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1 Introduction

Persuasive technology is a growing field of research that should be able to change
both the way we interact with computers, mobiles and electronic systems in
general, as well as influence changes to our lifestyle. Persuasive technology in
healthcare, for example, is believed to have a great potential to radically change
behavior of patients towards prevention and treatment, as well as access to in-
formation.

Systems that are able to interact with users through personalized messages
are very important in this field, as personalization is believed to improve per-
suasiveness and effectiveness of rhetoric [17, 15]. Personalization requires the
modeling of the user, and of the tailorable message. However, we have not seen
a formal notation and semantics for these models. Evermore, the generation
(instantiation) of personalized messages given the user configuration and the
message model still has to be manually programmed for every new user and
message model.

The general problem of modeling variability is well known in the field of
automated software engineering, which tries to automate production and main-
tenance of large software systems. In practice, many of the systems provide
similar functionality but can be tailored on demand. So called software prod-
uct lines represent families of related, but customizable, software systems built
from shared components. Is is easy to see that there is a direct correspondence
between modeling software variability and tailored messages in persuasion.

Feature modeling is a standard technique used for capturing commonalities
and variabilities in software product lines. Feature models are usually represented
in various visual notations basing on FODA [14]. Typically they are depicted
as tree structures with additional constraints specifying relationships between
parent feature and its subfeatures.

In this work, we present how feature modeling can be used to formalize the
user and message models of tailored messages. Furthermore, we present Clafer,
a notation for representing these models, which which can be used to create
an interpreter to generate personalized messages given any user and document
model. We will also present an instance of the user and document models based
on data that will be provided to us. Finally, we describe how to easily build a
proof of concept tool that allows automatic generation of tailored messages given
a user and document model, using existing infrastructure.



The paper is organized as follows. We introduce feature modeling and discuss
its extensions in Sect. 2. We then formalize variation space of tailored messages
in Sect. 3. We present Clafer in Sect. 4. Sample variation spaces are modeled
in Clafer in Sect. 5 and Sect. 6. In Sect. 7 we give overview of existing feature
modeling infrastructure. We discuss related work in Sect. 8 and conclude in
Sect. 9.

2 Feature Models

Feature models were introduced by Kang [14] to represent and model software
products available in a family of software products — a software product line —
where products are represented by a set of features. A valid set of features in a
software product line compose a valid product, also known as a configuration.

Feature is an abstract and overloaded term. For software product lines, we
think the most appropriate definition is “an increment in program functionality”
[13]. This definition can easily be used to describe features for other domains
other than software. As an example, lets consider a product line of automo-
biles with the following features: manual transmission, automatic transmission,
leather seats, heated seats, cd player, tape and radio. Each one of these features
add some sort of “functionality” to the automobile product.

Given the above features, we shall now describe the available automobile
products that a hypothetical manufacturer produces: automobiles may have ei-
ther manual transmission or automatic transmission; leather seats and heated
seats are optional; cd player and tape are optional; if cd player or tape is selected
then the automobile also has a radio; if an automobile has heated seats then the
transmission must be automatic.

The above textual description of the automobile product line is a set of
constraints on the features, where only valid products — configurations — adhere
to the constraints. Feature models are therefore a visual notation for formalizing
these constraints. Figure 1 shows a feature model that represents the automobile
product line.

Manual Automatic

Transmission

Leather seats Heated seats

Seats

CD Player Tape

Radio

Automobile

Heated seats → Automatic

Fig. 1. Feature model for automobile product line

2



Transmission ↔ Automobile1
Seats ↔ Automobile2
Radio → Automobile3

(Manual ∨ Automatic) ∧ (Manual → ¬Automatic) ∧ (Automatic → ¬Manual)4
Leather seats → Seats5
Heated seats → Seats6

CD Player ∨ Tape7
CD Player → Radio8

Tape → Radio9
Heated seats → Automatic10

Fig. 2. Propositional formulas for the automotive feature model

As can be seen in Fig. 1, feature models are represented by a feature diagram:
a hierarchy of features and special links between features with different symbols.
Both hierarchy and symbols add constraints to the feature model. Hierarchy
specifies that for every feature that is selected (except the root feature), its
parent must also be selected. For example, it is not possible to have leather
seats without seats.

As for symbols, a white ball specifies that the feature is optional, as are
leather seats and heated seats. Black balls specify that the feature is mandatory,
i.e., a car must have transmission and seats. Arcs specify constraints on groups
of features: white arcs are exclusive-or constraints, i.e., a transmission must be
manual or automatic; black arcs are or groups, where at least one feature must be
selected, i.e., the radio must have at least a cd player or tape, but can have both.
Constraints that can not be represented in the feature diagram are specified as
extra-constraints, as are given as propositional formulas together with the feature
diagram. The constraint on heated seats is given as heated seats → automatic,
where the → symbol means implies.

