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ABSTRACT
Software product lines promote explicit modeling of software
variability and systematic reuse of underlying components.
Evolution of software product lines occurs both in variability
models and assets, such as source code. In this work, we did
an empirical study that investigated evolution of the Linux
kernel as an example of a product line. We classified different
types of edits, and answered questions about congruency of
changes made by developers. We also discovered patterns
for adding, removing, and updating features in the Linux
kernel. As a result, the work presents a set of guidelines
for tools that would support evolution of software product
lines.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhance-
ment —Restructuring, reverse engineering, and reengineer-
ing

General Terms
Restructuring, reverse engineering, and reengineering

Keywords
software product line, evolution, the Linux kernel

1. INTRODUCTION
Software product lines (SPLs) deliver customized software
from a shared set of resources, such as code or models. They
promote the creation of a family of software products from
a set of common features1 instead of the creation of each
product from scratch [2].

Software families are often described in terms of problem
space and solution space. Problem space captures high-level

1A feature can be understood as a piece of functionality in
the overall system or a piece of code that can be configured
so as to suit the needs of a product in a given SPL.

requirements, usually in the form of feature models [8],
i.e., diagrams in which features are hierarchically arranged
and rules on how they can be combined are made explicit.
Solution space, on the other hand, contains shared assets,
such as source code or models.

Software product lines have been successfully used by several
companies in different domains of expertise, such as avionics,
automobile industry, telephony, finance, etc. The benefits of
its adoption include [16]:

• Improved productivity by as much as 10x.

• Increased quality by as much as 10x.

• Decreased cost by as much as 60%.

• Decreased labor needs by as much as 87%.

• Decreased time to market (to field, to launch) by as
much as 98%.

• Ability to move into new markets in months, not years.

In addition to private sectors, software product lines have
also succeed in open source projects. The Linux kernel is
probably the most prominent example, due to its amount of
features (it has more than 6,000 features) and wide-spread
use. Using a product line to develop the Linux kernel prob-
ably explains why it supports many different architectures,
with frequent stable releases over short periods of time. Ker-
nel releases happen every 2-3 months, with each release be-
ing a ”major” release [7]. The amount of changes per release
is also considerable, as seen in Fig. 1.

Many works have studied the design techniques and cost-
efficiency of software product lines [14, 1, 4, 11, 10]. How-
ever, little is known about the evolution of SPLs. A recent
attempt is the empirical study performed by Lotufo et. al.
[9], which investigates general characteristics of the evolu-
tion of Linux kernel at the problem state.

This paper extends Lotufo’s work by analyzing the evolu-
tion of the Linux software product line in both problem and
solution space. In particular, we aim to answer five research
questions:

RQ1 What does constitute a software product line refactor-
ing?



Figure 1: Rate of change per release of the Linux
kernel. Extracted from [7].

RQ2 Are changes to variability model congruent with changes
to the source code?

RQ3 What kind of tool support would help to evolve a soft-
ware product line?

RQ4 What are the criteria for creating new features?

RQ5 Why do developers make some parts of code optional
(instead of keeping them mandatory)?

We also took into account the validation of the SPL refine-
ment theory proposed by Borba et. al. [5]. As they ac-
knowledged, their theoretical framework is missing an em-
pirical part to test its accurateness. In this sense, the Linux
kernel, as a representative software product line, is a good
candidate for its evaluation. Having said that, we pose a
sixth research question that we also aim to answer:

RQ6 Is the theory of software line refinements adequate to
model evolution of the Linux kernel?

To answer these research questions, we collected a sample
of 360 patches from the the Linux kernel source code repos-
itory.

This article is organized as follows: in Sect. 2 we enhance
our initial definition of problem space, followed by a dis-
cussion of solution space in Sect. 3. Next, in Sect. 4 we
define some details on the Linux kernel variability model.
Section 5 reports our methodology of extracting the sample
of edits (changes) that we analyzed. Section 6 explains each
category of edit that we took into account, followed by a
discussion on Borba’s theory. Section 7 presents our find-
ings and Sect. 8 discusses some of their threats to validity.
Section 10 concludes the article.

