework are
implemented in the application code by writing framework completion code
according to the framework’s API. Framework completion code is the code
that implements the difference in functionality between the framework and
the application, that is, it completes the framework. Unfortunately, the con-
cept instances are often not easily recognizable by developers directly in the
completion code because they are scattered across the code, tangled with each
other and with instances of other concepts, and buried in a large amount of
implementation detail. Framework-specific models have been proposed to ad-
dress this problem by offering an abstract view of the application code from
the viewpoint of the framework [4–6]. Such models explicitly represent the
instances of framework-provided concepts that are implemented in the com-
pletion code.

One way of formalizing framework-provided concepts is by decomposing
them into hierarchies of features [4]. Features are distinguishing characteris-
tics (properties) of a concept and they allow discriminating among concept
instances. Features may correspond to structural or behavioural patterns in
the application code. Matching the patterns in the code allows determining
the presence and the values of the features in the model. While the structural
patterns can be determined statically with full precision and recall by sim-
ple code queries, precisely determining matches of behavioural patterns in the
application code using static analysis is potentially undecidable.

We report on a study that we conducted to measure the precision and recall
of reverse engineering using code queries that locate instances of behavioural
patterns in the completion code. The study was executed in three phases:

1. identification of types of patterns and their corresponding code queries;
2. evaluation of the precision and recall of the code queries and proposing a

set of refined code queries; and
3. evaluation of the precision and recall of the refined code queries.

In the first phase, we analyzed code pattern definitions attached to fea-
tures in three sample framework-specific modeling languages (FSMLs) [4].
FSMLs are domain-specific modeling languages that are designed for a specific
area of concern of an object-oriented framework and are used for expressing
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framework-specific models. The FSMLs used in this study were designed for:
(i) Java Applet framework [31], (ii) Apache Struts framework [9], and (iii) a
part of the Eclipse Workbench framework [27]. The result of the analysis is
a classification of (i) patterns that the features correspond to and (ii) code
queries that were implemented in the prototypes of the FSMLs in order to
detect these patterns in application code.

In the second phase, we used the prototype implementations of the three
FSMLs to reverse engineer a large number of sample applications built on
top of the three frameworks. We then manually verified the correctness of the
retrieved framework-specific models and calculated precision and recall of the
used code queries. Additionally, we categorized common false positives and
false negatives of the code queries and proposed a refined set of queries that
would reach 100% precision and recall for the studied applications [5].

In the third phase, we implemented the refined code queries, slightly ex-
tended the three FSMLs, and repeated the study for an even larger number
of applications in order to gather more evidence and confirm the results.

One target use scenario for automatic extraction of framework-specific
models is to help application developers understand how a framework is used
by their application. Framework-specific models are therefore non-essential
during the development and are not considered as primary development ar-
tifacts. They can, however, provide benefits to both the developers and the
designers [4]. In this context, using FSMLs can be characterized as model-
supported engineering rather than model-driven engineering.

The intended audience of this paper is primarily tool builders interested
in retrieving framework-specific models from application code. They can learn
about specific approximations of behavioural patterns and their effectiveness.
Also, the retrieval of models from framework completion code is of interest
to the reverse engineering community. Another target audience is researchers
working on static analyses. These researchers can use the study results as a
source of ideas of how the retrieval of framework-specific models could benefit
from improved static analyses. And finally, FSML designers can learn about
different types of structural and behavioural code patterns that can be used
to define the mapping between models and code.

The main contribution of this paper is providing evidence that fast re-
trieval of high-quality models that represent the dynamic interaction between
application code and frameworks is feasible using static analysis. We argue
that by concentrating on the static framework boundary, which consists of all
places in the application that interact with the framework, and by leverag-
ing framework-specific knowledge (e.g., order of callbacks), rather simple code
queries become sufficient. We provide evidence that the refined code queries
provide precision and recall of close to 100% and do not incur a prohibitive
increase in the analysis time. Furthermore, we give precise definitions of be-
havioural code patterns using meta pointcuts. We provide code queries that
are approximations of the behavioural patterns and can be used for retrieving
them. Finally, we discuss possible false positives and false negatives of those
queries.
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The remainder of the paper is organized as follows. In Section 2, we moti-
vate the study and discuss the challenges of and the requirements for the static
analysis of framework completion code. In Section 3, we provide the necessary
background information on framework-specific models and FSMLs. Next, in
Section 4, we describe the setup of the study, which is followed by Sections 5
and 6, where we provide the resulting data. In Section 8, we discuss the data
and the threats to validity. We present related work in Section 9 and conclude
the paper in Section 10.

2 Challenges of statically analyzing completion code

Framework-specific models describe how concepts provided by the framework
are instantiated in the completion code. Concept instances are characterized
by configurations of features and the features correspond to structural and
behavioural patterns in the completion code. Therefore, automatic extraction
of framework-specific models requires matching the structural and behavioural
patterns in the completion code using static analysis.

Unfortunately, static analysis of framework completion code is difficult.
One reason is the inversion of control inherent to framework design, whereby
the main threads of control belong to the framework and the framework passes
the control to the application by calling callback methods. Due to the inversion
of control, both the application and the framework need to be considered dur-
ing the analysis. Also, frameworks commonly interpret configuration files and
use reflection to dynamically load and instantiate application classes. There-
fore, the construction of the complete and precise control flow graph, which is
the basis for many static analyses, is often infeasible.

However, we believe that analyzing the complete code of both the applica-
tion and the framework is not necessary. To understand how an application is
using a framework and extract framework-specific models, one must focus on
the static framework boundary, that is, all places in the code where the appli-
cation interacts with the framework. The static framework boundary consists
of all callback methods implemented in the application and all references to
the framework code from the application. For example, all method calls to
framework methods and all usages of framework types belong to the bound-
ary.

Another characteristic of framework-based code is the use of configuration
files, which are declarative specifications interpreted by a framework and which
also belong to the framework boundary. The configuration files are used not
only for specifying parameters to the framework, but also for assigning roles to
code elements, such as classes and methods, and defining relationships among
code elements. In some cases, static analysis of the completion code is not
possible without interpreting the configuration files because code elements
are indistinguishable when only considering the code. For example, any Java
class can be assigned the role of a bean in the Spring framework [2] or a
method can be assigned the role of an action method in Java Server Faces [30]
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framework. Sometimes understanding the final behaviour of the application
requires analyzing both the code and the configuration file in conjunction. For
example, in Enterprise Java Beans 3 [17] the name of a bean, which is by
default the name of the class, can be overridden using an appropriate Java
annotation or using a configuration file. Hence, determining the final name
requires interpreting the code and the configuration file with respect to the
name override rules.

Therefore, the retrieval of framework-specific models requires both using
configuration files and code queries that i) do not require complete control flow
graph information and ii) perform the required static analyses on-demand, i.e.,
compute partial control or data flow graphs.

Given these challenges of and requirements for static analysis of the comple-
tion code, we propose a number of code queries that can be used for framework-
specific model extraction. The proposed code queries are both incomplete and
unsound approximations of behavioural patterns, that is, they can miss some
pattern instances in the code and they can match some parts of the code in-
correctly. However, by allowing misses and incorrect matches, we are able to
use simple analyses that scale to large bodies of code. At the same time, our
study shows that only very few actual misses and incorrect matches occur for
a large set of the analyzed applications.

In the next section, we describe how framework-specific models correspond
to code patterns and how the correspondence can be defined using FSMLs.

3 Framework-specific models

Framework-specific models describe framework-provided concepts as imple-
mented in application code. For example, consider a web application based on
the Apache Struts framework. The framework provides concepts such as form,
action, and forward. Forms accept input from the users and actions process
submitted forms. Actions return forwards, which link to other actions or web
pages. Instances of these concepts may include a user login form and a login
action, which can return success and access denied forwards. A framework-
specific model for our sample Struts application would include these concept
instances and could be used, for example, to visualize the page flow of the
application.

Frameworks impose sets of requirements that the completion code must
satisfy in order to instantiate a certain concept. Since such requirements can
be fulfilled in many different ways, instances of framework-provided concepts
differ in terms of the implementations steps they entail. For example, in order
to implement an instance of the concept action, the Struts framework pre-
scribes subclassing an appropriate framework class and creating appropriate
declarations in an XML configuration file. Furthermore, actions can be im-
plemented as, among other choices, a basic action, a dispatch action, or a
forwarding action. In each case, a different framework-provided class needs to
be subclassed and different sets of attributes need to be set in XML action
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declarations for different kind of actions. Therefore the instances of the con-
cept action are not uniform: each instance can be characterized by a different
set of features.

Framework-provided concepts can be captured as framework-specific mod-
eling languages (FSMLs) [4]. The abstract syntax of an FSML is defined as a
feature model, which decomposes a concept into a hierarchy of features. Fea-
tures represent distinguishing characteristics of concepts and can be used to
discriminate among concept instances. Consequently, concept instances are
described by configurations of features where some features are present. In
the feature hierarchy, features can be essential, mandatory, or optional with
respect to their parent feature. In a feature configuration, a parent feature
cannot exist without all of its essential subfeatures (essential features repre-
sent the essential properties of the parent feature without which the parent
feature cannot exist). Mandatory subfeatures should be present for their par-
ent feature (it is a configuration error if a mandatory feature is missing), and
optional subfeatures may or may not be present. Finally, a feature may also
have a type, meaning that a value of that type can be associated with the
feature in the configuration.

We say that the completion code is correct with respect to the framework’s
API if it satisfies API constraints. Since the abstract syntax of an FSML for-
malizes API constrains, we can check the conformance of the code to the API
by checking the conformance of the extracted framework-specific model to the
FSML’s abstract syntax. The distinction between essential and mandatory is
critical for being able to analyze incorrect code and represent concept instances
in which mandatory parts of the implementation are missing or certain con-
straints are violated. Patterns of features of incorrect concept instances that
are present in the code are expected to be matched by the FSML definition;
however, matching of a candidate concept instance is stopped as soon as an
essential feature is found missing. Essential features, therefore, are the mini-
mum characteristics required to match a concept instance, even if the instance
is incorrect.

Table 1 shows a fragment of the decomposition of the concept action into a
hierarchy of features and sample feature configurations of two action instances.
The hierarchy of features is represented using indentation (subfeatures are fur-
ther right). Cardinalities of features are indicated in square brackets and are
interpreted as follows: [0..1] for optional features, [1] for mandatory and es-
sential features, and [0..*] and [1..*] for multiple features (i.e., those of which
multiple copies can be included in a configuration [12]). Essential features
are marked using the exclamation mark (!). The abstract syntax tree of a
framework-specific model is a feature configuration which conforms to the fea-
ture hierarchy. Such a model contains instances of selected features, possibly
many instances of multiple features, and values associated with features with
types. For example, in the second and third column of Table 1 we can see
two instances of the concept Action, respectively. The feature name has values
auth.Login and auth.Logout in each configuration, respectively. The fea-
ture extendAction is present in both configurations because it is an essential
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Concept Features Concept Instance Feature Configurations

[0..*] Action Action Action

[1] name (String) name(’auth.Login’) name(’auth.Logout’)

![1] extendsAction extendsAction extendsAction

[0..1] extendsDispatchAction extendsDispatchAction

[0..*] actionMethod (String) actionMethod(’main’)

actionMethod(’home’)

[0..1] overridesExecute overridesExecute

[0..*] forward forward forward

[1] name (String) name(’success’) name(’homePage’)

forward

name(’accessDenied’)

Table 1 The concept action and some of its features (first column) and two sample action
instances represented by feature configurations (second and third column).

feature, but the feature extendsDispatchAction is only present in the con-
figuration for the Login action. When reading the feature configuration of the
Login action, we immediately see that (i) the action is a dispatch action, (ii) it
has two action methods called main and home, and (iii) it uses two forwards:
success and access denied. In contrast, the Logout action is a regular ac-
tion, it overrides the execute method (which is the default action method),
and it uses one forward: homePage. If the mandatory subfeature name of the
feature forward was missing, it would indicate an error in feature configura-
tion but the feature forward would still be present. However, if the essential
feature extendsAction was missing, it would have excluded its parent Action
from the configuration because a parent feature (or concept) cannot exist with-
out any of its essential subfeatures. More information on feature modeling and
their interpretation in logics can be found elsewhere [13].