As can be seen in the example, feature models represent constraints on a con-
figuration in a simple and intuitive manner, instead of presenting this variability
purely as a set of propositional formulas, or by a list of valid configurations. It
is also evident that feature models are a general representation of valid configu-
rations, and can be used to solve and model a wide variety of problems.

2.1 Feature Model and Propositional Formulas

As shown in [2] and [18], feature models can be represented as a propositional
formula, where every feature is a variable in the formula such that only valid
configurations will yield ‘true’. Figure 2 shows the list of propositional formulas
for the automotive feature model show in Fig. 1. The propositional formula for
the feature model is the conjunction of all formulas.

Mandatory features are expressed by ↔ between the parent and mandatory
child feature as shown in lines 1 and 2 in Fig. 2. Hierarchy constraints on optional
features are expressed using implication from child to parent, as shown by the
formula on lines 3, 5, 6, 8 and 9. Line 4 shows how the propositional formula
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for mutual exclusion (xor), and can be adapted to groups of any size. Or groups
are formalized as disjunction of each feature in the group, as shown in line 7.
Finally, the extra-constraints are appended to the list of formulas, as shown in
line 10.

By transforming feature models to propositional formulas, it is possible to
automate reasoning and formalize its semantics. BDDs and SAT solvers have
been shown to provide good support for reasoning about feature models [18],
and both require as input propositional formulas.

This kind of automation is useful both for feature model creation, as well
as for configuration. When creating feature models, we want to make sure that
there are no dead features (features that can never be selected), and also that
the feature model allows all desired configurations and no more. This becomes
a hard task as soon as feature models grow in size and number of constraints.
As for configuration, we need tools that both assist users in configuration, such
as with choice propagation, as well as makes sure constraints are followed.

2.2 Feature Diagrams and Grammars

Feature diagrams can also be represented as grammars [2]. Figure 3 shows an
iterative tree grammar for the automotive feature model. In iterative grammars,
repetition is expressed by + and *, for one or more, and zero or more constructs,
respectively. Optional features are expressed as [Radio], as in line 1 of Fig. 3.
Mutual exclusion groups are expressed by using |, as shown in line 2. Or groups
are written as [CD_Player | Tape]+ as shown in line 4.

Automotive: Transmission Seats [Radio];1
Transmission: Manual | Automatic;2
Seats: [Leather_seats] [Heated_seats];3
Radio: [CD_Player | Tape]+;4

Fig. 3. Grammar for automotive feature model

By transforming feature diagrams to grammars it is possible to represent
feature diagrams using textual notation. In Sect. 4 we will present Clafer, a
grammar for feature models that is concise, expressive and intuitive, a great
advance over grammars as shown in Fig. 3.

2.3 Extended Feature Models

Several researchers proposed extensions to feature models, so as to add more
expressiveness to the feature diagrams. The two most prominent extensions are
cardinality-based feature models and the addition of attributes to features.

A notation for cardinality-based feature models were proposed by Czarnecki
in [9] and allow cardinalities to groups and individual features. Feature models
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presented by Kang already have some cardinality: optional features have cardi-
nality 0..1, whereas mandatory features have 1..1 cardinality. Cardinality-based
feature models allow any cardinality to be specified for features and groups of
features. For example, in the automobile product line a cardinality of 4..6 could
be added to seats, specifying that automobiles should have from 4 to 6 seats.
Figure 4 shows the extended version of the feature model for automobiles with
cardinality constraint for the seat feature. To represent such constraints in tra-
ditional features models it would be necessary to clone the seat feature to 6
features, 4 of which would be mandatory and 2 would be optional. If the manu-
facturer would not like to impose a constraint on the maximum number of seats,
the cardinality constraint can be written as 4..*, allowing 4 to an infinite number
of seats. The semantics of * in cardinality constraints can not be expressed in
traditional feature models. Clearly, adding cardinality to feature models adds
expressiveness with a simple notation.

