
Improving Usability of the Linux Kernel Configuration
Tools

Kacper Bak
Generative Software Development Lab

University of Waterloo, Canada
kbak@gsd.uwaterloo.ca

Karim Ali
PLG Group

University of Waterloo, Canada
karim@uwaterloo.ca

ABSTRACT
Tailoring a Linux kernel to one’s needs has been one of the
most cumbersome tasks a GNU/Linux user can do. There
have been many attempts to overcome this problem by in-
troducing smarter configuration tools. Those tools, however,
still lack some important features which discourages users
from using them. In this project, we address the problem of
usability of the Linux kernel configuration tools. We iden-
tify the major usability issues with current tools, propose a
better user interface, and evaluate it on a group of Linux en-
thusiasts.

Author Keywords
usability, linux, kernel, configuration

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Miscellaneous

INTRODUCTION
GNU/Linux is a free operating system with Linux as its ker-
nel. The Linux kernel 1 is a mature and very complex piece
of software. It has been developed by thousands of program-
mers led by Linus Torvalds since 1991. The kernel supports
a variety of computer architectures, network protocols, thou-
sands of drivers, and many debugging options.

The structure of the kernel is very modular such that each
user can tailor it to her particular needs and specific hard-
ware. Recent research [12] has shown that the whole ker-
nel is composed of almost 5500 features, of which 89% are
user-selectable. Thus, the variation space is huge and the
configuration process requires a broad computer knowledge.
Users can configure the kernel by either manually editing the
.config file or by using some configuration tool (i.e. menu-
config, xconfig, gconfig). The first option is discouraged,
because it is very error-prone due to the lack of automated
constraint validation/propagation. Using a configurator is a

1Available at: http://www.kernel.org/

Submitted for CS 889 - Open Source Usability.

better solution, but it is still a laborious process. Although
existing configuration tools have been evolving for over a
decade, the progress is reasonably slow compared to other
parts of the kernel. Usability seems to have a low priority
on developers’ task lists. To address this issue, we started
a course project aimed at making the configuration process
easier and more intuitive for Linux enthusiasts.

The project went through three major stages as shown in Fig-
ure 1. First, we carried out an initial user study to identify
the major usability issues with the current Linux kernel con-
figuration tools. We then proposed some alternative design
mockups for our tool prototype, lkc (Linux Kernel Configu-
ration), based on the feedback we got from the participants.
Second, we carried out a user study to get comments and
constructive feedback on these design mockups. According
to the feedback, we reflected user suggestions and remarks
in the implementation of lkc. Finally, we did a final user
study to evaluate our prototype and compare it to xconfig.
General reactions of the test group were positive and partic-
ipants saw lkc as an improvement over the standard tools as
it is simple and intuitive to use. In addition, the participants
of our final user study appreciated the two-way navigation
we proposed: free navigation and wizard-based navigation.
The participants also liked the proposed statistics panel be-
cause it gave them an idea of how their current selections
reflect on the overall status of the kernel that will be config-
ured using the generated configuration file. We believe that
our findings will help in creating better configuration appli-
cations not only for the Linux kernel, but also for other kinds
of variability models.

The rest of this paper is organized as follows. We first de-
scribe the problem domain. We then present the results of
our initial user studies which evaluate the current tools and
our design mockups. Afterwards, we explain how we reached
the design of lkc. We next present the results of our final user
study which evaluates lkc in comparison to xconfig. We
then discuss possible future work. Finally, we present some
related work and end the paper by some concluding remarks.

PROBLEM
Users configure operating system kernels for several rea-
sons. Usually, they want to customize kernels to specific
hardware or to particular needs. This scenario is very com-
mon in embedded systems such as network routers where
hardware resources are very limited. By carefully selecting
options, one can improve system stability or functionality.