Features describing a concept instance can correspond to structural and
behavioural patterns in the completion code that implements the instance.
Figure 1 presents sample code that can be described by the first configuration
from Table 1. Underlined code patterns correspond to feature instances and
their values; we did not underline the entire class for readability. For exam-
ple, the first configuration of Action from Table 1 corresponds to the Java
class (lines 3-14). The feature dispatchAction corresponds to the superclass
declaration (line 3). Note that the feature extendsAction is present because
the class Action is a superclass of the class DispatchAction. The features
actionMethod correspond to the method declarations (lines 4-11 and 12-13)
and their values correspond to the names of the methods. The features forward
correspond to method calls used to find forwards returned by action methods
(lines 8 and 10) and the features name correspond to the values of method
call arguments (lines 6 and 10). Features can also correspond to action and
forward declarations in an XML configuration file and to XML attributes of
these declarations, such as forward name (not shown).



8

1 package auth;
2 ...
3 public class Login extends DispatchAction {

4 public ActionForward main(ActionMapping mapping, ActionForm form,

5 HttpServletRequest request, HttpServletResponse response) {
6 String denied = "accessDenied";
7 if (...)
8 return mapping.getForward(denied);
9 ...

10 return mapping.getForward("success");

11 }
12 public ActionForward home(ActionMapping mapping, ActionForm form,

13 HttpServletRequest request, HttpServletResponse response) { ... }

14 }

Fig. 1 Sample code described by the first configuration from Table 1

The mapping of a feature model defining the FSML abstract syntax to
the framework API defines the correspondence between the features and the
code patterns [4]. Each feature in the feature model has a mapping definition
attached, which exactly specifies the code patterns that can correspond to
the feature instance in a feature configuration. Mapping definitions use pre-
defined mapping types that represent basic kinds of feature-to-code-pattern
correspondences: mapping definitions specify values of the parameters defined
by mapping types. For example, a mapping type defines a correspondence to
methods of a class and a mapping definition specifies exactly the signature of
the methods to be matched. Table 4 in Section 5 presents mapping definitions
for the concept Action and its features. In the remainder of the paper we refer
to a feature model of abstract syntax together with mapping definitions as the
metamodel of an FSML.

The mapping definitions are only declarative specifications of the corre-
spondence and they cannot be directly executed. In our implementation, we
realized mapping types by implementing code queries and code transforma-
tions for each type. A code query matches a pattern in the completion code.
A code transformation creates, updates, and removes a pattern corresponding
to a feature in the completion code. The execution of code queries and trans-
formations is controlled by parameters specified in mapping definitions. For
example, by looking at the essential feature of the concept action, we immedi-
ately see that instances of action can be identified by a code query returning
classes assignable to the Java class Action. A code transformation can create
or remove Java classes implementing instances of the concept action. The en-
tire mapping enables automated round-trip engineering, where the code can
be created from the model, the model from the code, and changes made to the
code and the model can be identified and reconciled [4,7].

In this paper we focus on the identification of the types of code patterns
that feature instances can correspond to and on the evaluation of the code
queries that realize the mapping between the features and the completion
code. For more information on code transformations, forward, and round-trip
engineering using FSMLs, which are outside of the scope of this paper, we refer
the reader to the related Ph.D. thesis [4]. The thesis also provides more detail
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on the generic FSML infrastructure upon which the languages are built, and
on the methodology used for developing FSMLs. Each language is specified
declaratively and its metamodel is interpreted by the algorithms implemented
in the infrastructure. The infrastructure also supports pluggable mapping in-
terpreters which execute code queries and transformations for the mapping
types they support. To date, we developed three mapping interpreters for Java,
XML, and Eclipse plugin.xml files; in this paper we only focus on mapping
types and code queries for Java.

4 Setup of the study

We conducted the study in three phases. The purpose of the first phase was
to identify the types of structural and behavioural patterns that need to be
matched in the completion code in order to retrieve framework-specific mod-
els using the three FSMLs. The purpose of the second phase was twofold: i)
determine the precision and recall of the code queries used in the prototypes
for the location of code patterns, and ii) propose refined versions of the code
queries that would provide 100% precision and recall. The purpose of the third
phase was to implement the proposed (refined) code queries and evaluate their
precision and recall on a larger number of applications.

4.1 Setup of Phase 1

The inputs to the first phase of the study are three sample FSMLs, one for
each of the following frameworks: Java Applet [31], Apache Struts [9], and
a part of Eclipse Workbench [27] (detailed descriptions of the languages can
be found elsewhere [4]). The metamodels of the FSMLs consist of abstract
syntax and mapping definitions. Applet FSML captures the concept of Java
applet and has 20 features. Struts FSML captures the concepts of action, form,
and forward, and has 43 features. It addresses the problem of maintaining the
referential integrity between Java code and an XML configuration file. Eclipse
Workbench Part Interaction (WPI) FSML captures the concepts of editor,
view, selection provider, selection listener, part listener, adapter provider, and
adapter requestor. WPI FSML has 52 features and it models the interactions
that can potentially occur among workbench parts. WPI FSML also encodes
many framework rules and helps with maintaining the referential integrity
between Java code and XML plug-in manifest files related to part IDs.

In this study, we only considered features related to Java code and omitted
(i) features related to XML configuration files and (ii) features that represent
referential integrity constraints, which are realized by model queries. The fea-
tures related to XML configuration files in our FSMLs simply correspond to
XML elements and attributes and can be retrieved with 100% precision and
recall. Model queries operate on the already retrieved features and thus are
irrelevant with respect to code querying. The identified types of code patterns
and the implemented queries are presented in Section 5.
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4.2 Setup of Phase 2

In the second phase of the study we used the prototype implementations of the
three FSMLs to automatically reverse engineer a number of sample applica-
tions. The prototypes implement code queries that realize mapping definitions
of the FSMLs. The unit of analysis was a project : an entity that groups all
source artifacts of the analyzed application. For the Java Applet framework,
sample applets were grouped into two projects, one with 20 examples provided
by Sun and one with 51 applets collected from the Internet. 36 of the applets
from the internet were the applets used in the design fragments study [18].
The authors of that study used the search string import java.applet.Applet

-site:sun.com and they revised the search results to select applets that mean-
ingfully used the framework. The remaining 15 applets were not used in that
study but they were collected using the same method. Each of the Struts ap-
plications, Apache Roller [8] (v.3.0), Mailreader [9] (v.1.3.8), and Cookbook [9]
(v.1.3.8), constitutes a separate project. Apache Roller is a large, open-source,
and widely used application implementing 58 actions and using 186 forwards.
Mailreader and Cookbook are small example applications provided with the
framework implementing 19 and 16 actions, respectively. For the Eclipse Work-
bench framework, an application is encapsulated as an Eclipse plug-in. Because
Eclipse plug-ins form complex dependency graphs, it is difficult to analyze
plug-ins separately. However, by analyzing a plug-in that depends on most of
the other plug-ins, we can analyze all these plug-ins at once. For WPI FSML,
the project consisted of the org.eclipse.pde.ui plug-in (v.3.2), which depends
on many other ui plug-ins including1 ant.ui, debug.ui, jdt.debug.ui, jdt.ui, ui,
ui.editors, ui.ide, ui.views, and ui.workbench.texteditor. This allowed us to an-
alyze part interactions that can occur among 88 workbench parts (editors and
views).

The result of the analysis revealed the precision and recall with which the
queries were able to approximate the code patterns. By manually inspecting
the code, we were able to identify categories of patterns missed by the used
code queries. Subsequently, we proposed refined versions of code queries that
would capture the patterns missed by the original code queries. The queries
obtained from this iterative process are presented in Section 5 and the data
relative to their precision and recall is described in Section 6.1. The results
are discussed in Sections 6.3 and 8.

4.3 Setup of Phase 3

The purpose of the third phase of the study was to provide stronger evidence
supporting our findings in the initial phases. To this end, we implemented the
refined code queries proposed in Phase 2, slightly extended the definitions of
the three FSMLs, and repeated the evaluation on a larger set of applications.
For the Applet FSML, we gathered 13 additional applets from the Internet,

1 For brevity, we omit prefix org.eclipse. from the names.
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three extra Struts applications (Ajax Chat, Beer4all and Pools [1]) were used
in the evaluation of the Struts FSML. The three applications implement 30
actions and 87 forwards, in total. For the WPI FSML we created a new plug-in
that depends on a subset of the Eclipse Europa plug-ins (Eclipse 3.3.2). This
way we analyzed potential interaction that can occur among 133 editors and
views, 45 parts more as compared to phase 2. We analyzed the latest available
versions of the applications as of March 2008. The detailed list of applications
used in Phase 3 of the study is presented in Appendix A. The results are
presented and discussed in Sections 7.3 and 8.

In addition to extending the set of applications to be analyzed, we also
improved the FSMLs. In particular, we made changes to accommodate (i)
multiple listener registrations and deregistrations and (ii) multiple values re-
sulting from constant propagation. We also added some new features. In total,
we added 8 features to Applet FSML, 1 feature to Struts FSML, and 4 features
to WPI FSML. We removed one feature from WPI FSML.

4.4 Data collection process

For any given feature, we consider the code patterns that all of its instances in
the reverse-engineered project correspond to. The correspondence is specified
using mapping definitions attached to the features. For a feature f let

– Af be the number of all patterns in the code that satisfy the mapping
definition and that can be determined statically,

– Qf be the number of patterns matched by the query,
– Cf be the number of patterns that satisfy the mapping definition and are

matched (correctly) by the code query,
– Mf be the number of patterns that satisfy the mapping definition and are

missed by the code query (false negatives),
– If be the number of patterns that do not satisfy the mapping definition

and are matched (incorrectly) by the code query (false positives).

Note that Af takes into consideration only patterns that can be determined
statically. For example, for method calls, Af accounts for all method calls
matching the given signature, but does not account for the possible method
calls through reflection. Similarly, for the values of method call arguments
(such as on lines 8 and 10 of Figure 1), Af does not account for dynamic
values, such as coming from the user of the application or an input stream. In
the latter case, we did not count dynamic values as false negatives, which is
reflected in the following equations, whereby the recall depends on the value
of Af .

The following two equations hold:

Af = Cf + Mf (1)

Qf = Cf + If (2)
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Precision (Pf ) and recall (Rf ) can be defined as follows:

Pf =
Cf

Qf

=
Cf

Cf + If

(3)

Rf =
Cf

Af

=
Cf

Cf + Mf

(4)

In Phase 2, we collected the data as follows. For a feature f, value Qf

was returned by the prototypes at the end of reverse engineering for the code
queries used by the prototypes. We then manually analyzed the code to de-
termine the values for Mf and If for the given query. The analysis allowed us
to propose the refined code queries that would capture the false negatives and
exclude false positives of the previous query.

In contrast to the original code queries, the values Qf , Mf and If for the
proposed refined code queries were obtained manually by checking whether
each false negative and false positive would belong to the results of the pro-
posed query. Values Cf were calculated using equation 2. We present the details
of the study in Section 6.

In Phase 3, for a feature f, value Qf was also returned by the prototypes.
Value If was obtained by manually checking every feature from the automat-
ically retrieved model and its corresponding code and counting those features
that were incorrectly identified in the code. Value Mf was obtained by manual
code inspection driven by the comparison of models extracted using different
analysis settings. We present the details of the study in Section 7.

5 Results of Phase 1: Code patterns & Code Queries

In order to retrieve framework-specific models, code patterns specified by the
mapping of the abstract syntax to the framework API of an FSML must be
matched in the framework completion code. Code patterns can be classified
as structural or behavioural patterns. In general, structural patterns consist
of code elements and their static properties as well as properties derived ac-
cording to the static semantics, such as resolved type and method bindings.
Because run-time events do not exist statically, behavioural patterns consist
of shadows [21] of the run-time events over the code.