Manual Automatic

Transmission

Leather seats Heated seats

Seats

CD Player

numCd: Int

Tape

Radio

4..6

Automobile

Heated seats → Automatic
1 ≤ numCd ≤ 5

Fig. 4. Extended feature model for automobile product line

Attributes were proposed as an addition to feature models in [8, 3], also with
the objective to add simple notation to feature models. Attributes in feature
models are very similar to attributes in class diagrams in UML: features may
have a number of attributes and attributes may have types, such as integers,
strings, or even references to other features. In our example, we have added an
attribute to CD Player that specifies the number of CDs that can be inserted
into the device at the same time. This attribute is of type integer, and has a
constraint specifying that it must be a number from 1 to 5. Figure 4 shows this
extension to the automobile feature model. In a similar fashion to cardinality
constraints, attributes can be modeled in traditional feature models by regular
features. However, the feature model would explode in the number of features
and would loose its desired visual conciseness.
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3 Variation Space

Original feature models are unable to convey the full variation space of tailored
messages. They are appropriate for describing variabilities but cannot express
concrete data structures, such as text messages. In the context of variation space,
there are conceptual differences between abstract variabilities and concrete data
structures. We propose to split the variation space into problem space and solu-

tion space, and establish a mapping between them (see Fig. 5). Such a construc-
tion is well known in the SPL community, where separation of specification and
implementation is the first step towards constructing a product line. It helped
us to identify key domains and separate user features from the textual content
of messages.

Problem

space

Solution

space

User Model Master Document

Mapping

Fig. 5. Problem and solution spaces

The problem space contains user model to describe variations among people.
We decided to apply feature modeling, as it naturally captures the required type
of variability. Our model is very generic and represents as much user variability
as is needed. To represent a single person, we configure the model, i.e. add
constraints to either set or unset each feature. For example, Fig. 6a specifies
sample user model, where user prefers only one greeting style. After picking
a particular style, the model has no variability (see Fig. 6c) and becomes an
instance of the feature model.

Formal SemiFormal Informal

Greeting

UserModel

Formal

Greeting

UserModel

a) User Model b) Configuration c) Selected User Feature

Fig. 6. Configured user model
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The solution space contains master document to represent structure of a
generic message. The structure is mostly defined by feature model, but there are
also solution-specific elements, such as the actual message content. For example,
Fig. 7 shows a document with three possible greetings. Each greeting is a con-
crete text, e.g. “Dear”. In the master document there are no group restrictions
that make greetings mutually exclusive. These restrictions will be enforced by
mapping between spaces.

“Dear” “Hello” “Hi”

Greeting

MasterDocument

Fig. 7. Master document

The two spaces, although separate, cannot stay in complete isolation. We
couple them by creating a mapping that expresses dependencies between user
model and master document. It is defined by attaching cross-tree constraints to
the feature model in Fig. 7. Cross-tree constraints are important part of feature
modeling, but there is no standard notation for combining them with diagrams.
We simply add a constraint enclosed in square brackets following the feature
name/text in the box (see Fig. 8). In our example we refer to features from the
user model, therefore they are preceded by a path (as the feature Formal is pre-
ceded in UserModel.Greeting.Formal). The requires constraint in “Dear” [requires

UserModel.Greeting.Formal] says that presence of “Dear” implies presence of the
UserModel.Greeting.Formal feature.

“Dear”
[requires UserModel.

Greeting.Formal]

“Hello”
[requires UserModel.
Greeting.SemiFormal]

“Hi”
[requires UserModel.
Greeting.Informal]

Greeting

MasterDocument

Fig. 8. Master document with mapping constraints
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To sum up, we described the variation space by decomposing it into smaller
subspaces and providing a mapping. Our approach elegantly couples the two
spaces by enforcing dependencies among features and the actual texts. The map-
ping is precise enough to automatically configure the solution space by config-
uring the problem space. For example, if user prefers formal greeting, then the
tailored message will start with “Dear”. All these conceptual constructions can
be concisely expressed in Clafer.

4 Clafer

Clafer is a general-purpose modeling language. Initially, we designed it as a con-
venient notation for expressing various aspects of software product lines, such
as commonalities, variabilities, constraints and architectural models. Clafer cap-
tures abstractions from class and feature modeling, and provides a lot of syntactic
sugar for common constructions. The language is not limited to software-related
problems; technically, it can express any statement from the first-order predicate
logic.

Generality of the language makes it suitable for modeling variation space
of tailored messages. The problem we solve is not very different from our work
on software product lines. The only difference lies in what we model, but many
abstractions are the same. In this work, we show a subset of Clafer that is
powerful enough to automatically tailor messages to specific users.

Clafer is a textual language with formal semantics defined by translation to
Alloy [12]. It allows us to use Alloy infrastructure, such as the Alloy Analyzer
and SAT-solvers, to generate instances of Clafer models. Moreover, the textual
representation of feature models, in contrast with graphical notations, requires
only a text editor to create models.

4.1 Feature Modeling

Feature models in Clafer are very similar to cardinality-based feature models
augmented with cross-tree constraints. We present the language by showing short
code snippets and explaining their meaning.