2. PROBLEM SPACE
Problem space captures high-level requirements, usually in
the form of feature models. Feature models are tree-like
structures that specify commonalities and variabilities within
a software family. Figure 2 presents a feature model inter-
pretation of the JFF2S subsystem of the Linux kernel, as

Debug Level : int

Support ZLIB

None Priority Size

Default Compression

Compress Data

Journaling Flash File System

Misc. Filesystems

Figure 2: The interpretation of the JFFS2 subsys-
tem feature model. Extracted from [3].

discussed in [3]. Among the possible notation variants [13],
referred as FODA-like languages2, we used the one proposed
by Kang et al. [8]. The notation is as follows:

• each box denotes a feature. The top box is the root
feature, in our case, the Misc. FileSystems;

• the hierarchy imposed by the tree denotes dependen-
cies;

• an optional feature is optionally included in the gen-
erated product that contains its parent feature. An
optional feature is connected to its parent by means of
an edge with a hollow circle. For instance, the Jour-

naling Flash File System is optional – it may or not be
present in case the Misc. FileSystems is included in the
generated product;

• a mandatory feature is always included in all products
containing its parent feature. For instance, each time
a product is generated with the Journaling Flash File Sys-

tem, the Debug Level feature is also included;

• alternative features of a given parent implies that one
and only one subfeature will be included given a prod-
uct containing the parent feature. Alternative features
are grouped under a parent feature with a hollow arc.
For instance, the features None, Priority and Size are
examples of alternative features of Debug Compression;

• or features (not shown in the example) are similar to
alternative features, except that at least one subfea-
ture must be included in every generated product that
contains its parent feature. A set of or-features are
grouped under a parent by means of a filled angle.

3. SOLUTION SPACE
Solution space contains shared assets, such as source code
or models. There is no one widely-accepted notation for
solution space, as it depends on the domain. Common as-
sets have built-in variability, thus they represent a set of
products. In many cases this variability is represented by
preprocessor annotations, such as IFDEF directives in C or
C++. When the user configures the feature model and se-
lects particular features, the selections are reflected in the

2FODA: Feature Oriented Domain Analysis.



Figure 3: The Linux kernel configurator tool: menu-

config.

source code. As a result, the software product line generates
a single program.

A software family covers a set related programs delivered
by a software product line. In fact, the set of available con-
figurations defines the semantics of each product line. For
example, two software product lines are equal if they gener-
ate the same set of products. Sets of configurations change
over time, as developers add new features or remove dep-
recated ones. By knowing what products are available, we
can compare software product lines and understand their
evolution.

4. THE LINUX KERNEL VARIABILITY
As with other operating systems, the Linux kernel is a soft-
ware product line. It is a highly variable piece of software
that can be tailored to work on a great range of architec-
tures: from personal computers to satellites.

New variants of the Linux kernel can be configured by means
of a specialized tool – menuconfig3. Building a customized
Linux kernel brings some advantages over the use of pre-
compiled ones, such as:

• the possibility of tailoring the kernel towards a specific
target architecture;

• load a given driver as part of the kernel or set support
for a given driver to be later loaded;

• optimize memory space and boot time by removing
useless drivers.

The configurator tool loads the Linux feature model and
presents it to the user so it can be tailored accordingly. Fig-
ure 3 shows the main screen of the menuconfig tool.

The Linux feature model is a hierarchy of menus and configu-
ration options spread across several different files. These files
are coded in KConfig, a domain specific language designed
specifically for coding the Linux kernel variability model. It
is more expressive than the original feature model notation

3menuconfig is a terminal based application. There is also
the possibility of using an X-version of it called xconfig.

menu ”I2C Hardware Bus support”

comment ”PC SMBus host controller drivers”

depends on PCI
...

config I2C NUC900
tristate ”NUC900 I2C Driver”
depends on ARCH W90X900
help
Say Y here to include support for I2C controller in the
Winbond/Nuvoton NUC900 based System−on−Chip devices.

...

endmenu

Figure 4: A fragment of the I2C Hardware Bus support

KConfig file.

defined by [8], but its objective remains the same: repre-
sent possible software variants. As a brief introduction to
KConfig, its syntax and semantics, consider the fragment
files shown in Fig. 4 and Fig. 5, extracted from two of the
patches analyzed during our study.

In Fig. 4, the feature I2C Hardware Bus support is declared.
The I2C Hardware Bus support feature can only be enabled if
the PCI is also enabled, as stated by the depends clause. The
configurator will place any configuration option declared in-
side the I2C Hardware Bus support as its children. In this sense,
I2C NUC900 is a subfeature of I2C Hardware Bus support. The
string following tristate sets the menu item name that will
be rendered by the configurator tool. The value associated
with I2C NUC900 is a tristate, i.e., it is either zero (disabled),
one (enabled) or two (modulized). The modulized option
enables the feature to be built as a module that can be
added or removed from the kernel once it is loaded. Other
possible data types in KConfig include bool, string, hex or
int. The I2C NUC900 feature depends on PCI, inherited from
its parent, and on ARCH W90X900, as defined by its depends

clause. KConfig allows cross-dependencies between features
and does not restrict them to be only from parents towards
children. The I2C NUC900 feature, for instance, depends on
the presence of ARCH W90X900, which is not its parent fea-
ture. The help entry contains the text that will be presented
to the user in case he asks for a descriptive help of the given
feature.