The types of code patterns identified in the mapping definitions of the three
FSMLs are summarized in Table 2. The first column contains Smalltalk-like
expressions that can be used to specify the patterns. Each expression repre-
sents the application of a primitive mapping type to one or more parameters.
For example, the expression c callsTo: s receiver: r applies the mapping
type named callsTo:receiver: to the three parameters c, s, and r. Note that
the first parameter, c, appears at the very front position, which is known as
the target position. The last column defines abbreviations used to refer to the
given pattern type in the remainder of this paper. The second column presents
descriptions of the semantics of code patterns. The description specifies the
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Structural Pattern
Expression

Structural Element(s) Matched Abbreviation

c assignableTo: t
matches if objects of the class c are assignable
to the type t

assignable

f fieldOfType: t
matches if objects of the type t are assignable
to the field f

fieldOfType

c methods: s

matches methods with signature s that are
implemented or overridden by the class c. The
signature may contain * for the method name
to match any method name

methods

c allMethods: s

matches methods with signature s that are
implemented, overridden or inherited by the
class c. The signature may contain * for the
method name to match any method name

allMethods

Behavioral Pattern
Expression

Run-time Event Pattern(s) Matched Abbreviation

c callsTo: s receiver: r

matches method calls to methods with the
signature s received by objects assignable to
the type r in the control flow of instances of
the class c,

callsTo

callsTo($c o): call($s ) && target($r ) &&
cflow(execs(o))

c callsReceived: s

matches method calls to methods with the
signature s received by objects assignable to
the class c

callsRec

callsRec($c o): call($s ) && target(o)

mc valueOfArg: i
matches run-time values of the ith argument
of the method call mc

argVal

argVal(): $mc && args(.., $i, ..)

c argument: i ofCall: mc1

sameAsArg: j ofCall: mc2

matches if the ith argument of the method call
mc1 points to the same object as the jth ar-
gument of the method call mc2, in the control
flow of objects of the class c

argSameObj

argSameObj($c o): $argVal(mc2, j ) &&
dflow[j, i] ($argVal(mc1, i )) && execs(o)

c methodCall: mc1 be-
fore: mc2

matches if in the control flow of instances of
the class c, the method call mc1 occurs at
least once before the occurrence of method
call mc2

before

before($c o): execs(o) && ($mc1+ $mc2)

m returnedObjectTypes:
c

matches all possible types of the objects re-
turned by the method m from the point of
view of the class c that implements, overrides,
or inherits m

retTypes

retTypes(): execution($m ) &&
returnTypes() && this($c)

f assignedNull
matches assignments to the field f with the
null value

assignNull

assignNull(Object o): set($f ) && args(o)
&& if(o == null)

f assignedNew: cs

matches assignments to the field f with an
object returned by a constructor call with the
signature cs

assignNew

assignNew(Object o): set($f ) && args(o)
&& dflow[o, i] (call($cs ) && returns(i))

Helper Definitions matches executions of methods in instances of class c

execs($c o) : execution(* *(..)) && this(o);

Table 2 Types of structural and behavioral code patterns
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patterns in the code that match the given pattern expression. Since structural
patterns can be fully retrieved from the code by static analysis and their se-
mantics are rather simple, we deem unnecessary a more formal definition in
this paper. However, the semantics of behavioural patterns, which is more dif-
ficult to define, is specified more precisely using meta pointcuts in addition to
the informal description.

Pointcuts were introduced in aspect-oriented programming [23] as expres-
sions that define patterns of run-time events. In that context, crosscutting be-
haviour can be applied when such patterns occur at run-time. In the context
of FSMLs, pointcuts provide the exact definitions of the behavioural patterns
that features correspond to. In Table 2, we use meta pointcuts parametrized
with variables from the pattern expressions. The parameters and macro calls
prefixed with a $ sign are replaced by the corresponding variable value or by
expanding the corresponding meta pointcut, respectively. We reuse elements
of syntax of AspectJ [22] and some of its extensions, namely the Data Flow
Pointcut [25] and Tracematches [3]. For example, the meta pointcut for the
pattern type callsTo uses AspectJ’s call, target, and cflow pointcuts. This
meta pointcut also uses the helper pointcut execs, which is defined at bottom
of Table 2. Furthermore, the meta pointcut for the pattern type argSameObj

uses dflow to specify that the argument of the first method call is the same
object as the argument of the second call. The meta pointcut for the pat-
tern type before uses the Tracematches notation to define the order in which
method calls occur. Finally, we had to introduce a new primitive pointcut,
namely returnTypes. This new pointcut captures the run-time type of the
object returned by a method and is used in the meta pointcut for the pattern
type retTypes.

Tables 3-5 present fragments of the metamodels of the three FSMLs used
in the study. Each row contains a feature and its mapping definition in angle

FSML Feature <Pattern Expression>

[0..*] Applet <class>

![1] extendsApplet <assignableTo: Applet>

[0..*] showsStatus <callsReceived: showStatus(String)>

[0..1] message (String) <valueOfArg: 1>

[0..1] listensToMouse

![1] implementsMouseListener <assignableTo: MouseListener>

![1] registers <callsReceived: addMouseListener(IMouseListener)>

[1] deregisters <callsReceived: removeMouseListene(IMouseListener)>

[1] deregistersSameObject <argument: 1 ofCall: ../../registers sameAsArg: 1 of ..>

[1] registersBeforeDeregisters <methodCall: ../../../registers before: ../..>

[0..*] thread <field>

![1] typedThread <fieldOfType: Thread>

[1] initializesThread <assignedNew: Thread(IRunnable)>

[1] nullifiesThread <assignedNull>

[0..*] parameter <callsReceived: getParameter(String)>

[0..1] name (String) <valueOfArg: 1>

[1] providesParameterInfo <methods: getParameterInfo()>

Table 3 Fragment of the metamodel of the Applet FSML
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FSML Feature <Pattern Expression>

[0..*] Action <class>

![1] extendsAction <assignableTo: Action>

[0..1] extendsDispatchAction <assignableTo: DispatchAction>

[0..*] actionMethod <methods: *(ActionMapping, ActionForm, [. . . ], [. . . ])>

[0..1] overridesExecute <methods: execute(ActionMapping, ActionForm, [. . . ])>

[0..*] forwardImpl <callsTo: findForward(String)>

[1] name (String) <valueOfArg: 1>

Table 4 Fragment of the metamodel of the Struts FSML

brackets. Pattern expression defines the correspondence between the features
and structural and behavioural patterns in the completion code. We provided
values for some parameters of pattern expressions to give the reader an idea
about the meaning of the features. We used “[. . . ]” to indicate omitted de-
tails. Features that do not have a pattern expression are abstract and are

FSML Feature <Pattern Expression>

[0..*] Part <class>

![1] implementsIView/IEditorPart <assignableTo: IViewPart/IEditorPart concrete: true>

[0..*] SelectionProvider <class>

![1] implementsISelectionProvider <assignableTo: ISelectionProvider>

[1]registers <callsTo: setSelectionProvider(ISelectionProvider)>

[0..*] SelectionListener <class>

![1] implementsISelectionListener <assignableTo: ISelectionListener>

[0..1] globalSelectionListener <callsTo: addSelectionListener(ISelectionListener)>

[1] deregisters <callsTo: removeSelectionListener(ISelectionListener)>

[1] deregistersSameObject <argument: 1 ofCall: ../.. sameAsArg: 1 ofCall: ..>

[1] registersBeforeDeregisters <methodCall: ../../.. before: ../..>

[0..1] globalPostSelectionListener <callsTo: addPostSelectionListener(ISelectionListener)>

[1] deregisters <callsTo: removePostSelectionListener(ISelectionListener)>

[1] deregistersSameObject <argument: 1 ofCall: ../.. sameAsArg: 1 ofCall: ..>

[1] registersBeforeDeregisters <methodCall: ../../.. before: ../..>

[0..*] specificSelectionListener <callsTo: addSelectionListener(String, ISelectionListener)>

![1] registrationPartId <valueOfArg: 1>

[1] deregisters <callsTo: removeSelectionListener(String, ISelectionListener)>

[1] deregistrationPartId <valueOfArg: 1>

[1] deregistersSameObject <argument: 2 ofCall: ../.. sameAsArg: 2 ofCall: ..>

[1] registersBeforeDeregisters <methodCall: ../../.. before: ../..>

[0..*] PartListener <class>

![1] implementsIPartListener <assignableTo: IPartListener>

[1] registers <callsTo: addPartListener(IPartListener)>

[1] deregisters <callsTo: removePartListener(IPartListener)>

[1] deregistersSameObject <argument: 1 ofCall: ../../registers sameAsArg: 1 ofCall: ..>

[1] registersBeforeDeregisters <methodCall: ../../../registers before: ../..>

[0..*] AdapterProvider <class>

![1] providesAdapter <allMethods: Object getAdapter(Class)>

![1..*] adapters (String) <returnedObjectTypes>

[0..*] AdapterRequestor <class>

![1..*] requestsAdapter <callsTo: getAdapter(Class) receiver: IWorkbenchPart>

[1] adapter (String) <valueOfArg: 1>

Table 5 Fragment of the metamodel of the WPI FSML
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used solely for the purpose of grouping other features (e.g., listensToMouse
in Table 3). Pattern expressions class and field indicate that a feature cor-
responds to a Java class or a field, respectively. The properties of classes or
fields required and sufficient for establishing a correspondence to a feature are
specified by the feature’s essential subfeatures (marked using !). Values of the
parameters of the pattern expressions can be either statically provided in the
metamodel or they can be retrieved from parent features during reverse en-
gineering. The value of the first parameter is usually not specified explicitly,
in which case it is determined implicitly by locating the closest parent feature
with a pattern expression that matches a code element of the required type and
using the matched element as the value. For example, the pattern expression
assignableTo: Applet for the feature extendsApplet requires a Java class
as the value of the first parameter (i.e., c in Table 2), which, in this case, will
be the class that the parent feature Applet will correspond to. Values of the
parameters can also be the patterns that other features correspond to, in which
case, the features need to be specified using path expressions. For example,
the pattern expression attached to the feature deregistersSameObject in Ta-
ble 3 requires two method calls and uses paths “../../registers” and “..”
to retrieve calls that the features registers and deregisters correspond to.

We present the metamodels for two reasons: (i) to give the reader examples
of concrete pattern expressions and (ii) to help the reader understand the
tables with precision and recall presented in Sections 6.1 and 7.3.

The mapping definitions of the analyzed FSMLs use pattern expressions,
whereas the prototype implementations of the FSMLs use code queries for
matching the required code patterns. During reverse engineering, the mapping
definitions are interpreted by first determining the mapping type that is used
by analysing the pattern expression, retrieving the values of parameters, and
executing an appropriate code query. For a detailed description of how the
mapping definitions are interpreted by the generic FSML infrastructure during
reverse engineering, we refer the reader to the related Ph.D. thesis [4, ch. 2],
as the algorithms are outside the scope of this paper.

We present the code queries that approximate behavioural patterns in Ta-
bles 6-13. The code queries are defined in the Smalltalk-like notation, similar
to their corresponding pattern expressions in Table 2. For each code query, we
provide a description of the results obtained by statically applying the query
to the code.

Queries marked with an asterisk (*) are the ones used in the prototypes in
Phase 2 of the study and they will be discussed in this section. The remain-
ing queries are the ones we proposed as query refinements in Phase 2. These
queries are the hypothetical ones that would match behavioural code patterns
with 100% precision and recall. They are hypothetical in the sense of assum-
ing perfect static analyses that could infer any code property that could be
statically inferred. These queries are discussed in Section 6. In Phase 2, they
were only “executed” manually; obviously, such an execution represents our
“best effort” and we discuss this issue in the threats to validity. However, the
refined queries were implemented in Phase 3 by making specific implementa-
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tion choices about the involved static analyses, which could potentially reduce
their precision and recall. The implementations are presented in Section 7.

Code Query Query Expression

Abbrev. Result

getCallsWH∗ c getCallsInHierarchy: s receiver: r

a set of method calls with the signature s within the bodies of the class c

and its superclasses, such that the receiver of each call is assignable to the
type r

getCallsCF c getCallsCFlow: s receiver: r

a set of method calls with the signature s in the control flow of every
implemented, inherited, and overridden method of the class c, such that
the receiver of each call is assignable to the type r

Table 6 Code queries for the callsTo pattern type

Code Query Query Expression

Abbrev. Result

getCallsRec∗ c getCallsReceived: s

a set of method calls with the signature s, such that the receiver of each
call is assignable to the type c

getCallsRecTI c getCallsReceivedTI: s

a set of method calls with the signature s, such that the receiver of each
call is assignable to the type c. In the case when the type of the receiver
is more general then the type c, the query traverses the receiver’s dataflow
graph backwards to infer its more specific type

Table 7 Code queries for the callsRec pattern type

Code Query Query Expression

Abbrev. Result

getArgValLC∗ mc getArgValLiteralConstant: i

value of the ith argument of the method call mc retrieved from a static
final variable or a literal

getArgValCP mc getArgValConstantProp: i

set of values of the ith argument of the method call mc retrieved using
interprocedural constant propagation limited in scope to the class that
contains the called method

getArgValPE mc getArgValPartialEval: i

set of values of the ith argument of the method call mc retrieved using
partial evaluation

Table 8 Code queries for the argVal pattern type

Code queries presented in Tables 6-13 can be described based on the kind
of approximation they employ. We discuss their potential false positives and
false negatives.