1

http://www.kernel.org/


Figure 1. Different project stages

Although many configuration options are related to hard-
ware and device drivers, there is also a large group of op-
tions that change the way operating system works. A good
example is the preemptible scheduler that makes Linux a soft
real-time operating system. Such a scheduler is desirable for
digital signal processing; e.g. for recording and transform-
ing signal from the guitar.

The majority of users configure kernels without even real-
izing this fact. We distinguish between two types of kernel
configurations: static and dynamic. In the former method,
software is customized before compilation such that only
chosen pieces of code are compiled. It results in a smaller
program footprint and faster compilation. On the other hand,
the latter configuration requires that device modules should
be built and compiled seperately. Modules then can be dy-
namically loaded/unloaded to/from the kernel. In many mod-
ern distributions users are provided with fully functional ker-
nels which they do not have to compile themselves. Instead,
they dynamically customize the software by loading relevant
modules. The disadvantage of the second method is that
preparing such a big kernel takes a lot of time and resources.
Furthermore, it is infeasible to apply it to embedded systems.

Regardless of the configuration type, there is still need to
customize the software. Although this task can be done man-
ually, most users prefer to use automated and intuitive tools
that could guarantee that the system works properly. Un-
fortunately, the software currently used for kernel configura-
tion is neither fully automated nor easy to use. In addition,
static and dynamic configurations are two separate mecha-
nisms, and are supported by completely different programs.
Static configuration is done by the Linux Kernel Config-
urator, while dynamic configuration is done by adding or
removing compiled modules using other tools (e.g. mod-
probe). In our opinion, the two worlds can be merged to
provide a single user interface.

Linux kernel configurators are targeted towards advanced
users. Some kernel developers believe that the kernel should
be configured by experienced users only [10]. While this
statement might be true, there are still lots of Linux novice
or less experienced users who want to learn how to con-
figure a kernel or need to compile/load a particular driver.
Currently, there are many web pages describing how to con-

figure and compile the Linux kernel. Novice users are of-
ten overwhelmed by the number of available options and
required knowledge. To understand the current challenges
of configuring a kernel, we carried out an initial study on a
group of Linux users.

USER STUDIES
Througout the three user studies we carried out, we had eight
participants. Six of which participated in the initial user
study, seven in the design mockups evaluation study, and five
in the final user study. Table 1 gives an overview of the par-
ticipants of our user studies, their previous experience with
system configuration tools, and the studies they participated
in.

Initial User Study
The six users who participated in this study were divided
into two groups, each was asked to statically configure the
Linux kernel to support certain machine hardware. The first
group of users (P1, P2, and P3) was asked to configure a
Linux kernel that would run on a Lenovo T500 laptop with
the following hardware installed: Intel Core 2 Duo proces-
sor, 2.5GB RAM, SATA HDD, Intel network card and WIFI
+ Bluetooth, Ricoh card reader, and DVD+/-RW. The task
for this group was attempted on a laptop with these same
specifications, and running Arch Linux as the primary OS.
The second group of users (P6, P7, and P8) was asked to
configure a Linux kernel that would run on a desktop ma-
chine with the following hardware installed: ATI Technolo-
gies Inc SB700/SB800 USB controller, ATI Technologies
Inc Sbx00 Azalia (Intel HDA) audio device, ATI Technolo-
gies Inc Radeon 3100 graphics card, Realtek RTL8111/8168B
PCI Express Gigabit Ethernet Controller (rev 02), and 4GB
of RAM. The task for this group was attempted on a desktop
with these same specifications, and running Ubuntu 10.04
Lucid Lynx. This study was carried out in the same lab en-
vironment where the participants usually work (university
labs).