The second example, presented in Fig. 5, shows the flexibil-
ity on how dependency between features can be expressed in
KConfig. The HID APPLE, for instance, is enabled if either
USB HID or BT HIDP is present. In fact, KConfig allows any
sort of boolean expressions to guard the presence condition
of a given feature. In KConfig, the selection of a given fea-
ture can enable other features. The ZERO PLUS FF feature
has such characteristic: if enabled, it causes the selection of
INPUT US FF feature regardless of other constraints.

Once the configuration is performed, the Makefiles are gen-
erated properly so the user can invoke the build process.
Every enabled feature will have its code compiled. If the
feature does not exist as a module in the source code and



menu ”Special HID drivers”
depends on HID

...
config HID APPLE

tristate ”Apple”
default m
depends on (USB HID || BT HIDP)
help
...

...
config ZEROPLUS FF

tristate ”Zeroplus based game controller support”
default m
depends on USB HID
select INPUT FF MEMLESS
help

...
endmenu

Figure 5: A fragment of the Special HID drivers KConfig
file.

instead is tangled with other C code, possibly spread among
different C files, its code will be guarded by a conditional
compilation macro. As an example, consider the following
guarded command that is part of the ZEROPLUS FF feature
code:

...
#ifdef CONFIG ZEROPLUS FF MODULE

HID COMPAT CALL DRIVER(zeroplus);
#endif
...

If the user selects ZEROPLUS FF to be present in the cus-
tomized kernel, CONFIG ZEROPLUS FF MODULE will assume
either 1 or 2 as its value (in C, any value different from zero
is taken as true). The guarded code will thus evaluate to
true and the enclosed code will be compiled.

5. DATA ACQUISITION
To answer our research questions, we collected a sample of
360 patches from the the Linux kernel Git’s public repos-
itory 4 and cloned sources of the 2.6 line of the kernel .
Although the cloned repository contained the complete his-
tory of the kernel, we analyzed only versions 2.6.12 to 2.6.38.
Commits belonging to each revision were tagged with a ver-
sion number, e.g. v2.6.12. We restricted our analysis to such
a range because previous versions of the Linux kernel were
managed by version control systems other than Git. Devel-
opers converted earlier releases to the Git format, but we
skipped those releases to assure quality and consistency of
the investigated software.

We were interested only in patches that simultaneously mod-
ified Kconfig files and source code. We created a script that
from a complete list of 232,305 commits extracted only those
that modified at least one Kconfig file and at least one C file.
Next, the list was randomized using the Unix shell command
sort -R. We obtained 7,955 commits and later divided them
into 3 non-overlapping pools from which each author ana-
lyzed 120 commits. The study involved manual overviewing

4git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.
git

Kconfig files along with the corresponding implementation.
Initially, we expected that manual source code inspection
would require more time and effort than analysis of the vari-
ability model itself. We discovered, however, certain pat-
terns (e.g. feature addition or deletion) that allowed us to
quickly classify majority of commits.

6. SPL EVOLUTION
Evolution of software product lines occurs in a series of mod-
ifications to problem and solution spaces. Changes happen
both in variability models and the underlying assets, such
as source code. We looked into the literature [18, 17] and
also used 120 training commits from our whole sample to
characterize types of modifications. Modifications differ by
their impact on software product line semantics.

6.1 Variability Model Edits
Semantics of variability models is specified as a set config-
urations, i.e. available products. Variability models evolve
when corresponding sets of products change. Table 1 shows
overlap among existing variability models (empty elipses)
and their edited versions (filled elipses). Edits that impact
variability models add, remove, or update features or depen-
dencies. Thüm et al. [18] proposed the following set of edits
in variability models:

refactoring Preserves the set of products. A refactored
variability model generates exactly the same set of
products as the original one.

generalization Similarly to refactoring preserves the set of
products, but also adds new features or weakens con-
straints. Consequently, a generalized variability model
is a superset of the original one. Generalization is also
known as refinement.

specialization Corresponds to feature deletion or adding
extra constraints (dependencies). New variability model
generates fewer products than the original one. Hence,
the old variability model is a generalization of the new
one.

arbitrary edit The most general type of edit. At the same
time, it adds and deletes products from the original
variability model.

The initial analysis of 120 patches provided us confidence
on these edit categories in the sense that most of the edits
to the Linux variability model were not arbitrary, and thus
could be properly classified either as refactoring, generaliza-
tion or specialization. In fact, only 2 of the 120 edits were
considered to be arbitrary.