One group of queries approximate interprocedural control flow graph of an
object: getCallsWH and isBeforeWH. The idea is to search in the bodies of



18

Code Query Query Expression

Abbrev. Result

argIsThis∗ c thisAsArgument: i ofCall: mc1 andArg: j ofCall: mc2

true iff both the ith argument of the method call mc1 and the jth argument
of the method call mc2 are the literal this and the resolved type of the
literal is class c

argIsPrvFieldAO c prvFieldAsArgument: i ofCall: mc1 andArg: j ofCall: mc2 givenCSeq: cs

true iff both the ith argument of the method call mc1 and the jth argument
of the method call mc2 are references to the same private field of class c

whose value has been assigned once before both calls

Table 9 Code queries for the argSameObj pattern type

Code Query Query Expression

Abbrev. Result

isBeforeWH∗ c is: mc1 before: mc2 inHierarchyGivenCSeq: cs

true iff the method calls mc1 and mc2 are located within the bodies of
callback methods m1 and m2, respectively, such that the method m1 occurs
before the method m2 in the callback sequence cs OR
true iff mc1 occurs before mc2 in the cflow of the method m1 if m1 = m2.
Methods m1 and m2 can be any implemented, inherited or overridden
methods of the class c

isBeforeCF c is: mc1 before: mc2 inCFlowGivenCSeq: cs

true iff the method calls mc1 and mc2 occur in the control flows of callback
methods m1 and m2, respectively, such that the method m1 occurs before
the method m2 in the callback sequence cs OR
true iff mc1 occurs before mc2 in the cflow of the method m1 if m1 = m2.
Methods m1 and m2 can be any implemented, inherited or overridden
methods of the class c

Table 10 Code queries for the before pattern type

Code Query Query Expression

Abbrev. Result

getRetTypesWS∗ m returnStmsWithinAndSuper: c

a set of types of objects returned by the method m (excluding Object)
retrieved from type bindings of return statements within the body of the
method, including bodies of super methods if called. The type of the re-
turned literal this is interpreted as class c

getRetTypesMST m returnStmsMostSpecificType: c

a set of types of objects returned by the method m (excluding Object)
retrieved from return statements, inferring the most specific type in the
data flow of each returned object. The type of the returned literal this is
interpreted as class c

Table 11 Code queries for the retTypes pattern type

Code Query Query Expression

Abbrev. Result

getAssgnNew∗ f getAssignedNew: cc

a set of assignments to the field f with the constructor call cc

Table 12 Code queries for the assgnNew pattern type

the object’s class and its superclasses because the code implementing the call
is likely to be found there. These queries can potentially miss patterns (false
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Code Query Query Expression

Abbrev. Result

getAssgnNull∗ f getAssignedNull

a set of assignments to the field f with the null literal

Table 13 Code queries for the assignNull pattern type

negatives) located in helper classes whose code is located outside the class of
the object (nested and anonymous classes are included in the search). Also, the
queries can incorrectly identify patterns (false positives) in the superclasses.
This happens when the call resides in the bodies of methods that get overridden
and which are not reached by a super call.

The query isBeforeWH relies on the information about method callback
sequence of the framework. The callback sequence information is necessary
because the control flow graph of a class implementing callback methods is
potentially composed of disjoint graphs for each callback method, unless the
callback methods call each other, which is not common. This query will miss a
pattern if at least one of the two method calls to be matched is in the control
flow of a callback method, but not directly in the body of that method.

Another group of queries rely on static type binding information: getCalls-
Rec and getRetTypesWS. The former uses the type binding of the receiver of
a method call to determine if it matches the specified type, while the latter
uses the type binding of the return statements of a method. These queries can
generate false negatives when the binding points to a type that is more general
than the actual type of the returned object. The query getRetTypesWS will
also return an inappropriate type if (i) the object to be returned is assigned
to a variable with more general type than the object’s type and the variable
is returned or (ii) the object is returned by a method called from the return
statement with more general return type than the object’s type.

The query argIsThis considers the arguments of two method calls as being
the same object only if they employ the this keyword. This approximation
misses all other cases where the methods are called with the same object as
argument, such as when the argument is a private field of the class.

The queries getAssgnNew and getAssgnNull only match patterns in which
the right-hand side of a field assignment is the new expression or the null

literal, respectively. These queries will miss patterns when the field is assigned
with a variable which had previously been assigned the result of a constructor
call or null, respectively. In these cases, dataflow graph traversal is necessary.

6 Results of Phase 2: Evaluation of the Simple Code Queries

6.1 Precision & Recall

Tables 14, 15, and 16 present values Af , Df , Mf , Rf , and Pf for every code
query used for the retrieval of instances of the feature f . In the columns Af ,
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the number between parenthesis denotes the number of features not counted
as false negatives because they are dynamic.

The column Query Type contains names of code queries used for retrieving
patterns of the given type. The queries for structural patterns are omitted for
brevity, which results in the empty cells in the tables. Obviously, these queries
are precise and complete implementations of the corresponding mapping types.
For behavioural patterns, we provide queries that were used by the prototypes
to approximate the corresponding mapping types. If a query retrieved less than
100% of patterns, we include manually computed data for the proposed query
refinements in the subsequent rows. The cases in which the refined queries
were needed to match missed patterns can be visually recognized by looking
at cells in the column Af that span multiple rows (6 cases). The column, Rf ,
contains the recall calculated according to the equation 4. The last column,
Pf , contains the precision calculated according to the equation 3. Except for
three features which have a single false positive each, the precision is always
100%. In Section 6.2 we describe the refined queries and the data is discussed
in Section 6.3.

6.2 The Refined Code Queries

In Tables 6-11, the queries not marked with an asterisk represent refinements
over the marked queries. We present the refined code queries because we use
them as a point of reference in Tables 14-16, that is, we measure false negatives
with respect to the number of patterns matched by the best refined code query.
In Section 4.4 we defined Af as the number of all patterns in the code that
satisfy the mapping definition and that can be determined statically, meaning
the number of patterns that can be retrieved by the best available code query.
Since the refined code queries were not implemented, we computed the values
of manually.

The queries getCallsCF and isBeforeCF refine getCallsWH and isBe-

foreWH, respectively, by correctly considering the set of available methods in
an object of that class and by analyzing the call graph of this object. They
will therefore ignore method calls found in methods that get overridden and
are not reachable, and will detect method calls in helper classes.

Some refined queries traverse the dataflow graph backwards, beginning
at a particular use of a variable, to determine its most specific type. Queries
getCallsRecTI and getRetTypesMST refine getCallsRec and getRetTypesWS,
respectively, because using the most specific type information for the method
call receiver or the return expression potentially matches additional patterns.
The query argIsPrvFieldAO improves argIsThis. It determines whether the
only field assignment occurred before the first method call. This query is mo-
tivated by a very common programming pattern, whereby an instance of a
helper class is created and assigned to a private field and then used as a pa-
rameter of service method calls. These queries will lead to false negatives in
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cases where patterns cannot be traced back to field initializations, a construc-
tor, or a callback method, for which the precedence is known.

The refinement of getArgValLC is achieved by incrementally employing
more powerful static analyses. The query getArgValCP also considers only
constants when determining the argument value, but it uses interprocedural
constant propagation to match additional patterns. The query getArgValPE

goes beyond constant propagation and uses partial evaluation to determine
argument values. Partial evaluation is an optimization technique in which the
program is evaluated before runtime based on the statically available values.
For example, partial evaluation may perform operations such as string con-
catenation for statically known strings, loop unrolling for loops with statically
known bounds, and retrieving values from static array initializers.

6.3 Interpretation of the data

We discuss the data presented in Tables 14-16, each table separately. We focus
on the highlighted cells. Surprisingly, for all features except three, and for

FSML Feature Query Type Af Qf Mf Rf Pf

[0..*] Applet 71 71 0 100 100

![1] extendsApplet 71 71 0 100 100

[0..*] showsStatus getCallsRec 39 39 0 100 100

[0..1] message
getArgValLC 23(16) 17 6 73.91 100

getArgValCP 18 5 78.26 100

getArgValPE 23 0 100 100

[0..1] listensToMouse 23 23 0 100 100

![1] implementsMouseListener 23 23 0 100 100

![1] registers getCallsRec 23 23 0 100 100

[1] deregisters getCallsRec 10 10 0 100 100

[1] deregistersSameObject argIsThis 10 10 0 100 100

[1] registersBeforeDeregisters isBeforeWH 10 10 0 100 100

[0..*] thread 32 32 0 100 100

![1] typedThread 32 32 0 100 100

[1] initializesThread getAssgnNew 30 30 0 100 100

[1] nullifiesThread getAssgnNull 17 17 0 100 100

[0..*] parameter
getCallsRec 153 148 5 96.73 100

getCallsRecTI 153 0 100 100

[0..1] name
getArgValLC 217(11) 132 85 60.82 100

getArgValCP 196 21 90.32 100

getArgValPE 217 0 100 100

Table 14 Statistics for framework-specific models retrieved using Applet FSML

the code queries used in the prototypes the precision turned out to be 100%.
Precision is influenced by the number of false positives. By checking all fea-
tures in the retrieved models we concluded that only three were false positives.
As discussed in Section 5, all of the code queries can potentially return false
positives. Therefore, finding only three false positives in the models for the an-
alyzed applications only means that these particular applications were written
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FSML Feature Query Type Af Qf Mf Rf Pf

[0..*] Action 93 93 0 100 100

![1] extendsAction 93 93 0 100 100

[0..1]extendsDispatchAction 47 47 0 100 100

[0..*] actionMethod 124 124 0 100 100

[0..1]overridesExecute 42 42 0 100 100

[0..*] forwardImpl getCallsWH 212 212 0 100 100

[1] name getArgValLC 211(1) 211 0 100 100

Table 15 Statistics for framework-specific models retrieved using Struts FSML

FSML Feature Query Type Af Qf Mf Rf Pf

[0..*] Part 88 88 0 100 100

![1] implementsIView/IEditorPart 88 88 0 100 100

[0..*] SelectionProvider 1 1 0 100 100

![1] implementsISelectionProvider 1 1 0 100 100

[1] registers getCallsWH 1 1 0 100 100

[0..*] SelectionListener 8 8 0 100 100

![1] implementsISelectionListener 8 8 0 100 100

[0..1] globalSelectionListener getCallsWH 1 1 0 100 100

[1] deregisters getCallsWH 1 1 0 100 100

[1] deregistersSameObject argIsThis 1 1 0 100 100

[1] registersBeforeDeregisters isBeforeWH 1 1 0 100 100

[0..1] globalPostSelectionListener getCallsWH 6 6 0 100 100

[1] deregisters getCallsWH 6 6 0 100 100

[1] deregistersSameObject argIsThis 6 6 0 100 100

[1] registersBeforeDeregisters isBeforeWH 4(2) 4 0 100 100

[0..*] specificSelectionListener getCallsWH 1 1 0 100 100

![1] registrationPartId getArgValLC 1 1 0 100 100

[1] deregisters getCallsWH 1 1 0 100 100

[1] deregistrationPartId getArgValLC 1 1 0 100 100

[1] deregistersSameObject argIsThis 1 1 0 100 100

[1] registersBeforeDeregisters isBeforeWH 0(1) 0 0 100 100

[0..*] PartListener 10 10 0 100 100

![1] implementsIPartListener 10 10 0 100 100

[1] registers getCallsWH 10 10 0 100 100

[1] deregisters getCallsWH 9 10 0 100 90

[1] deregistersSameObject
argIsThis 16 10 6 62.5 100

argIsPrvFieldAO 16 0 100 100

[1] registersBeforeDeregisters
isBeforeWH 15 10 6 66.66 90

isBeforeCF 15 0 100 100

[0..*] AdapterProvider 44 44 0 100 100

![1] providesAdapter 44 44 0 100 100

![1..*] adapters
getRetTypesWS 190 132 59 69.47 100

getRetTypesMST 190 0 100 100

[0..*] AdapterRequestor 22 22 0 100 100

![1..*] requestsAdapter getCallsWH 68 69 0 100 98

[1] adapter getArgValLC 62 62 0 100 100

Table 16 Statistics for a framework-specific model retrieved using WPI FSML

in a way that the queries did not return many false positives. In the following
description we comment on the highlighted cells of Tables 14-16.