Clafer’s representation of the feature model from Fig. 6a is visible in Fig. 9a;
it consists of hierarchically nested features. The top-most feature is named User-

Model and has one child (Greeting). The language uses code indentation to in-
dicate a block of subfeatures. Figure 9b contains the same model, but with ex-
panded group and feature cardinalities, and hierarchy indicated by curly braces.

FODA or cardinality-based feature models traditionally distinguished group-
ing features from other features. That is, a feature has either a group cardinality
or a feature cardinality attached to it. The two concepts are orthogonal in Clafer,
thus each feature has both types of cardinalities.

Feature cardinalities restrict the number of instances of a feature. The car-
dinality is specified by an interval m..n, where m ∈ N, n ∈ N ∪ {∗},m ≤ n.
Feature cardinality specification is optional and if present, follows the feature
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name. Clafer provides syntactic sugar similar to syntax of regular expressions: ?
denotes 0..1; * denotes 0..∗; and + denotes 1..∗. No explicit feature cardinality
denotes 1..1 (mandatory) by default, modulo four exceptions explained shortly.
For example, Greeting (line 2) in Fig. 9a is mandatory.

UserModel1
xor Greeting2

Formal3
SemiFormal4
Informal5

<0-*> UserModel 1..1 {1
<1-1> Greeting 1..1 {2
<0-*> Formal 0..1 {}3
<0-*> SemiFormal 0..1 {}4
<0-*> Informal 0..1 {}5

}6
}7

a) Concise notation b) Desugared feature model

Fig. 9. Feature model in Clafer

Group cardinalities constrain the number of child instances i.e., the instances
contained by subfeatures. Group cardinality is specified by an interval 〈m–n〉,
with the same restrictions on m and n as for feature cardinalities, or by a key-
word: xor denotes 〈1– 1〉; or denotes 〈1– ∗〉; mux denotes 〈0– 1〉; and opt denotes
〈0– ∗〉; further, each of the keywords makes subfeatures optional by default. If
any, a group cardinality specification precedes a feature name. For example, xor
on Greeting (line 2) in Fig. 9a states that only one child instance of either Formal

or SemiFormal or Informal is allowed. Because the three subfeatures have no ex-
plicit cardinality attached to them, they are all optional (cf. Fig. 9b). No explicit
group cardinality stands for 〈0– ∗〉, except when it is inherited as illustrated next.

4.2 Feature Reuse

Code reuse is one of the key concepts in software engineering as it improves
programmer’s productivity, code quality and flexibility. There are several ways
in which the language can support code reuse, i.e. modularization, inheritance,
conditional file inclusion, and code clones. Inheritance is at the heart of class
modeling, and therefore is available in Clafer.

There is no notion of feature reuse in the original feature models. The only
method was to copy a tree structure and paste into another model. Clafer over-
comes this limitation by distinguishing abstract and concrete features. All the
features presented so far were concrete features, because they contained the
actual feature instances. Abstract features, on the other hand, define abstract
types that can be reused (extended) by other features. Abstract features are
never instantiated unless extended by a concrete feature. Furthermore, only ab-
stract features can be extended by concrete features. Abstract features are always
top-level definitions, thus it is impossible to nest them.
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The syntax of abstract features is very similar to the example in Fig. 9, but
such a feature is preceded by the abstract keyword, and has no feature cardinal-
ity. Figure 10a shows an abstract exclusive-or group of three subfeatures. The
type definition is extended and instantiated in Fig. 10b. The ProgressDay feature
inherits Goal’s group cardinality and subfeatures. It also adds a new feature Strat-

egyDays, which becomes the fourth alternative. Figure 10c depicts the structure
of ProgressDay.

abstract xor Goal1
Exceeded2
Met3
Failed4

ProgressDay extends Goal1
xor StrategyDays2

IncreaseDays3
KeepDays4
DecreaseDays5

xor ProgressDay1
Exceeded2
Met3
Failed4
xor StrategyDays5

IncreaseDays6
KeepDays7
DecreaseDays8

a) Abstract feature b) Feature inheritance c) All subfeatures

Fig. 10. Inheritance in Clafer

Clafer offers syntactic sugar for inheritance if the extending feature has the
same name as its superfeature. It is known as quotation, because syntactically
it is a name of abstract feature preceded by the left quote symbol (‘). The
extending feature inherits all assets of an abstract feature. In this way, we create
new features that, in fact, instantiate abstract features. The mechanism is useful
to define a feature once and reuse it later. Figure 11a shows an example. There
is an abstract feature color that is either green or blue or brown. The model
contains two unrelated features: car and eye, and each of them has some color.
The meaning of quotation is shown in Fig. 11b, where ‘color is expanded as color

extends color. Although, it might seem confusing, the construction has a well-
defined meaning: the left color is name of the new feature, the right color refers
to the abstract feature.