Both groups used the standard xconfig tool that comes with
the Linux kernel. xconfig presents a list of options in a
tree structure composed of categories and options. A per-
son succeeded if the new kernel was ready to play music
and movies, connect to Ethernet, use WiFi, memory cards,

2



Participant Code Experience with OS configuration tools User Studies

Used
Before? Examples Purpose Initial User

Study
Design Mockups

Study
Final User

Study

P1 X Windows, Mac
and xconfig

basic OS
options X X X

P2 X Windows, Mac
and Linux

basic OS
options X X X

P3 X Windows basic OS
options X X X

P4 X Windows, Mac
and Linux

basic OS
options - - X

P5 - - - - X -

P6 X Windows
configure

control panel
options

X X X

P7 X Windows, Linux

configure
control panel

options,
compile new
Linux kernels

(using
menuconfig)

X X -

P8 X Windows
configure

control panel
options

X X -

Table 1. An overview of the participants in our user studies

USB devices, Bluetooth, and CD/DVD. This scenario seems
reasonable, because in many Linux distributions, users have
to fine-tune their configurations to make the whole system
work as expected. None of the subjects succeeded in com-
pleting the task without asking us for further assistance. We
observed many problems that people faced during the con-
figuration process. It is worth noting that our participants
had previous experience with Linux, and claimed to be ad-
vanced computer users. Our findings can be categorized as
follows:

Menu hierarchy All participants had problems with select-
ing drivers for the given machine hardware. First of all,
the tool showed the whole menu hierarchy, and people
said they were overwhelmed by thousands of options (Fig-
ure 2a). Several of them started by collapsing all menus
such that only top-level categories were visible. Further-
more, the tree/sub-tree relationship was confusing. It was
unclear whether marking the checkbox beside a parent
option implies the selection of the required functionality
only or whether additional sub-options will be selected as
well. Besides the familiar empty and filled checkboxes,
the tool showed some boxes with dots inside. This meant
that the option will be compiled, but as a dynamically
loadable module. Many users did not understand that.

Option names and descriptions Cryptic names were another
source of problems (Figure 2b). The existing infrastruc-

ture uses option names that make sense to programmers
and kernel hackers, but are hard to understand for less ex-
perienced users. Unfortunately, the descriptions were not
very helpful since they often explained implementation
details instead of end-user functionality. Participants ex-
pected to see what an option means to them, and whether
the device driver is appropriate for their hardware. In
many cases, it was difficult for our participants to set the
options compatible with the given hardware devices due
to these cryptic descriptions.

Searching The huge hierarchy of options and cryptic names
make it very hard to find a particular feature. All par-
ticipants used the search option in xconfig. Searching
worked very poorly since feature descriptions were not
included in the search space of the tool (Figure 2c). Peo-
ple expressed their frustration and often used Google to
match modules with hardware, and later select the mod-
ule in xconfig. Google was also used to find a list of the
drivers required by the laptop. For all users, querying a
web search engine was easier than running system tools
to discover hardware devices.

Configuration We carefully observed how users used cur-
rent tools to configure a large piece of software. Most of
them were jumping between different categories as they
tried to locate modules. One person, who had experience
with kernel configuration tools, started the menuconfig

3



(a)

(b)

(c)

(d)

Figure 2. xconfig usability problems

program which performs wizard-like configuration. The
problem with this tool was that the user could not jump
between categories, and had to answer many irrelevant
questions. After a while, the participant switched back to
xconfig. Users had problems with selecting appropriate
device drivers. When they were unsure about which mod-
ule to choose, they selected all the modules that seemed
relevant.

The initial study was a necessary step to discover user ex-
pectations and needs. It led us to the following conclusions:

1. The menu hierarchy should be as simple as possible. There
are far too many options that could be reduced automati-
cally if the configuration tool targeted a specific user group
(novice and intermediate users), and had good reasoning
capabilities.

2. Feature names and descriptions should reflect end-user
functionality instead of low-level details.

3. Powerful searching capabilities are crucial as the number
of configuration options grows.

4. Automatic hardware detection and kernel autoconfigura-
tion is important since the majority of kernel options are
related to hardware drivers.