6.2 Asset Edits
Variability models, such as the Linux kernel Kconfig model,
are linked with assets and evolve simultaneously. Changes
propagate from problem space to solution space, and the
other way around. Semantics of assets defines semantics of
solution space, which is usually more complex than seman-
tics of variability models. In the analyzed case it was given
mainly by the meaning of C code, i.e. program’s behav-
ior and static variability. We classified source code edits as
follows:



No Products Products
Added Added

No Products
Deleted

Refactoring Generalization

Products
Deleted

Specialization Arbitrary Edit

Table 1: Variability Model Edits (from [18])

refactoring Assures behavior preservation. A refactored
code has the same functionality but might differ in
structure or in nonfunctional attributes.

generalization Preserves behavior of the existing code base
and adds extra features to it. New functionality can
be brand-new or derived from existing code by making
some parts of it optional.

changed component Evolves the code of existing features
by adding, removing functionality, or reusing code from
other features. The changed functionality does not in-
troduce new variability in the code.

merged components Merges code base of several compo-
nents. It is done when several components have very
similar code that can be generalized and later special-
ized by parameters. Even though the set of config-
urations is smaller, available products cover the same
functionality; e.g. merging several drivers into one that
can handle multiple devices.

specialization Deletes feature from the code base.

arbitrary edit The most general type of edit. Encapsu-
lates all edits that do not fit into one of the above
categories.

There is a certain overlap between problem space and solu-
tion space edits. Solution space edits could be reduced to the
four categories by merging changed component and merged
component with arbitrary edit. Yet, we came across the two
edits several times: the changed component edit was mainly
about evolving the component without making changes to
variability; the merged components edit occurred when de-
velopers realized that there are two components that provide
very similar functionality.

In theory, updates to problem and solution spaces could be
completely independent from each other. Then any combi-
nation of variability model and asset edits is possible. How-
ever, as will be discussed in Sect. 7, updates to problem
space and solution space were always logically related with
each other in the set of patches that we analyzed.

6.3 Theory of SPL Refinements
Recent work by Borba et al. presented a general theory of
product line refinement [5] that describes evolution of soft-
ware product lines. Their work considers only generaliza-
tion edits, i.e. the cases when the set of existing products

Figure 6: Overall classification of edits in the Linux
kernel.

and their behavior are preserved, or the set is extended with
new features. Intuitively, a better (generalized) product line
is a refinement as long as it can generate enough products
to match the original one. It is important, however, that
refined products cannot change observable behavior of the
original products.

The theory of product line refinement uses set semantics for
feature models. As for assets, it abstracts from concrete
definition of refinement, but requires asset refinement to be
reflexive, transitive, and composable (refining an asset that
is part of a valid product yields a refined valid product). The
theory defines configuration knowledge as a relation between
feature expressions (propositional formulas having feature
names as atoms) to sets of asset names. Next, it defines
asset mapping as a relation between asset names and assets.

We exercised the theory on the Linux kernel commits to
verify its adequateness. Even though Kconfig models are
much more expressive than Boolean feature models, Berger
et al. [3] presented a translation of Kconfig to feature models.
Basing on that translation, and assuming that assets are files
or blocks of conditionally compiled code that have implicitly
defined unique names, we applied the theory to investigated
commits.

7. RESULTS
Through quantitative analysis of our classification of the
sample data deriving from the population of patches of the
Linux kernel, we extracted four graphs, shown in Fig. 6 to
Fig. 8.

RQ1. What does constitute a software product line refactor-
ing?

Refactoring of a software product line acts upon problem
space or solution space, or both at the same time. Refac-
tored variability models must preserve the set of available
products, while refactored source code cannot change its
functionality. We found and analyzed examples where both
spaces were modified at the same time, e.g. replacing exist-
ing code by part of another feature and adding dependency
to the variability model, changing file and variability hier-



Figure 7: Variability model edits in the Linux ker-
nel.

Figure 8: Asset edits in the Linux kernel.

archy, renaming files and functions, removing dead code.

As can be seen in Fig. 6, refactorings are not the most fre-
quent type of edit in the Linux kernel. Most of the times,
refactorings are edits that affect source code and the vari-
ability model, as can be seen by comparing Fig. 7 with Fig. 8.
We found that refactorings that modify variability are most
of the times either changes in the name of features or changes
in the feature’s description, as contained in the help section of
a config option. Although not shown by our graphs, renaming
is caused first in the variability model and later propagated
in the macro definition and their use in C files.