4.3 Textual Content

Textual strings go beyond the original feature modeling notation. Combination
of feature models with specific values is known as feature models with attributes.
While feature models represent general concepts, strings store specific texts. Here
we present two ways of including strings in Clafer models: 1) inline definition,
2) by quotation.

The inline definition is a string placed within double quotes (e.g. line 2 in
Fig. 12a). In the example, the text is nested under parent feature Greeting and
acts as a subfeature. Inline definition creates an implicit feature that stores the
content. Lack of explicit name prohibits the programmer from referring to the

10



abstract xor color1
green2
blue3
brown4

5
car6

‘color7
8

eye9
‘color10

abstract xor color1
green2
blue3
brown4

5
car6

color extends color7
8

eyes9
color extends color10

a) Quotation b) Desugared quotation

Fig. 11. Feature model in Clafer

Greeting1
‘‘Dear’’2

abstract dear = "Dear"1
2

Greeting3
‘dear4

a) Inline definition b) Quotation

Fig. 12. Textual content in Clafer

feature in constraints. The inline method is preferable if the text is short and is
not meant to be reused or constrained.

The second method, quotation, makes textual content more explicit, allows
for more expressiveness and is better suited for long texts. As with inheritance,
first we need to define the abstract feature, and then instantiate it. In the example
from Fig. 12b, line 1 names the textual string by creating an abstract feature.
Then the feature is instantiated in line 4 by referring to the quoted dear name.
The requirement that abstract features have to be defined at top-level makes the
code more readable and better structured.

4.4 Mapping

Mappings between solution and problem spaces are given by constraints. Techni-
cally, cross-tree constraints can be placed in either of the spaces or in a separate
file. Clafer’s constraints are based on Alloy’s relational logic. They concisely ex-
press statements from the first-order predicate logic. In this project, however,
we used only implications, due to simplicity of the constraints. Constraints are
specified in square brackets, e.g. line 3 in Fig. 13. The statement enforces that
presence of exceedStepsText implies presence of ProgressSteps.Exceeded. The con-
straint is evaluated only if exceedStepsText exists in the model.

Real-world feature models [16] usually contain fairly simple implication con-
straints, such as one presented in Fig. 13 . To make our notation more informa-
tive, we included the requires keyword to specify implied feature inline, e.g. line
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ReviewProgressMade1
‘exceedStepsText ?2
[ProgressSteps.Exceeded]3

Fig. 13. Expanded constraint

2 in Fig. 14. The keyword goes after cardinality constraint and is followed by the
implied feature.

ReviewProgressMade1
‘exceedStepsText ? requires ProgressSteps.Exceeded2

Fig. 14. Concise notation

Meaning of the two models in Fig. 13 and Fig. 14 is exactly the same. Fig-
ure 15 shows the underlying semantics, by expanding quotation and inserting the
some keyword in the constraint. Mathematically, everything in Clafer is a rela-
tion; features are binary relations. Therefore, we require one of the quantifiers:
no (zero), one, lone (zero or one), some (at least one) to precede each relation and
specify the number of its elements. In this way, we can treat relational formulas
as valid Boolean formulas.

ReviewProgressMade1
exceedStepsText extends exceedStepsText ?2
[some ProgressSteps.Exceeded]3

Fig. 15. Desugared notation

5 Personal Health Coach

The objective of Personal Health Coach project [10] is to assist physicians in pro-
viding personalized information to patients about their health and treatments. It
is believed that automatically tailored messages improve patient’s satisfaction,
use of physician time, and hospital resources. In contrast with generic messages,
the project takes into account patient’s context to deliver customized content.

Initially, the project used Open Document Text Format (OpenOffice.org) to
represent variation space split into user model and master document. Although
ODT is an open format, there are disadvantages of using it as underlying data
structure:
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1. No logical structure. The user model was represented as a table where each
row corresponded to a feature with subfeatures. Unfortunately, it was unable
to clearly express feature hierarchies and other than xor feature groups.
Master document contained mappings to the user model, but all of them
were written as textual comments.

2. Complex to analyze. ODT is an open format, but was not created for mod-
eling variability. Analysis of a file requires familiarity with the internal file
format. After parsing the file, the syntax tree must be filtered to remove
irrelevant information.

3. Lack of tool support. There are no external tools for checking consistency
of mappings between user model and master document. Furthermore, code
generation for the user interface and backend was hard to automate and
required help of a programmer.