The problems mentioned above can be fixed by improving
the application’s backend and creating a more intuitive user
interface. Our project focuses on constructing a GUI that
would be intuitive, simple and targeted to a specific group of
users (novice and intermediate users).

Design Mockups Evaluation
According to our findings from the intial user study, we de-
cided that lkc should be built to help novice and intermedi-
ate Linux users configure a Linux kernel without burdening
them with many of the unnecessary details involved in such
a process. We designed several mockups that reflect this vi-
sion for such a tool. Initially, we thought that once the tool is
launched, it should first fetch the current Linux kernel con-
figuration, then detect the currently connected hardware. A
dialog box (splash screen) should be shown to the user at
that time to show the progress of these processes. Figure 3
shows four different mockups for that dialog box.

We carried out a second user study that included seven par-
ticipants (P1, P2, P3, P5, P6, P7, and P8) to get feedback
on which aspects in our design mockups were appealing to
them, and which were not. That study led us to draw the
following additional conclusions:

5. Users always like to know what is going on. In other
words, they did care about getting more information about
what the tool is doing while the progress bars are being
filled up.

6. Although users appreciate access to more information, they
do not prefer such information to be displayed by default.

7. It is highly desirable to have the tool report any crashes
that occur during the hardware detection process.

In addition to showing the participants of this user study
some mockup designs for the splash screen of our tool, we
also showed them some mockup designs for lkc itself. Fig-

4



(a) (b)

(c) (d)

Figure 3. Splash screen design mockups

ure 4 shows the various mockups that were shown to the par-
ticipants of this study. The feedback we got from the users
allowed us to also deduce the following:

8. Almost all users liked having helpful descriptions for the
various kernel features they can select.

9. Easy navigation through the various categories of features
was also on top of their desirable design features.

10. The fewer the number of categories were, the easier it was
for the users to find features.

11. Some users did not like the wizard-based design (Figure
4d) because it did not offer easy navigation through fea-
tures and did not provide a search feature.

12. Most users liked the fact that they were presented with a
summary of the configuration file at the end of the process
with the ability to review it and maybe modify it before
quitting the application.

13. Although many users were not in favor of the wizard-
based design, they did like the question format that was
presented in that design. The reason is that it gave them a
better understanding of the effect of selecting/deselecting
features.

LINUX KERNEL CONFIGURATION TOOL

Splash Screen
According to the feedback we got from our second user study,
we designed the splash screen of our prototype tool, lkc, as
shown in Figure 5. The user will be asked whether she wants
to detect the current hardware or not. If she answers yes, she
will be presented with the dialog shown in Figure 5a. The
list of tasks along with the progress bar gives the user an

idea about the task that the lkc is currently doing. Thus, we
satisfy conclusion#5. If the user would like to get more in-
formation, she can click on the Information button. The user
will then be presented by a scrollable text area that shows the
current action (e.g. Detecting device ... dev 40). This text
area is hidden by default to satisfy conclusion#6. In case of
a crash, the text area will show the user more information
about the possible causes of the crash and the progress of
the tool so far. Therefore, the design satisfies conclusion#7.

lkc Tool
Based on our conclusions from the second part of our sec-
ond user study, we designed a prototype for lkc as shown
in Figure 6. The figure shows various steps during the pro-
cess of a configuring a Linux Kernel. The design of lkc is
a mixture between the tree-based design (Figure 4c) and the
wizard-based design (Figure 4d). The rationale behind this
mixture is that we tried to get the best out of the two de-
signs because they were the two most appreciated designs
among the participants of our second user study. Having
such a design allows users to go through the step-by-step
configuration process that the wizard design provides while
still enjoying the comfort of free navigation through the var-
ious categories of features using the left panel. Therefore,
we satisfy conclusion#9. We also tried to provide the users
with as few categories as possible and label them with less
cryptic names than the ones used in current Linux kernel
configuration tools (e.g. xconfig). No matter how the user
navigates through the categories of features, she will always
be presented with a question related to the currently viewed
category. The answer to this question reflects on how the re-
lated kernel features will be configured. Therefore, the user
does not have to directly deal with setting/unsetting kernel
features, but can rather focus on answering questions that
better match her usage of the machine she wants to compile