Table 14. The feature message. The six values missed by the first query
were neither string literals nor static final variables. One more value could be
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retrieved by constant propagation and all remaining values could be retrieved
by partial evaluation (string concatenation). For 16 method calls, values of
arguments were not retrieved because they cannot be determined statically.
We did not count these values as false negatives.

The features deregistersSameObject and registersBeforeDeregisters.
In all 10 cases, both the registration and deregistration calls used the literal
this as an argument, and all registration and deregistration calls were located
in the init and destroy methods, respectively. Both methods are callback
methods and init is called before destroy.

The feature thread. 32 fields of type Thread were found. The reason why
only 30 fields are initialized is that two applets declared two fields which
were never used. Also, we did not find any false negatives for the queries
getAssgnNew and getAssgnNull, meaning that in all cases the right hand
side of a field assignment was a constructor call or the literal null.

The feature parameter. The five missed calls were located in the construc-
tor of a helper class and the constructor’s parameter applet was the receiver
of the calls. The helper class is instantiated twice by the applet and the lit-
eral this is used as a parameter to the constructor. Therefore, the query
getCallsRecTI would infer that the applet is, in fact, the receiver of the five
method calls.

The feature name. The 85 missed parameter names can be retrieved using
constant propagation and loop unrolling. For three instances of the feature
parameter, a call to getParameter was placed in a helper method, which was
then called 64 times with static values. Traversal of the dataflow graph with
the distance of at most two method calls was necessary to reach the static
values. Therefore using the query getArgValCP reduced the number of false
negatives to 21. Using the query getArgValPE further eliminates all remaining
false negatives as follows. For two instances of the feature parameter, a call
to getParameter was placed in a loop with a statically known loop count.
For the first instance, the static values of the method call parameter were
constructed by appending the loop count variable to a constant string and
loop unrolling would yield four values. For the second instance, the static
values were retrieved from a static array using the loop count variable as
index. Again, loop unrolling would yield additional 17 values. For 11 features,
the static value cannot be determined and these are not false negatives.

Table 15. The feature name. In the three sample applications, the devel-
opers used either string literals or public static final fields as arguments
of the method call. The reason is that the names used as parameters of the
findForward method calls must match the names of forward declarations in
Struts’ XML configuration file. The single value that was not retrieved comes
from a HTTP request and we did not count it as a false negative.

Table 16. The concept SelectionListener. The eight workbench parts
are selection listeners. In particular, one is a global selection listener, six are
global post selection listeners, and one is a specific selection listener.

The features deregistersSameObject. All patterns were matched because
the literal this was used in both the registration and deregistration calls.
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The features registersBeforeDeregisters (of selection listeners). The
three patterns not matched by the query (2 for post selection listeners and
one for specific selection listener) are not false negatives because the order of
method calls cannot be determined statically: the registration and the dereg-
istration calls are invoked from the UI actions.

The concept PartListener. The feature deregisters. The query matched
one pattern more than there actually are in the control flow of the part. This is
the one false positive because the matched method call resided in an overrid-
den method which was not called using super and dynamic method dispatch
always invokes the overriding method instead.

The features deregistersSameObject and registersBeforeDeregisters.
All part listeners inherit behaviour from an abstract view, where the literal
this is used in the registration and the deregistration. Both calls occur in
the createPartControl and dispose methods, which are callback methods.
Except for one case, both calls are not false positives because all part listeners
delegate to super in createPartControl and dispose methods, which they
override. However, because one deregistration method call is a false positive,
this translates to a false positive for the query isBeforeWH because it employs
the same approximation as the query getCallsWH.

Six of the part listeners inherit additional registration and deregistration
calls from another abstract view, which registers and deregisters an instance of
a helper part listener. The instance of the helper listener is stored in a private
field and is assigned only once before the registration. The registration occurs
in the cflow of createPartControl and the deregistration occurs in the cflow
of dispose but not in their bodies, which is why the pattern was missed by
beforeWH.

The concept AdapterProvider. The feature adapters. The 59 patterns
missed by the query getRetTypesWS can be divided into two categories: i) the
return statement delegates to a factory method and ii) the return statement
returns a variable. In the first category, the factory method’s return type is
more general then the type of the returned object. In the second category,
the type of the variable is more general than the type of the returned object
assigned to the variable. The query getRetTypesMST captures all patterns
by analyzing the dataflow of the returned object, beginning at the return
statement, and inferring the most specific type of the object. In ten cases the
exact type could not be found because of polymorphic calls (in most of these
cases, the type of the receiver was an interface).

The concept AdapterRequestor. The features requestsAdapter and adap-

terType. The seven adapter requestors inherit the adapter request call from
an abstract multi-page editor class, where the editor simply delegates the call
to a page with an active editor. The argument value cannot be statically deter-
mined and we did not count these cases as false negatives. The only one false
positive is because an editor overrides a method from the abstract superclass
that contains the adapter request call and does not call super.

It is important to note that even if a value of an argument of a method
call cannot be statically determined, a framework-specific model still provides
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traceability to the method call. In the case of the Struts FSML, where re-
trieving the names of forwards is critical for referential integrity checking with
the XML configuration file, the results show that such values are statically
available in the code.

Finally, the weighted average recall for queries that missed patterns is
82% for getArgValueLC, 82% for argIsThis, 76% for isBeforeWH, and 98%
for getCallsRec, which shows that even such simple queries provide very
high recall. An exception here is the query getRetTypesWS with recall 69%.
However, we counted a false negative if the query returned a more general
type than the actual type of the returned object, which, in all cases, was an
interface. Even returning a more general type provides far more information
than the return type of the method (Object in the case of getAdapter()) and,
in fact, is sufficient for WPI FSML because workbench parts usually request
an adapter implementing a certain interface. The weighted average precision
for queries that incorrectly identified patterns is 96% for isBeforeWH and 99%
for getCallsWH.

6.4 Conclusion for Phases 1 and 2

In summary, in the first two phases of the study we identified the types of
structural and behavioural patterns that the features of the three exemplar
FSMLs correspond to and we provided a precise definition of behavioural pat-
terns using meta pointcuts. We showed how knowledge about a framework,
such as the order of callbacks, can be leveraged for the retrieval of behavioural
patterns, such as callsTo, before, and argSameObj, which is undecidable
in the general case. Also, we provided empirical evidence that by leveraging
framework knowledge and concentrating on the framework boundary simple
static analyses are sufficient for retrieving framework-specific models, without
requiring whole-program analysis. The average recall for all simple queries for
behavioural patterns was 88% and the precision was 99%. We proposed re-
fined versions of the code queries that would achieve 100% precision and recall
for the sample applications (cf. Tables 6-11, queries not marked with ’*’). We
also observed that the results are dependent on the fact that the application
code was written in a simple form, often simulating framework-provided ex-
amples by following the Monkey see, monkey do rule [19]. Consequently, we
concluded that analyzing a larger sample of applications was needed in order
to see whether this observation would hold more generally or whether it was
just a property of the code we analyzed so far.



26

7 Results of Phase 3: Implementation and Evaluation of the
Refined Code Queries

7.1 Static analysis services used by the refined code queries

The implementation of the refined code queries, as recommended in the pre-
vious section, requires four basic services: type hierarchy, call graph, dataflow
graph, and most-specific-type inference. As argued in Section 2, building com-
plete type hierarchy, call graph, and dataflow graph for framework-based ap-
plications is infeasible and, as shown in Section 6, not necessary. Therefore,
we implemented these services in an incremental and on-demand form that
allows the code queries to obtain the necessary information as they execute.
This way, and by focusing on the framework boundary, we avoid the complete
analysis of both the application and the framework and yet we are still able
to retrieve patterns with higher precision and recall than in Phase 2.

7.1.1 Type hierarchy

Type hierarchy is the most basic service that is used by code queries and other
services. In our implementation, the service is provided by an incremental type
hierarchy manager, which manages a single and shared type hierarchy cache.
The manager provides the following query functions:

– supertype and subtype hierarchy computation and traversal for a type,
– improved support for nested and anonymous classes as compared to the

default JDT’s implementation, and
– checking whether a given type is assignment compatible with another type.

7.1.2 Call graph

The call graph service is provided by a configurable incremental call graph
manager. Its design has been influenced by the observation, confirmed by the
results of the second phase of the study, that method calls related to the given
class usually reside in the bodies of classes within the supertype hierarchy of
the given class, including nested and anonymous classes.

The query functions provided by the call graph manager are context sensi-
tive in order to more precisely support the analysis of dynamic (polymorphic)
method calls. We refer to the class for which the analysis is performed as the
context class. After adding the context class to the call graph manager, the
manager builds an explicit call graph starting from all declared and inherited
methods of the context class, which we refer to as available methods. Edges are
created for each method or constructor call in the available methods. There-
fore, the analysis is control-flow-insensitive.

Based on the precomputed call graph, the manager provides the following
query functions:

– determining the method in the hierarchy that will be executed when a
dynamic method call targets the context class,
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– checking whether there exists a path between two given methods in the
call graph,

– checking whether a given method is reachable from any available method
of a given context class, and

– retrieving all possible implementations of a given method in the hierarchy
of the context class.

The call graph manager supports different modes of operation, which are
configured by flags set before the analysis. The different modes influence the
size and the precision of the call graph and the time required to query it.

– The flag hierarchical. This flag specifies that all method calls whose
targets can be statically determined are included as edges in the graph.
This set includes calls to static methods, even if outside the hierarchy of
the context class, and calls to super and constructor calls. Moreover, the
call graph includes dynamic calls within the hierarchy of the context class
since the exact target method can be determined given a context type.
Dynamic calls outside the hierarchy are ignored and, therefore, this call
graph does not produce any false positives.

– The flag precise. A superset of the hierarchical call graph, the precise call
graph additionally includes dynamic calls to methods outside the context
hierarchy, provided that there is a single concrete implementation of the
target method in the system. This flag is the default used in all experiments
in Phase 3. This call graph also yields no false positives.

– The flag full. This flag augments the precise call graph by including an
edge in the graph for each possible implementation of the target method of
a dynamic call outside the context hierarchy. Since all possible paths in the
system are included this graph has no false negatives, but will potentially
include false positives.

The mode severely impacts (i) the call graph’s size and (ii) the precision,
recall, and efficiency of the queries to the call graph. The hierarchical call
graph limits the path search scope to the context hierarchy and can therefore
answer queries much faster than the full call graph. The precise call graph
increases the precision at the cost of efficiency. The full call graph excels in
recall, but at the price of less precision and efficiency.

7.1.3 Dataflow graph

The dataflow graph service is implemented as a set of recursive query functions
and is used by the code queries for the argVal pattern type. In other words,
the dataflow graph is not represented explicitly as the call graph, but rather
exists as traversals implemented by the functions. The objective of the argVal
pattern type is to match all static values of an argument of a method call.
During static analysis, we can only match the potential values of the given ex-
pression since there may be many execution paths at run-time. Consequently,
the dataflow service is control flow-insensitive: when looking for static values,
we consider variable initializers and all assignments, even if the assignments
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are in alternative control flows. We also do not perform reachability analysis.
As a result, the possible false positives include (i) values used in variable ini-
tializers, but overridden by an assignment prior to the use of the variable; (ii)
values used in assignments in unreachable code; and (iii) values assigned after
the use of the variable. We, however, think that those situations are rare in
real code. We provide some evidence supporting that claim in the next section.

The analysis is implemented as a set of query functions, each for a different
kind of code elements. We refer to the function that processes expressions as
the base function. The functions delegate to each other, which implements
the traversal. The functions return a set of values. The analysis proceeds as
follows, depending on the kind of the code element being processed.