4. No formal semantics. It is related to the points mentioned earlier, as lack of
formal semantics leads to ambiguous documents, that are hard to analyze.

5. Project specific solution. The approach is not reusable, since there are no
generic and well-defined structures.

6. Not scalable. The ODT documents were not partitioned into smaller pieces,
therefore users could not work concurrently on the project.

We argue that our solution addresses most of the above issues, since Clafer
has formally defined syntax and semantics, is very generic and scales by mod-
ularization and inheritance. Clafer is still a very young language, so the tool
support is limited; there is a translator from Clafer to Alloy, but analysis of cer-
tain models in the Alloy Analyzer takes some time. On the other hand, thanks
to uniform semantics many of the existing class and feature modeling tools could
be used with Clafer, and we expect to provide this kind of support in the nearest
future.

5.1 User Model

The structure of user model is presented in Fig. 16. It begins with two abstract
exclusive-or groups that indicate whether a particular goal was exceeded, met or
failed. We made the PositiveGoal group abstract since there are several goals in the
feature model that have similar structure (e.g. UserModel.ReviewProgressOverall).
They inherit the Exceeded and Met features, and add Failed with additional sub-
features. The meaning of Failed is that in case of a failure, some action (modeled
as subfeatures) should be taken.

Next is the feature model of user profile. It is composed of six direct sub-
features, where user specifies his favorite type of greeting, type of relationship
(friendly, encouraging, etc.), and other characteristics. Most of them are ag-
gregated either under exclusive-or or mutually-exclusive groups. Feature model
makes variability explicit by placing group cardinalities before each feature.
This variability information was not available in the ODT representation of user
model. Some variability knowledge existed only in people’s minds.
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abstract xor PositiveGoal1
Exceeded2
Met3

4
abstract Goal extends PositiveGoal5

Failed6
7

UserModel8
xor Greeting9

Formal10
SemiFormal11
Informal12

13
xor Relationship14
--content15

16
xor ReviewProgressOverall extends PositivetGoal17

Failed18
ProgressWeightLoss extends Goal19
xor ProgressIntakeGoal extends PositivetGoal20
--content21

22
ProgressSteps extends PositiveGoal23

Failed24
--content25

MeetGymExceed26
27

ProgressDay extends PositiveGoal28
--content29

30
mux CurrentBarriers31
--content32

33
xor StrategicStepsOverall34
--content35

36
xor AppraiseBehaviour37
--content38

39
xor ReinforceResults40
--content41

42
mux RestageGoal43
--content44

Fig. 16. User model
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5.2 Master Document

Master document represents generic structure of tailored messages. Figure 17
shows excerpt of the code. The document starts with a list of abstract features
that define textual strings. Message content is represented either as abstract
features (line 1) or inline strings (line 9). As suggested earlier, we placed short
messages inline, and long messages as abstract features.

There are no group cardinalities attached to features. Although texts are
mutually exclusive, the constraint is not expressed explicitly in the master doc-
ument. Instead, it is inferred from the user model by attaching constraints to
features in the master document. The model contains only requires constraints,
thus they express how the final output depends on user’s characteristics.

5.3 Summary

In our opinion, Clafer concisely and naturally expressed variation space of the
Personalized Health Coach project. In contrast with the ODT representation,
models are complete and have well-defined semantics. We modeled all the vari-
ability either as group cardinalities or requires constraints. Thus, the variation
space is not complex by itself, but the complexity comes from potentially large
feature models with hundreds or thousands possible textual messages. Testing all
the configurations is practically infeasible, but there exist tools that can greatly
support programmer.

6 Breast Reconstruction

This section briefly shows how we have modeled the user variation space in
Clafer, for the Breast Reconstruction project, from a flowchart used by doctors
to classify and determine the best response for patients. This flowchart is shown
in Fig. 18.

Figure 19 shows the feature model representation for the breast reconstruc-
tion user model interpreted from the flowchart shown in Fig. 18. Decisions, such
as ‘Timing’ or ‘Lack of skin’ are modeled with xor. Input and output, such as
‘Lymph node dissection?’ and ‘Prophilactic mastectomy?’ questions, are mod-
eled as optional features. As for flow reuse, such as ‘Implant variables’ that is
a target of ‘Expander exchange timing’ and ‘Implant alone’, we model using
inheritance and abstract features.