5



(a)

(b)

(c) (d)

Figure 4. lkc design mockups

this kernel for. Thus, the design satisfies conclusion#13. The
menu bar at the top of the application window provides the
user with fast access to tasks like:

1. Starting a new configuration process.

2. Opening a previously saved configuration file.

3. Saving the current configuration to a file on disk.

4. Keyword searching within the feature names, descriptions
and help text.

5. Switching to an advanced mode where the user will be
able to use xconfig instead of lkc to complete the config-
uration.

6. Navigating through the categories of features presented in
the left panel.

We also added a panel that shows the statistics of the kernel
that will be compiled using the currently selected features.
Statistics include:

1. Progress of the current configuration session.

6



(a)

(b)

Figure 5. Splash screen prototype

2. Total kernel size based on the currently selected set of fea-
tures.

3. Total number of features.

4. The stability of the kernel to be compiled by the gener-
ated configuration file. This is based on the least stable
selected kernel feature.

In addition to statistics about the whole kernel, lkc also shows
information about each feature when selected. The informa-
tion is about the effect of selecting this feature on the to-
tal kernel size, and how stable that feature is. Moreover,
lkc shows a panel at the very bottom that lists all the con-
flicts that are currently found in the configuration. However,
this feature has not been implemented yet due to time con-
straints.

The first step that the user will encounter using lkc is the
welcome screen (Figure 6a) where there is an explanation of
how the tool can be used to configure a Linux kernel. The
explanation includes some notes about the defaults options,
how to navigate through categories, and what to do when the
user is done. Therefore, we satisfy conclusion#8. Depend-
ing on the selections that the user makes in the subsequent
screens, some categories of features (from the left navigation
panel) will be skipped by the Next button because they are
irrelevant to the user’s choices. However, if the user thinks
otherwise and would like to change some of the features in
such categories, she can navigate to any of those categories
using the left navigation panel. Once the user feels comfort-
able with the configuration, she can save the configuration
to a file on disk using the Save button in the menu bar at the
top. Alternatively, she can go on with all the steps, then get

a summary of the configuration options she selected before
saving the configuration to a file on disk. Thus, the design
satisfies conclusion #12.

Implementation
The implementation of lkc separates the graphical user de-
sign from the code that actually manages that design. We
used Glade [5], a rapid application development tool for GTK+
and GNOME, to design the interface of the prototype. Glade
is Free Software released under the GNU GPL License. There
are many language bindings that facilitates re-using the same
Glade design with different languages. We chose to work
with the Java bindings for Glade [6] because we are more
familiar with that language which makes the process of pro-
totyping easier and faster. We used Eclipse [3] as our inte-
grated development environment (IDE) to produce the Java
code that will manipulate the interface designed with Glade.

All the work we have done so far for this project including:
source code files, mockup designs, reports, presentation and
this report are available online at our github repository [7].

EVALUATION
We carried out a final user study to evaluate the usability
of lkc and compare it to xconfig. We had two possible ap-
proaches to choose from to do this study. The first option
was to provide the participants with a list of desired kernel
features and a list of hardware to be supported. We would
then ask the users to configure a kernel using lkc to sup-
port such a configuration. We would observe any usabil-
ity problems the users might encounter during that process.
The disadvantage of this approach is that we will not get to

7



(a) (b)

(c) (d)

Figure 6. lkc tool prototype

compare lkc with the currently available kernel configura-
tion tools (e.g. xconfig). The other approach was to provide
the participants of our study with both tools, lkc and xcon-
fig. We would then proceed with the same steps as in the first
option. However, this way we can compare the usability of
lkc with that of xconfig. We opted for the second approach.