– The base function, which processes an expression, returns a static value if
the expression is a literal or a final variable. Otherwise, the function dele-
gates to an appropriate function depending on the kind of the expression.

– The function for a variable uses the base function to process the expressions
that are used in the variable’s initializer and at the right hand side of all
assignments to that variable.

– The function for a conditional expression in the form a ? b : c uses the
base function to process the expressions b and c.

– The function for a parenthetical expression in the form (a) uses the base
function to process the expression a.

– The function for a cast expression in the form (T) a uses the base function
to process the expression a.

– The function for a method or constructor parameter uses the base function
to process the expressions used as the right hand side of all assignments to
the parameter in the body of the method. Next, the function locates calls
to the method or the constructor and uses the base function to process
the expressions of arguments of the calls that correspond to the analyzed
parameter.

– The function for an array access uses the base function to process expres-
sions in the cells of the array’s initializer. If an index used in the array
access is unknown statically, the function processes all cells of the given
array dimension.

– The function for a method call first resolves the target method declaration
using the call graph manager and delegates to the following function to
process the method declaration.

– The function for a method declaration uses the base function to process
expressions used in all return statements.

7.1.4 Most-specific-type inference

The most-specific-type inference service is implemented as a set of recur-
sive query functions and is used by the code queries for the retTypes pat-
tern type. The service is also used by the code queries for the callsTo and
callsReceived to infer the type of the method call’s receiver. The service is
implemented similarly to the dataflow graph service.
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Depending on the kind of the code element, the analysis proceeds as follows.
Again, we refer to the function that processes expressions as the base function.
Each of the functions below returns a set of most-specific types. The types do
not have to be assignment compatible to each other; the returned types only
have to be assignment compatible with the static type of the code element
passed to the function.

– The base function, which processes an expression, returns the most-specific
type if the expression is a class instance creation. If the class instance cre-
ation statement creates an anonymous subclass, the supertype is returned.
Otherwise, the function delegates to an appropriate function depending on
the kind of the expression.

– The function for a variable uses the base function to process the expressions
which are used in the variable’s initializer and the right hand side of all
assignments.

– The function for a conditional expression in the form a ? b : c uses the
base function to process the expressions b and c.

– The function for a parenthetical expression in the form (a) uses the base
function to process the expression a.

– The function for a cast expression in the form (T) a uses the base function
to process the expression a; returns T if the base function returned a more
general type then T for the expression a.

– The function for a method or constructor parameter uses the base function
to process the expressions used as the right hand side of all assignments to
the parameter in the body of the method. Next, the function locates calls
to the method or the constructor and uses the base function to process
the expressions of arguments of the calls that correspond to the analyzed
parameter.

– The function for a method call first resolves the target method declaration
using the call graph manager and delegates to the next function to process
the declaration

– The function for a method declaration uses the base function to process
expressions used in all return statements; the function returns the most
specific types of all returned expressions.

7.2 Implementation of the refined code queries

In this section we briefly describe how the code queries use the services pre-
sented in the previous section.

getCallsCF. First, the query adds the context class to the call graph man-
ager, which will build its call graph and connect it to the already existing
call graphs in the system. The call graph manager ensures that the call graph
is built at most once for the given class. The query subsequently locates all
method calls of the given signature in a certain configurable search scope (de-
tailed below). The query then needs to eliminate method calls that are not in
the control flow of the context class. If the query has been configured with a
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given receiver type, it starts by using the most-specific-type inference services
to eliminate calls whose receiver is not assignable to the required receiver’s
type. Finally, it uses the call graph manager to eliminate calls that are de-
clared in methods that are not reachable from the context class.

The search scope determines the places in the system to search for method
calls and it is controlled by a flag.

– The flag hierarchyUnits specifies that the search scope consists of all
classes in the superclass hierarchy of the context class, including the context
class, and all other types declared in compilation units of these classes. This
is the default setting we used in all experiments in Phase 3.

– The flag project specifies that the search scope consists of all classes in
the class path of the analyzed project. In Eclipse, this also includes classes
that belong to all plug-ins from the dependencies of the analyzed plug-in.
We used this flag during the validation to locate false negatives, that is,
method calls that are in the control flow of the context class but are located
outside of its superclass hierarchy.

Using the hierarchyUnits search scope significantly reduces the number
of method calls that need to be checked for reachability from the context class.
However, it introduces false negatives, such as method calls located in helper
or utility classes. Using the project search scope ensures that all potentially
reachable method invocations are checked but it incurs a significant penalty
in the time of analysis.

getCallsRecTI. The query first locates all method calls of the given sig-
nature in the entire project. Next, the query eliminates method calls whose
receivers are not assignable to the context class, using the type hierarchy and
the most-specific-type inference services.

getArgValCP & getArgValPE. The query getArgValCP uses the dataflow
graph service to retrieve all expressions with static values that can potentially
be the values of the given argument of the method call. We do not perform
partial evaluation. In Section 6.3 when explaining the false negatives for the
features message and name from Table 14, we observed that string concate-
nation and loop unrolling were needed to retrieve certain values (e.g., A[i],
where A is an array and i is a for loop variable). Loop unrolling is no longer
necessary because the dataflow graph service is capable of analyzing arrays and
retrieving the entire static content of the array from its initializer, even if the
index variable of an array access is not static. Cases where some evaluation
of expressions, such as, string concatenation and appending an integer to a
string is necessary (e.g., expression "arg" + i, where i is an integer), remain
false negatives because we did not implement partial evaluation required to
compute such values.

argIsPrvFieldAO. In Phase 2, we proposed the query argIsPrvFieldAO,
which returns true if both arguments of the two method calls are either this
literals resolving to the same type or the same private field that is assigned
only once before both calls. In Phase 3, we decided to relax the requirement
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for the field to be private. We implemented a new query argIsSameObject

which returns true in the following cases:

– if both arguments are this literals resolving to the same type. The type
resolution is context sensitive, that is, if a literal resides in the context class
or its supertype, the type is resolved to the context class. Otherwise, the
static type binding is used.

– if both arguments are references to the same field regardless of the number
of assignments. No check is performed as to the precedence of assignment
with respect to the calls.

Both queries can return true with full confidence only for the this literals
and for a field if it is private and assigned only in the initializer. In other cases,
the query will still return true, and help the user of the model to understand
the code by providing information about all assigned expressions.

isBeforeCF. The query first checks whether the method calls are in the
control flow of the constructors and methods from the callback sequence. The
query returns true in three cases:

– if the first method call is in the control flow of a constructor and the second
is not,

– both method calls are in the control flow of methods from the callback
sequence and the method of the first call is before the method of the second
call in the sequence, and

– both method calls reside in the same block and the first one occurs lexically
before the second one.

Note that a false positive is possible when both method calls reside directly
in the then and else branches of an if statement, respectively. In this case
the query returns false to avoid the false positive. In all other cases the query
returns false.

getRetTypesMST. The query uses the most-specific-type inference service
to retrieve most-specific types of expressions used in return statements of the
given method. The query resolves the type of a returned this literal to the
type of the context class if the literal resides in the superclass hierarchy of the
context class, including the context class. Otherwise, this literals are resolved
to the containing classes, that is, the static type binding is used.

7.3 Precision & Recall Data and Interpretation

This section presents the recall data for the refined code queries. The precision
was always 100% and we did not include it in the tables. We provide the
interpretation for the highlighted cells of Tables 17-19.

Table 17 contains data for the models retrieved using the Applet FSML.
We extended the FSML as follows. We added two new types of listeners: key
and mouse motion listeners. We accounted for the possibility of registering
multiple listeners of the same type. We changed the cardinality of the features
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FSML Feature Query Type Af Qf Mf Rf

[0..*] Applet 84 84 0 100

![1] extendsApplet 84 84 0 100

[0..*] showsStatus getCallsRecTI 39 39 0 100

[0..*] message getArgValCP 31(8) 23 8 74.19

[0..*] registersKeyListener getCallsCF 4 4 0 100

[0..*] registersMouseListener getCallsCF 25 23 2 92

[0..*] deregisters getCallsCF 10 10 0 100

[1] deregistersSameObject argIsSameObject 10 10 0 100

[1] registersBeforeDeregisters isBeforeCF 10 10 0 100

[0..*] registersMouseMotionListener getCallsCF 15 15 0 100

[0..*] deregisters getCallsCF 6 6 0 100

[1] deregistersSameObject argIsSameObject 6 6 0 100

[1] registersBeforeDeregisters isBeforeCF 6 6 0 100

[0..*] thread 34 34 0 100

[1] initializesThread <1-1> 32 32 0 100

[0..1] initializesThreadWithRunnable getAssgnNew 27 27 0 100

[0..1] initializesWithThreadSubclass getAssgnNew 5 5 0 100

[1] overridesRun 5 5 0 100

[1] nullifiesThread getAssgnNull 19 19 0 100

[0..*] parameter getCallsRecTI 173 173 0 100

[0..*] name getArgValCP 263(14) 259 4 98.48

Table 17 Statistics for framework-specific models retrieved using Applet FSML

message and name to [0..*] since constant propagation may return multiple
values for the method call arguments. We added support for recognizing an
alternative way of defining threads, which is by subclassing the Thread class.
In this case, the method run must be overridden in the subclass.

The concept Applet. The feature message. The eight false negatives are
due to string concatenation. For eight method calls the values of the argument
are dynamic.

The feature registersMouseListener. The two missed calls reside in helper
classes.

The feature name. The four false negatives are due to loop unrolling with
string and integer concatenation ("image" + i, where i ranges from 0 to 3).
Note the substantial improvement in recall: 98% as compared to 61% in Phase
2. This improvement is due to the fact that parameter names are more static
because they are related to the design of an applet and therefore could be
retrieved using constant propagation. In contrast, status messages are more
dynamic as they report to the user some events related to the execution of the
applet.

Table 18 contains data for the models retrieved using the Struts FSML. We
extended the FSML by adding support for input forwards, i.e., forwards that
can be used to navigate to the forms that provided input for actions. Input
forwards can be used, for example, for returning the user to the form if the
form data was incorrect.

The concept Action. The feature forward. The nine missed method calls
reside is in the Struts method getInputForward(), which provides the input
forward retrieval service. The method first retrieves a name of the forward
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FSML Feature Query Type Af Qf Mf Rf

[0..*] Action 163 163 0 100

![1] extendsAction 163 163 0 100

[0..1]extendsDispatchAction 79 79 0 100

[0..*] actionMethod 181 181 0 100

[0..1]overridesExecute 115 115 0 100

[0..*] forward getCallsCF 376 367 9 97.61

[1] name getArgValCP 363(13) 363 0 100

[0..*] inputForward getCallsCF 9 9 0 100

Table 18 Statistics for framework-specific models retrieved using Struts FSML

from the XML configuration file. Next, the method uses standard getForward

method with the given name. This case well illustrates a flaw in the definition
of the callsTo pattern type. The pattern expression matches all method calls
of the given signature in the control flow of the context class regardless of
whether the method calls reside in the application code or in the framework
code. Clearly, in this example, it is not an action which is using the find
forward service, but it is the framework using its own service to provide the
input forward retrieval service. The pattern type should specify that method
calls residing in the framework code should not be matched. Therefore, the
nine missed calls should not be matched for the feature forward (note that
they are not false positives either because they match the pattern expression).

The feature name. The query matched all statically available values. This
confirms the result from Phase 2. However, in nine cases (arguments of nine
calls to getForward in getInputForward method), the values of arguments
were dynamic since they came from the XML configuration file. In four cases,
the values of arguments were dynamic. We did not count these 13 cases as
false negatives.

Table 19 contains data for the models retrieved using the Workbench Part
Interactions FSML. We extended the FSML as follows. We removed the re-
quirement for the providers and listeners to directly implement the interfaces
(e.g., ISelectionProvider, IPartListener). This way workbench parts can
register other classes as providers or listeners. We accounted for the possibility
of multiple registrations and deregistrations. We also added a new type of part
listeners.

All missed method calls reside in helper classes. See features registers,
deregisters, globalSelectionListener, partListener, partListener2, and
requestsAdapter.

The concept SelectionProvider. 83 workbench parts register a selection
provider as compared to one in Phase 2. The difference is due to the relaxation
of the requirement that the part has to implement the ISelectionProvider

interface.