The flow chart just shown is very similar to a sequence of questions that
can be asked to a patient, in order to gather information about his situation
and classify his current condition. Several projects using tailored messages have
used questionnaires to model the user variability space. From this example, it is
easy to see that feature models can easily be created from such questionnaires,
essentially formalizing the variability of possible answers that make sense for the
domain.
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abstract activeAmbText = "Since you are already very active, I1
know you are very ambitious about your exercise goals"2

3
--content4

5
MasterDocument6

Introduction7
Greeting8
"Dear" ? requires Formal9
"Hello" ? requires SemiFormal10
"Hi" ? requires Informal11

12
Connection13
--content14

15
InterventionCoaching16

Monitoring17
--content18

19
Reinforcement20

AppraiseBehaviour21
‘activeAmbText ? requires Ambitious22
‘backOnTractText ? requires MostlyOnTrack23

24
ReinforceResultsCongratulate25
--content26

27
DiscourageNegativeThinking28

29
Action30
--content31

32
GoalSetting33
--content34

35
ConclusionFrame36
--content37

Fig. 17. Master document

7 Feature Model Infrastructure

Feature models are a standard solution for variability modeling in software
product-lines and feature-driven development. There exists a large variety of
publications on the topic, and also ready available infrastructure for feature
model editing and configuration.
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Fig. 18. Flow chart for breast reconstruction interview
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Figure 20 shows features of possible tools for feature model manipulation.
These tools can provide editing capabilities, such as a visual feature model ed-
itor, similar to UML model CASE tools, or simple textual editing with syntax
highlighting and auto-completion. Feature model editors can also have model
checking capabilities, using SAT solvers and BDDs to reason upon the proposi-
tional formula, as explained in Sect. 2.1. Model checking can assist the user in as-
suring that the feature model is sound (there are no dead features and that there
exist at least one non-empty configuration that satisfies the model constraints),
or even that the model adheres to tests specified by the user. Further editing
assistance can be provided by automatically changing explicit constraints, or
even providing support for batch editing, such as moving a group of features as
children of a common feature.

Feature model tools can also provide simple viewing support, such as render-
ing feature models in text files in traditional feature diagram notation, such as
used in this document. If a feature model is large, with hundreds or thousands
of features [16], displaying projections or slices of the feature model might be
very useful.

Feature model viewers may also provide features to assist users in configura-
tion. Configuring large feature models with complex constraints is not an easy
task without appropriate tool support. Choice propagation can help the user
in resolving constraints so that a particular feature can be selected. Without
choice propagation, users has to manually resolve all transitive constraints of
the features they wish to select. Another valuable feature for configuration is to
be able to backtrack to previous decisions when the user has changed his mind.
This can often be the case in highly constrained feature models, where selecting
a feature might restrict selection of other features, and users only become aware
of such restrictions when they have already made the first selection.

Tools with product generation are capable of automatically generating com-
plete products given a configuration. In the software product line perspective,
this is equivalent to generating the resulting software products packaged and
ready for deployment. For example, the Linux kernel has over 6000 features, and
uses meta-programming via pre-compiler directives to direct code generation
given a configuration of features. Product generation in tailored message per-
spective would be the automatic message generation given a user-configuration.

7.1 Proof of Concept Using Existing Infrastructure

In fact, the infrastructure used by the Linux kernel to model, configure and au-
tomatically generate products can easily be leveraged for message tailoring. Here
we describe a proof of concept that can be built with existing tools, specifically,
the Linux kernel Kconfig infrastructure.

The Linux kernel provides qconf, a configuration tool with simple model
checking features. The input to qconf are Kconfig scripts, the variability mod-
eling language created by the Linux kernel community [4]. When saving config-
urations using qconf, it exports the configuration as a special header C file. By
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creating master documents using pre-compiler directives such as #ifdef, a C
pre-compiler such as CPP can be used to generate tailored messages.

Figure 21 shows a slice of the Health Coach feature model in the qconf config-
uration tool. It presents features as choices, and only allows choices that satisfy
the model’s constraints. The Kconfig script that represents this model is shown
in Fig. 22. We will not cover in details the syntax of Kconfig, as this information
is described in the Linux kernel source tree1.

The master document for Health Coach representing using pre-compiler di-
rectives is shown in Fig. 23. By executing qconf and saving a configuration for
the user model, this should generate a conf.h header file defining the user fea-
tures present in the configuration. Running master document file through cpp
will produce the the tailored document.

Although this approach creates a functional configurator and product gen-
erator, Kconfig is not a feature model modeling language, but a script to create
the qconf interface. Evermore, the master document using pre-compiler directive
is not a model either, and is hard to reason upon.

Therefore, we recommend modeling both the user model and master docu-
ment using Clafer, as previously explained, and using Kconfig and ifdefs as an
intermediate representation, by transforming Clafer models to Kconfig and to a
master document with ifdefs. This transformation is not hard to implement, and
the result produces an executable configurator and product generator.