We were able to get five users (P1, P2, P3, P4, and P6) to par-
ticipate in our final user study. Each one was presented with
a usage scenario that involved configuring a Linux kernel to
support a machine that has the following hardware installed:
ATI Technologies Inc SB700/SB800 USB controller, ATI
Technologies Inc Sbx00 Azalia (Intel HDA) audio device,
ATI Technologies Inc Radeon 3100 graphics card, Realtek
RTL8111/8168B PCI Express Gigabit Ethernet Controller
(rev 02), and 5GB of RAM. Each user had to configure the
kernel using two tools: xconfig and lkc. Users (P1, P3) were
presented with xconfig first, while users (P2, P4, P6) were
given lkc first. Each user spent an average of 15-20 minutes
using each tool.

Findings

xconfig
In general, users (P1, P2, P6, P7, P8) complained about hav-
ing too many options to configure. The way the options are

categorized and laid out confused them even more. In addi-
tion, users did not find the searching capabilities in xconfig
to be useful at all. The reason is that the search tool only
matches substrings in the configuration parameter names ig-
noring the description and help text provided. Some users
(P1, P2, P3, and P7) resorted to Google instead to find the
which kernel parameters they are after.

Hardware configuration was also a consistent source of frus-
tration to most of the users (P1, P2, P4, P6, and P8). It was
always hard to find drivers in the kernel options. Moreover,
it was difficult to match hardware with kernel module names.

lkc
The positive feedback we got from users was that lkc is defi-
nitely an improvement compared to xconfig (P1). Users had
various reasons to make such a statement. In general, com-
ments stated that the prototype is simple (P3) and intuitive
(P2). Additionally, users (P1, P2, P4, and P8) really appre-
ciated the two-way navigation: free navigation through the
left panel, and wizard-based navigation through Back/Next
buttons. Users (P2, P4, and P8) also appreciated the statis-
tics panel because it gave them an idea of how their current
selections reflect on the overall status of the kernel that will
be configured using the generated configuration file. Finally,
hiding unnecessary details and not overwhelming users with

8



an explosion of features was another source of appreciation.

On the other hand, some users experienced difficulties using
lkc. One user (P2) did not know the meaning of features
in the statistics panel. Two users (P3 and P8) did not quite
understand what stability means lkc. The option Minimal
configuration was rather confusing for one of our users (P4).
Finally, one of the users (P1) commented on the fact that the
study we carried out was biased because it was easy to ac-
complish the task just by answering the questions provided
by the tool.

Threats to Validity
External Validity
We could only get six users to participate in our final user
study. This might not be a good sample of the whole popu-
lation. Therefore, it would be great to have the opportunity
to include more participants in that study to be able to gen-
eralize our conclusions.

Internal Validity
Opting for the second approach was risky in the sense that
we felt it will be biased to lkc. The reason is that in lkc if
users have a list of desired kernel features, they can easily
find them by browsing the categories. However, that is not
the case for xconfig where users will have to search for such
features and enable them. To reduce such bias, we decided to
provide the users with a hypothetical scenario of a user and
how he actually uses his machine, along with the hardware
configuration of that machine. We then asked the users to
help that person out by configuring a kernel that will support
his machine usage and hardware.

Although this scenario seems to reduce the bias as we ex-
pected, one user did note that the study was biased to our
tool. However, from the comments of that user we under-
stood that the reason behind their claim is the question for-
mat used by lkc. However, as we previously mentioned, the
question-based configuration usually gives the user a better
understanding of the whole process.

Limitations
The main focus of our project is to design a Linux kernel
configuration tool aimed at resolving the usability issues that
users experience with current tools. Therefore, implement-
ing all possible features in lkc was not as important as the
process of designing the user interface. As a result, we de-
cided not to implement the hardware autoconfiguration part
of lkc although it can be implemented using some of the cur-
rently existing tools (e.g. lspci, lsusb, lscpu).