The concept SelectionListener. The feature registersBeforeDeregi-

sters, a subfeature of the feature globalPostSelectionListener. In three
cases, the order cannot be statically determined as it depends on user’s actions.
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The feature registersBeforeDeregisters, a subfeature of the feature
specificSelectionListener. In two cases, the order cannot be statically
determined as the registration depends on user’s actions; they are not false
negatives.

The concept PartListener. The feature partListener and its subfeature
deregisters. In one case, the method containing a deregistration call gets
overridden (not a false negative). In two cases, the deregistration method calls
are not in the control flow of the part (not included in Af for the feature
deregisters).

The feature registersBeforeDeregisters, a subfeature of partListener2.
In four cases, the order cannot be statically determined. In one case, the dereg-
istration call is not in the control flow of a callback method because the callback
method is overridden and not called using super. In one case, the deregistra-

FSML Feature Query Type Af Qf Mf Rf

[0..*] Part 133 133 0 100

![1] implementsIView/IEditorPart 133 133 0 100

[0..*] SelectionProvider 83 82 1 98.80

![1..*] registers getCallsCF 96 95 1 98.96

[0..*] SelectionListener 19 18 1 94.74

![1] registersA <1-*>

[0..*] globalSelectionListener getCallsCF 8 7 1 87.50

[1..*] deregisters getCallsCF 7 7 0 100

![1] deregistersSameObject argIsSameObject 7 7 0 100

[1] registersBeforeDeregisters isBeforeCF 7 7 0 100

[0..*] globalPostSelectionListener getCallsCF 10 10 0 100

[1..*] deregisters getCallsCF 10 10 0 100

![1] deregistersSameObject argIsThis 10 10 0 100

[1] registersBeforeDeregisters isBeforeCF 7(3) 7 0 100

[0..*] specificSelectionListener getCallsCF 1 1 0 100

![1] registrationPartId getArgValCP 1 1 0 100

[1..*] deregisters getCallsCF 2 2 0 100

[1] deregistrationPartId getArgValCP 2 2 0 100

![1] deregistersSameObject argIsSameObject 2 2 0 100

[1] registersBeforeDeregisters isBeforeCF 0(2) 0 0 100

[0..*] PartListener 63 63 0 100

![1] registersA <1-*>

[0..*] partListener getCallsCF 71 50 21 70.42

[1..*] deregisters getCallsCF 68 49 19 72.06

![1] deregistersSameObject argIsSameObject 49 49 0 100

[1] registersBeforeDeregisters isBeforeCF 48 47 1 97.87

[0..*] partListener2 getCallsCF 26 26 0 100

[1..*] deregisters getCallsCF 29 29 0 100

![1] deregistersSameObject argIsSameObject 29 29 0 100

[1] registersBeforeDeregisters isBeforeCF 23(4) 23 0 100

[0..*] AdapterProvider 68 68 0 100

![1] providesAdapter 68 68 0 100

![1..*] adapters getRetTypesMST 550(67) 548 2 99.64

[0..*] AdapterRequestor 35 22 13 62.86

![1..*] requestsAdapter getCallsCF 141 119 22 84.40

[1] adapter getArgValCP 119 119 0 100

Table 19 Statistics for a framework-specific model retrieved using WPI FSML
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tion occurs before registration lexically in the same block. In the last case, the
query correctly returns false and therefore one feature instance less is present
in the model. These cases are not false negatives.

The concept AdapterProvider. The feature adapters. In two cases, the
query returned a more general type than the most-specific-type. In 67 cases
the type of the returned object could not be determined statically; we did
not count these cases as false negatives. Most of them were inherited from
framework classes: 48 from WorkbenchPart, 10 from PageBookView.

The concept AdapterRequestor. The feature requestsAdapter. 19 parts
inherit six adapter request method calls from AbstractTextEditor (114 in-
stances); the remaining five requests are different. One missed method call
resides in a static method of a utility class and is used by 16 parts. For the
remaining six false negatives, helper classes are requesting an adapter. Note
that since 22 calls are missed and the feature requestsAdapter is an essen-
tial feature of the concept, 13 instances of the concept were also missed (3
out of the 16 parts that use the utility class also request another adapter and
therefore are present).

The feature adapter. We did not count values of arguments of the 22
missed method calls as false negatives because the query was not executed for
these method calls (cf. the feature requestsAdapter). In all method calls the
argument was a type literal in the form X.class, where X is the type name.

7.4 Conclusion for Phase 3

In Phase 3 we implemented the refined code queries and evaluated their ef-
fectiveness in terms of precision and recall. In Table 20 we provide execution
times and memory consumption for different settings of the search scope and
call graph type. We performed all measurements on an IBM Thinkpad with
one Pentium M 1800Mhz and 2Gb RAM running Windows XP. Measurements
marked with a star (*) were taken on a workstation with four processors Xeon
2800Mhz, 2Gb RAM, on Ubuntu Linux 7.1. We used the second machine be-
cause we were able to allocate 1500Mb of heap as compared to the maximum
of 1390Mb on the first machine. Note that the number of processors does not
deeply influence performance since our analysis is single threaded and does
not take full advantage of multiple processors. The columns Applet, Struts,
and WPI contain execution times for analysis settings specified in the column
Search scope/call graph. For WPI FSML, the numbers of features and amount
of memory used are also provided. The highlighted row provides values cor-
responding to the data presented in Section 7.3. The values in parentheses in
the column features indicate number of false negatives eliminated when using
a particular setting as compared to the highlighted row. The ± sign indicates
that the exact breakout into false negatives and false positives is unknown.
The column memory contains maximum amounts of memory (in megabytes)
allocated during the analysis using WPI FSML. We do not provide memory
usage for Applet and Struts FSMLs as the differences are not significant.
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Search scope/call graph
Applets Struts WPI

time time time features memory

hierarchyUnits/hierarchical 62s 40s 174s 1842(-98) 600 Mb

hierarchyUnits/precise 205s 61s 484s 1940 900 Mb

project/precise 318s(+2) 67s(+9) 6465s 2004(+64) 1270 Mb

project/full 394s(+2) 71s(+9)
29468s 7560(±5620) 1380 Mb

14848s∗ 7560(±5620) 1390 Mb∗

Table 20 Time and memory statistics for various analysis settings. The highlighted row
contains values corresponding to the data presented in Section 7.3.

The search scope has the biggest influence on the number of missed method
calls as all of the missed calls resided in utility or helper classes. However,
using the project as a search scope significantly increases analysis time in
WPI because of the huge number of method calls that need to be checked for
reachability from each context class. For example, in our installation of Eclipse
there are 61 selection provider registrations, 61 selection listener registrations
and deregistrations, 188 part listener registrations and deregistrations, and
985 adapter requests. In total, there are 1295 method calls that need to be
checked for reachability for each of the 133 workbench parts in the analyzed
project. Despite the significant cost of checking all method calls in the entire
project, only 57 more features related to method calls were retrieved.

For the WPI FSML, the analysis using the project/full settings retrieved
5620 additional instances of features as compared to the highlighted row. The
majority of feature instances were false positives; however, we have verified,
that 64 of those were not false positives. We verified only some of the new fea-
ture instances at random and all of them were false positives. As a comparison,
a model retrieved using the project/precise settings contained 1940 feature
instances and a model retrieved using the project/full settings contained
7560 feature instances. We can conclude that, in the case of WPI FSML, using
the full call graph is not feasible due to the large number of false positives and
long analysis time.

As described in Section 7.1, the query getArgValCP can have false positives
in certain cases, such as when a variable is assigned after it is used or a value
of an initializer is always overridden by an assignment. Those false positives
are possible since the dataflow graph service is flow insensitive. However, after
verifying the retrieved models we concluded that those cases were not found
in the analyzed code and the query did not have any false positives.

Similarly, none of the other queries returned false positives. The query
getCallsCF eliminated potential false positives by checking reachability. The
query argIsSameObject matched even if the number of assignments was greater
than one and also matched for public or protected fields. There was always a
single assignment with an object and the additional assignments, if any, were
always assigning the null literal. The public and protected fields were only
initialized and never assigned.

In Section 7.3, we observed a flaw in the definition of the callsTo pattern
type, whereby all method calls satisfying a pattern expression are matched,



37

regardless of their location. As frameworks often use their own services to
provide other services, we recommend restricting the definition of the pattern
type to only match method calls to framework services which do not reside in
the framework code. This way, matching the framework using its own services
as being used by the application can be avoided.

Finally, the weighted average recall for the refined code queries is as follows:
getCallsCF: 91.79%, getCallsRecTI: 100%, getArgValCP: 98.45%, argIs-
SameObject: 100%, isBeforeCF: 98.98%, getRetTypesMST: 99.64%, getAssgn-
New: 100%, getAssgnNull: 100%. The weighted average recall for all the re-
fined code queries is 96.69%.

8 Discussion

8.1 Threats to validity

We discuss the limitations of our study in terms of threats to the validity of
the obtained results and describe measures undertaken in order to minimize
such threats. We distinguish between internal validity, in which the elements
that might compromise the design and analysis of the study are discussed,
from external validity, which relates to the extent to which conclusions can be
generalized [24].

Internal Validity. The main threat to internal validity is related to the
measurement procedures. The queries implemented in the prototypes matched
patterns in the code. There are two situations in which errors in the queries’ im-
plementations may influence the results: i) a false negative pattern is matched
by the query and ii) a false positive pattern is missed by the query. In the
first case, the recall appears higher than in reality and in the second case
the precision appears higher than in reality. A similar problem can emerge in
the determination of the Qf and Af values for the refined queries in Phase
2, which was performed by manual code inspection. If patterns were missed,
the results would indicate precision and recall values greater than they really
were. In Phase 2, both threats were minimized by (i) having two of the authors
independently collect and compare the data and (ii) supporting the manual
inspection of code with two code query tools: JQuery [14] and the built-in
Eclipse Java Development Tools [16] search. In Phase 3, only one of the au-
thors verified the data; the author additionally used the project/precise

and project/full analysis settings to locate false negatives.
External Validity. Our study involves three input variables: frameworks,

FSMLs, and applications. The way in which instances were selected for these
variables directly affects the external validity of our results.

Frameworks and FSMLs. The construction of an FSML involves select-
ing and modeling some concepts in the area of interest. Consequently, the
results are restricted not by the frameworks and FSMLs themselves, but by
the characteristics of the chosen concepts, that is, the mapping types used
for defining them. For example, highly dynamic concepts of frameworks such
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as Java Swing prescribe the construction of complex object structures, which
are difficult to analyze statically. In the third phase, we extended the FSMLs;
however, the extensions did not significantly differ from the existing features
because they also used the available mapping types. Therefore, we claim that
only instances of the concepts whose correspondence to code patterns can be
described using the mapping types presented in this paper can be extracted
from the completion code with high precision and recall.

Applications. The selection of representative applications for each frame-
work directly influences the results of our study because the precision and recall
values are highly dependent on how the applications use the framework. In or-
der to obtain results that can be generalized, we chose not only applications
that were provided by the framework developers, but also other applications
we obtained from the internet that meaningfully use the framework (not toy
examples). The goal was to reduce the potential of bias that would come from
using only applications that strictly follow the framework examples. In Phase
3, we analyzed more applications from different sources in order to provide
more supporting evidence. It is important to note that our sample consisted
of applications that use the frameworks directly. We consider the construction
of custom layers on top of a base framework equivalent to the construction
a new framework and therefore new definitions of FSML concepts would be
necessary.

Another threat to external validity is related to the design of the study. An
ideal design would divide the applications into two disjoint sets: a learning set
and a testing set. Such a setup aims at demonstrating that the code queries
designed for the applications from the learning set generalize to different ap-
plications from the testing set. However, the design of our study was different.
In Phase 2, there was no explicit learning set: the code queries were designed
based on our experience, API documentation, and articles with code samples,
and the testing set was the initial set of applications (cf. Section 4.2). The
learning set in Phase 3 was the testing set from Phase 2. The testing set in
Phase 3 was a substantially extended version of the testing set from Phase 2 (cf.
Section 4.3). In particular, we added new applications for all three frameworks
and, additionally, we used version 3.3 of Eclipse (Europa, 2007) as compared
to version 3.2 (Callisto, 2006) used in Phase 2.