8 Related Work

Piglit (Patient Information Generated by Loosely Intelligent Techniques) [5] is
a text-generation system that provides personalized hypertext explanations of
patients’ records. The project enabled diabetes patients to learn more about their
conditions and topics mentioned in the records. Focus of our project is different,
we presented a generic method for modeling variability that is not related to
specific disease. Furthermore, we did not have access to patient’s record. Instead,
we assumed that there is a formal user model with all the relevant information.

The Migraine project [6] generates interactive materials for migraine patients
who can ask follow-up questions via a mixture of hypertext and menu selection.
Similarly to out project, Migraine has no access to patent’s record. User’s profile
is built from a computer-based interview. In our project, we did not describe any
method of building user’s profile, but it can be done manually (by the doctor), or
interactively (computer interview), or automatically (mining patient’s record).

OPADE [7] generates personalized leaflets about drugs from existing sources
of information. These independent sources included a drug database and the
prescription. OPADE also tries to resolve potential conflicts between what the
doctor wants to communicate and what the patient wants to know. The purpose
of OPADE and our project is very similar. We believe that our formalism could
be applied as underlying structure in OPADE.

1 The documentation can be found in Documentation/kbuild/kconfig-language.txt
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HealthDoc [11] is another patient information generation system that uses
a master text document to create personalized information material. Text gen-
eration first selects the relevant fragments of text from the master document
and then repairs the text to be made grammatically correct and coherent. Our
method is based on the idea of tailoring the master document, but we only se-
lect parts of the document to create a message. The message is not repaired
afterwards.

9 Conclusion

We have shown how feature modeling can be used to model variation space
of tailored messages. We presented basics of feature modeling and summarized
state-of-the art knowledge about feature models. Compared to previous text
generation methods, our approach is formal and based on well-established ideas
from Software Product Lines. These ideas were captured in Clafer, i.e. general
purpose modeling language. The notation offers concise syntax for feature and
class models augmented with cross-tree constraints.

Furthermore, the work gave a brief overview of existing feature model infras-
tructure. We used the Linux kernel tools to represent and automatically config-
ure the master document by selecting features from the user model. It showed
that feature modeling approach is not only formal, but can be easily applied to
automatically tailor messages.
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1
abstract ImplantVariables2

Composition ?3
Surface ?4
Shape ?5

6
abstract xor LackOfSkin7

Yes8
xor Expander9

Permanent10
Becker ?11
Spectrum ?12

2StageExpander13
Variables14

Surface ?15
Shape ?16
Port ?17

ExchangeTiming18
‘ ImplantVariables19

No20
ImplantAlone21
‘ ImplantVariables22

23
xor Timing24

Delayed25
‘ LackOfSkin26

Immediate27
SurgicalVariables28

LymphNodeDissection ?29
ProphylacticMastectomy ?30
xor Type31

Unilateral32
Bilateral33
xor ChemoAnticipated34

No35
CandidateForAlloplast ?36
‘ LackOfSkin37

Yes38
AutogenousReconstruction39

40

Fig. 19. Clafer model for breast reconstruction decision graph
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Fig. 20. Features of feature model tools

Fig. 21. Linux configuration tool for Health Coach user model
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menu "User Model"1
2
choice3

prompt "Greeting"4
5

config FORMAL6
bool "Formal"7

config SEMIFORMAL8
bool "Semi-formal"9

config INFORMAL10
bool "Informal"11

12
endchoice # Greeting13

14
choice15

prompt "Review Progress Overall"16
17

config RPO_EXCEEDED18
bool "Exceeded"19

config RPO_MET20
bool "Met"21

config RPO_FAILED22
bool "Failed"23

24
if RPO_FAILED25
choice26

prompt "Progress Weight Loss"27
28

config PWL_EXCEEDED29
bool "Exceeded"30

config PWL_MET31
bool "Met"32

config PWL_FAILED33
bool "Failed"34

endchoice # Progress Weight Loss35
endif # RPO_FAILED36

37
endchoice # Review Progress Overall38

39
endmenu # User Model40

Fig. 22. Kconfig representation of Personal Health Coach user model
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#include "conf.h"1
2
#ifdef CONFIG_FORMAL3
Dear4
#endif5
#ifdef CONFIG_SEMIFORMAL6
Hello7
#endif8
#ifdef CONFIG_INFORMAL9
Hi10
#endif11

12
#ifdef CONFIG_FRIENDLY13
How are you feeling?14
#endif15
You had a busy week!16

17
I had a change to review your food and excercise logs for last week.18

Fig. 23. Health Coach master document using pre-compiler directives
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