Another limitation of lkc is its scalability. In other words,
lkc only offers a subset of the options that are available to
configure a Linux kernel while it should be capable of of-
fering all the options a user might require. One possible ap-
proach is to ask the user to select a usage profile (e.g. laptop,
desktop, server, etc) once lkc is launched. The options that
will be presented next will be filtered out accordingly. If the
user would like to have access to an option that is not pre-
sented by lkc, it can be made available through the search

box. Such information should definitely be included in the
documentation and the help of lkc. This approach however
requires carrying out more user studies to come up with a set
of usage profiles that represent most of our target user base.

FUTURE WORK
We got a very rich feedback from the participants of our final
user study about the design of lkc. Implementing some of
those suggestions would add more value to lkc. The design
suggestions include the following:

1. Provide progressive disclosure to accommodate both ad-
vanced and less experienced users.

2. Have the ability to re-detect hardware.

3. Provide info about detected hardware.

4. Change the position of the Save button.

5. Always enable the Finish button. When clicked, it should
show a dialog with three options: Save & Quit, Save, and
Cancel.

6. Move the Previous/Next tool bar buttons closer to the left
panel because they control its navigation.

7. Keep the history of changes to the configuration file.

8. Resolve conflicts.

Finally, it would be interesting to have a fully functional
application with all the desired features implemented. The
FOSS community can then use it for real life scenarios and
give us feedback about the feature set it provides, and its
design.

RELATED WORK
All the Linux kernel configuration tools are front-ends built
on top of a single engine called Linux Kernel Configurator
(LKC). LKC analyzes kernel variability and supports users
during the configuration stage. Internally, LKC uses the
KConfig language to represent variability and dependencies
among features. A well-understood feature model for the
Linux kernel features should always yield a practical well-
crafted variability model for the Linux kernel [13, 12]. In
contrast with formal feature models, LKC is not supported
by any formal reasoning engine (e.g. SAT-solver). This is
a serious problem, because users can unconsciously create
wrong configurations while having no clue why a particu-
lar configuration does not work. The Linux kernel commu-
nity can benefit from adopting well-researched feature mod-
els which can make their tools more reliable and usable.

Improvements of kernel configuration tools were introduced
in 2002 when Eric S. Raymond presented the CML2 config-
uration system [11]. It allows for effective reasoning on ker-
nel feature model and also provides progressive-disclosure.
There was a long debate and flame war about using that sys-
tem [9]. It was rejected for various reasons, such as Eric S.
Raymond’s attitude, its Python dependency, its complexity,
and its radically new design. Many Linux developers prefer

9



to introduce gradual updates to the kernel instead of apply-
ing one big patch.

eCos [1] is an open source real-time operating system. It
was designed to be configurable and to run on a wide va-
riety of hardware platforms. Similar to the Linux kernel,
eCos comes with configuration tools. The eCos configurator
is much more advanced, and arguably better-thought, since
it can detect conflicting options and guide users to resolve
them. The eCos Configuration Tool has many features, but
presents them in a single tree hierarchy. In comparison with
our tool, eCos features are often low-level and very techni-
cal. Additionally, the eCos Configuration Tool does not offer
any wizard so users must have expertise if they want to skip
irrelevant categories.

Hardware autodetection and kernel configuration is a recur-
ring problem [2, 14]. Many users complain about the lack
of it. The situation is slowly improving as developers added
the localmodconfig 2 target to Linux-2.6.32. The command
detects current kernel configuration and applies the same op-
tions to the new kernel. It is a step ahead, but the tool is very
simplistic and assumes that all the required modules are al-
ready loaded. For example, if a computer has built-in Blue-
tooth, but the module is not loaded, the new kernel will not
support the Bluetooth device. Furthermore, the autoconfigu-
ration script offers a very coarse level of options’ granularity.
For example, if a computer has one sound card, such as In-
tel HD Audio, the script will select all available sound card
drivers and all Intel HD Audio modules. The autoconfigu-
ration tool reads configuration of the running kernel instead
of detecting the actual hardware. For example, for a laptop
with a Core Duo 2 processor, it selects the 686 processor
in the new kernel, because that processor is selected in the
running kernel.