The design of our experiment compares to the ideal design as follows.
Assuming that the experience used to define the initial queries corresponds to
some implicit learning set, Phase 2 comes close to the ideal design since the
implicit learning set and the testing set were disjoint. In Phase 3, the learning
and testing sets were not disjoint; however, because (i) the testing set was
substantially extended, (ii) the precision was 100% for all applications in the
testing set, and (iii) the recall was very high (weighted average of 96%) for these
applications, we conclude that the refined code queries also worked well for
the new applications in the extended testing set. Furthermore, when manually
inspecting the code we did not see a significant increase of the number of false
negatives in the new applications, which would have indicated that the queries
worked well only for the applications that were also present in the learning
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set. It is important to note that we did not look at the new applications added
in Phase 3 when designing the refined code queries. Also, the precision and
recall for the new features added in Phase 3 were evaluated using the extended
testing set. Also note that constructing two disjoint sets of applications for the
Eclipse framework is not possible because any set of applications would always
have to include many required plug-ins that are the common dependencies.

8.2 Empirical approach to code query refinement

Our results suggest an empirical approach to code query refinement, whereby
the categorization of false negatives and false positives of a given query allows
extending the query such that the false positives from a given category are al-
ways missed and false negatives are retrieved. A good example from our study
are queries isArgPrvFieldAO and isBeforeCF. Our study shows that devising
heuristics by interpreting the data from the analysis of real applications can
lead to efficient approximate code queries that still offer high precision and
recall. This approach is in contrast to the general one, in which the pursuit
of soundness and completeness requires using very expensive analyses. The
guidelines for developers (e.g., the monkey see, monkey do rule [19]) and re-
cent research on design fragments [18] suggest that developers commonly copy
existing examples and utilize common programming micropatterns when us-
ing frameworks. Therefore, we believe, empirical query refinement can lead to
efficient code queries that provide high precision and recall when applied to
real code.

8.3 Difficulties of analyzing and understanding framework-based code

We encountered several challenges during the implementation of the refined
code queries and the execution of the study. In this section, we briefly outline
our findings.

Multiple levels of abstraction. In Eclipse, we saw that some views and
editors have up to eight superclasses, sometimes two or three of them abstract.
Typically, workbench parts also implement multiple interfaces. Parts inherit
some behaviours and override some other behaviours. In the end, it is difficult
to understand what exactly the final behaviour of the given class is. For exam-
ple, in a few cases, we saw that certain classes override a method that contains
a deregistration method call and never call the overridden method using super.
Such overrides effectively remove the implementation of a mandatory feature
and result in an API rule violation. The developers might not have been aware
of doing so.

Also, in such deep type hierarchies, the statically known type (that is, the
type binding) of the receiver of a method call is an interface or an abstract
class. Such polymorphic calls are difficult to understand and analyze because
any of the receiver’s type subclasses could potentially be the actual receiver.
Often, the actual type of the receiver cannot be statically determined.
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Nested and anonymous classes. The widespread use of nested and
anonymous classes in frameworks and framework-based applications poses
many difficulties for the static analysis of such systems and the verification
of the correctness of the analysis results.

Eclipse’s AbstractTextEditor, for instance, contains 24 nested classes and
interfaces. These nested members form inheritance hierarchies of their own,
often implementing interfaces and extending primary classes, or even extending
other nested classes. Since nested classes are allowed to call methods of their
outer classes (provided the nested class is not static) a dynamic method call
found inside a nested class must be analyzed both in terms of the nested class’
own inheritance hierarchy and in terms of the hierarchy of its outer class
because the outer class could be extended and the target method overridden.

Classes that contain many nested classes also become harder to understand.
AbstractTextEditor has almost 7000 lines of code and many inheritance
hierarchies in the same file. This makes it harder for developers to understand
and extend the code and also hinders the manual verification of the correctness
of the implemented analyses.

In Java, all nested classes, including anonymous classes, get compiled to
a separated class file. While the naming scheme for regular nested classes is
trivial, because they are named entities, compilers often differ in the nam-
ing scheme applied to anonymous classes. Our analysis relies on JDT to parse
source or compiled code and build ASTs. If the compiler with which the anony-
mous class was compiled does not use the same naming scheme as JDT, it
becomes impossible to analyze the code because JDT cannot find the corre-
sponding class file.

Another difficulty we encounter relates to the life cycle of such classes. A
static nested class and an anonymous class are very similar to a primary class
in that they have their own life cycles. However, non-static nested classes are
bound to the life cycle of their outer classes. Therefore, for all purposes, we
consider nested classes as part of their outer classes. For example, a method
call in the control flow of the nested class is considered to be also in the control
flow of the outer class. Despite the fact that anonymous classes have their own
life cycle we also consider them as part of the outer class. The rationale is that
anonymous classes are usually created with the sole purpose of implementing
a certain type with callback methods expected by the framework instead of
implementing the type directly by the outer class. When the anonymous class
executes the behaviours defined in its callback methods, we consider that it is
executing on behalf of its outer class.

Adapter requestor/provider mechanism. The adapter requestor/pro-
vider mechanism is highly flexible as it allows for unplanned interactions in
a dynamic platform such as Eclipse. Adapter providers have no knowledge
of who is using the provided adapters. Also, adapter requestors do not need
to know the details about the provider and can rely solely on the provided
adapter. However, understanding the interactions of this type is non-trivial.
The WPI FSML is an attempt to match the providers with requestors and
present the result in the form of a model to help with understanding of this
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highly dynamic aspect of the code. Our results show that such interactions
can be discovered automatically with high precision and recall.

9 Related and Future Work

In this section we describe related works grouped in the following categories.
Leveraging domain knowledge in program understanding. The idea

of using domain knowledge in program understanding is not new. DeBaud et
al. presented two case studies in 1994 that explore the relationship between
domain analysis and reverse engineering [15]. The first study uses an object-
oriented framework as a source of the domain knowledge; that is “the domain
description can give the reverse engineer a set of expected constructs to look
for in the code”. The studies were performed manually by the authors. In
comparison, in FSMLs the domain knowledge is embodied in the metamodel.
The metamodel is directly interptered during reverse engineering, which is an
automatic process.

Later, Rugaber reported on a variety of case studies conducted to evalu-
ate different domain knowledge representation approaches in the context of
program understanding: predicate logic, algebraic specifications, frame-based
knowledge representation, entity-relationship models, static object models,
and object-oriented frameworks [29]. In contrast, in this paper we show that
representing domain knowledge as FSMLs allows performing reverse engineer-
ing automatically.

General Design & Architecture Recovery. The main difference be-
tween the general design and architecture recovery tools and a framework-
specific approach is that the latter heavily relies on the framework knowledge,
which, on the one hand, allows the retrieval of meaningful and precise models,
but, on the other hand, requires designing an FSML for each framework. A
detailed comparison between framework-specific and general-purpose design
retrieval remains future work.

Generic code query tools. Current generic code query tools for Java,
such as JQuery [14], JTL [11], and CodeQuest [20] cannot query for the kinds of
behavioural patterns required for the retrieval of framework-specific models. In
particular, the dynamic pattern types presented in Table 2 cannot be retrieved.
Another difference is that generic code query tools usually build a complete
database of facts about the queried program, which, as shown in Section 2 is
not necessary. The only types of patterns that such tools could provide without
incurring a prohibitive increase in the size of the fact database are patterns
matched by the queries getArgValLC, getAssgnNull, and getAssgnNew.

Static analysis frameworks. Static analyzers, such as SOOT [32] usually
build a complete control flow graph of the application, which is a prerequisite
for many other static analyses. However, as discussed in Section 2, the analysis
of framework-based applications must be performed on-demand and in the
presence of incomplete programs. The following two works deal with the static
analysis of framework-based code. Component Level Dataflow Analysis [28]
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is an approach to the analysis of a program in the presence of large libraries,
where only the program is analyzed and the analysis relies on the availability of
summary information about the library or framework. Zhang et al. [33] propose
an algorithm for computing a call graph of an application in the presence of
callback methods.

It is also important to note that our code queries are capable of analysing
OSGi framework’s bundles. OSGi [26] is a component framework and bundles
are a kind of components. Eclipse is build on top of OSGi and Eclipse plug-
ins are OSGi bundles. OSGi provides an advanced dependency mechanism
in which bundles can specify exact versions of other bundles they depend on.
The OSGi dependency mechanism is independent of the regular Java classpath
mechanism and therefore special support is required.

Defining framework-provided concepts. We are not aware of any sys-
tematic approach to defining framework-provided concepts for the purpose of
reverse engineering other than the FSML approach [4,5]. Also, we are not
aware of any work proposing the specification of the correspondence between
model elements and code patterns using pointcuts.

Aspect Weaving Optimization. An active research topic in the aspect-
oriented programming community is the optimization of the run-time perfor-
mance of aspect-oriented programs by removing unnecessary run-time checks,
e.g., [10]. Such optimization techniques perform static analysis to determine
whether certain shadows will always or never be executed when the given
pointcut matches. Unfortunately, such analyses tend to require the complete
control flow graph of the application and thus are not applicable in the context
of FSMLs for the reasons discussed in Section 2. Therefore, while advances in
weaving optimization could be leveraged in FSMLs, currently the only feasible
solution is to use approximations in the form of code queries. We do, however,
believe that the techniques used in dynamic pointcut weaving optimization
could also be used to design code queries that provide the highest precision
and recall.

10 Conclusion

Framework-specific models describe how framework-provided concepts are in-
stantiated in the application code. Automatic location of concept instances
requires matching structural and behavioural patterns in the code, which can
be realized by code queries. In this paper, we evaluated the precision and recall
of simple and refined code queries that can be used for model retrieval. We
provided evidence that fast retrieval of high-quality models from framework-
based application code is feasible for concepts whose correspondence to code
patterns can be defined using the presented mapping types. The average recall
of the refined queries for behavioural patterns is 96% and the precision is 100%
for the analysis settings we used in Phase 3. We also showed that it is possible
to achieve greater recall at the expense of analysis time without sacrificing the
precision.
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A Applications used in the third phase

A.1 Applets

The set of applets used in the study consists of 84 applets. The applets are divided in four
groups.

– 20 aplets examples shipped with Suns JDK;

– 51 applets obtained from the internet by George Fairbanks and used in his study of
design fragments: ANButton, Antacross, AquaApplet, BlinkingHelloWorld2, Brokered-
Chat, Bsom1,ButtonTest, Client, ConsultOMatic, ContextTestExecutor, Demograph-
ics, DotProduct, Envelope, ErrorMessage, Fireworks, FormelnApplet, GammaButton,
Geometry, HelloTcl, HitMeter, HmFetcher, Iagttager, InspectClient3, JScriptExample,
KeyboardAndFocusDemo, LinProg, MarchingAnts, MouseDemo, MyApplet, MyApplet,
NickCam, ScatterPlotApplet, Scope, SilentThreat, SimplePong, SimpleSunApplet, Smt-
pApp, SuperApplet, SwatchITime, hyperbolic.Test, TetrisApp, URLExampleApplet,
ungrateful.Ungrateful, ungrateful.OutPanel, UrcrcCalendar, VeChat, notprolog.WPro-
logGUI, notprolog.WProlog, WebStart, YmpyraAppletti, CaMK;

– 8 applets by R. Bowles: Bioquiz, Calculator, Crystal, Frogs, LightRays, Mandel, Mas-
termind, Starscape; and

– 5 applets from three open-source project (SourceForge): JugglingLab (3 applets), snirc
1.0 (1 applet: Chat), sudoku (1 applet: Main).

A.2 Struts

The set applications used in the study consists of 6 applications.

– 2 example Struts applications shipped with the framework: Cookbook and Mailreader
1.3.8;

– 1 large, open-source, production quality application: Apache Roller Weblogger 3.1; and

– 3 small, open-source applications: Ajax Chat 1.2, Beer4all, and Pools 2.5.
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A.3 Eclipse

We created a single plug-in which depends on 227 plug-ins from our custom Eclipse Europa
installation. Here we list only the main features: Eclipse 3.3.2, Ant 1.7, EMF 2.3, Help
3.3.2, JDT 3.3.2, Jsch 0.1.31, PDE 3.3.2, Team 3.3.2, WST Common 2.0.2, IBM ICU 3.6.1,
TeXlipse 1.2.1, JUnit 3.8.2, GEF 3.3.2, Jetty 5.1.11, Jasper 5.5.17, Lucene 1.9.1, ASTView
1.1.3, JEView 1.0.4.