Debian GNU/Linux device driver check & report [8] is an
interesting project that helps with matching kernel modules
with hardware. It reads output of lspci command, and re-
turns a list of driver names. The project is in fact a big
database that stores user’s knowledge about the hardware.
It could be utilized by the configurator to automatically se-
lect relevant modules if autodetection fails. Currently, the
database aggregates only information about PCI devices, and
does not support ISA, USB, IEEE1394 or other hardware.

System configuration is a necessary, but difficult process.
lkc tried to simplify it by asking as few questions as pos-
sible and targeting a specific group of users (novice and in-
termediate Linux users). Frank Spillers suggests a similar
approach [4]. The author goes even further saying that soft-
ware shall configure itself automatically. However, mak-
ing a configuration-free kernel on any platform seems rather
impossible due to requiring extra knowledge that is not in-
cluded in configurators.

CONCLUSION
The Linux kernel is a complex piece of software that is highly
customizable which might overwhelm novice and interme-
2More info at: http://bit.ly/cPgq8R

diate users. Currently available tools do not provide an ade-
quate solution for them. The results of our user studies show
that users (even advanced users) prefer to have some features
available in a typical Linux kernel configuration tool. Such
features include: free navigation, few categories of features,
understandable (and helpful) description text, useful search
tools, automatic hardware detection.

REFERENCES
1. J. D. Bart Veer. The eCos Component Writer’s Guide.

2000.

2. Debian User Forums. Is there an automatic .config
generator for kernel 2.6.33.4?, 2010. Accessed: August
10, 2010.

3. Eclipse Foundation. Eclipse, 2010. Accessed: August
10, 2010.

4. Frank Spillers. Configuration Hell- The Case for the
Plug and Play User Experience, 2010. Accessed:
August 10, 2010.

5. GNOME. Glade - A User Interface Designer, 2010.
Accessed: August 10, 2010.

6. GNOME. The java-gnome User Interface Library,
2010. Accessed: August 10, 2010.

7. Kacper Bak, Karim Ali. lkc, 2010.
http://github.com/kbak/lkc.

8. Kenshi Muto. Debian GNU/Linux device driver check
& report, 2010. Accessed: August 10, 2010.

9. Kernel Trap. Linux: CML2, ESR & The LKML, 2002.
Accessed: August 10, 2010.

10. Linux-Kernel. Aunt Tillie builds a kernel (was Re: ISA
hardware discovery – the elegant solution), 2002.
Accessed: August 10, 2010.

11. E. S. Raymond. The CML2 Language:
Constraint-based configuration for the Linux kernel
and elsewhere. 2000.

12. S. She, R. Lotufo, T. Berger, A. Wasowski, and
K. Czarnecki. Variability model of the linux kernel. In
VaMoS’10, pages 45–51, 2010.

13. J. Sincero and W. Schröder-Preikschat. The linux
kernel configurator as a feature modeling tool. In
ASPL’08, pages 257–250, 2008.

14. Soft32 Linux User Forums. kernel autoconfig option?,
2007. Accessed: August 10, 2010.

10

http://bit.ly/cPgq8R
http://github.com/kbak/lkc

	Introduction
	Problem
	User Studies
	Initial User Study
	Design Mockups Evaluation

	Linux Kernel Configuration Tool
	Splash Screen
	lkc Tool
	Implementation

	Evaluation
	Findings
	xconfig
	lkc

	Threats to Validity
	External Validity
	Internal Validity

	Limitations

	Future Work
	Related Work
	Conclusion
	REFERENCES 