RQ2. Are changes to variability model congruent with changes
to the source code?

Investigated commits suggest that Linux is an example of
feature-driven development method. Problem space and so-
lution space evolve together, unless developers forgot to re-
flect changes in either space. Changes to Kconfig referred to
relevant part of code base, i.e. functionality was added/re-
moved simultaneously in both spaces. This expected behav-
ior was confirmed in our analysis, as can be observed in by
the resemblance of the graphs in Fig. 7 to Fig. 8. In most
cases, the type of changes imposed on Kconfig files are con-
gruent with the type of changes observed in the source code,
both related to its behavior and its variability.

A similar result was found by Lotufo et. al. [9]. They
compared the number of patches added weekly to the Linux
source code that modified, and also that did not modify,
Kconfig files. At the end, both numbers exhibited almost
identical ’heart-beat’ patterns, suggesting a causal depen-
dency between changes to the model and to the code (see
Fig. 9). Our findings, however, are more specific in the sense
that they actually consider the type of edit into account.

We found two ways in which developers introduced new fea-
tures. Most of the commits introduced new functionality in
the form of separate kernel drivers that provide support for
new devices. These commits added appropriate entries to
Kconfig, Makefiles and new files to the code base. Another
way of introducing new features was extraction from exist-
ing code and allowing for conditional compilation. In very
few cases new functionality added extra dependencies. We
noticed that the dependencies did not restrict the original
variability model, because they were added to new features.

Some features retire over time and are no longer needed.
Analyzed commits showed us that old features are removed,
but new features cover their functionality. Again, that was
often the case with drivers, when a new more general driver
could handle newer and older devices. For this reason when
components were merged in the solution space, developers
removed redundant variability from Kconfig scripts.

RQ3. What kind of tool support would help to evolve a soft-
ware product line?

Evolution of a product family requires constant changes to
variability model, source code, and links between the two,



Figure 9: Number of commits of the Linux kernel patches that touched KConfig files versus the number of
commits that did not. Extracted from [9].)

i.e. mapping. We found the following common activities
that would benefit from automated tool support:

refactoring When a developer changes config name in Kcon-
fig script, then the change must be reflected in source
code and Makefiles. Otherwise the configuration and
build processes work improperly. Tools should propa-
gate such changes, regardless of whether they originate
in Kconfig scripts or source code.

Sometimes developers wish to change physical struc-
ture of the code by moving source files. Such a change
requires path updates in Kconfig scripts and Makefiles.
Furthermore, Kconfig files get deleted and their con-
tent is moved somewhere else. Tools should support
this refactoring to make the process more transparent
and less error-prone.

feature addition Code and Kconfig files evolve together
with Makefiles. Tools should update Makefiles’ targets
when developers add new source files and create new
entry in Kconfig scripts.

Another way of introducing new features is extraction
from existing code base. Extracted functionality re-
quires updates in Kconfig scripts and adding corre-
sponding Makefiles. Tools should support featuriza-
tion to convert mandatory code to optional.

feature removal Similarly to feature addition, removing
obsolete features results in source code and Makefiles
deletion, and in updates to Kconfig scripts.

We also found cases when developers made optional
features mandatory, i.e. they removed variability from
Kconfig scripts and Makefiles, but did not modify source
code behavior. Tools should provide support for con-
verting optional features to mandatory.

updating dependencies The Linux kernel code base is
large and developed by thousands of programmers.
Sometimes two people provide similar implementations
of single functionality. Once they realize that, they up-
date the code so that a single function is shared among
several components. That often involves adding Kcon-
fig dependencies among features so that they require
feature with the shared function. Developers update
references manually, but tools could trace changes in
source code, resolve dependencies, and add entries to
Kconfig scripts.

RQ4. What are the criteria for creating new features?

Most of the cases observed involving the creation of new fea-
tures were related to the development of new drivers in order
to enable the support of new devices. This is reasonable and
was anticipated to some extent. Considering the fast pace
of evolution in hardware design and release as well as the
large amount of corporations present in the field, the need
to provide support to such a widely used operating system
such as Linux, and for all these new devices being released
to market, increases. Therefore, it was observed that the
main motivation of introducing new features to the Linux
kernel was the construction of new drivers.

RQ5. Why do developers make some parts of code optional
(instead of keeping them mandatory)?

The main reason we identified for making code optional is
to give users the right of selection. Since, as mentioned in
the previous answer, the devices that can be supported by
the Linux kernel are numerous, users should be given the
chance to enable/disable their support by the kernel. This
allows one to obtain a light weight kernel, loaded with the
minimal amount of device drivers and modules, and thus im-
prove performance. The tradeoff between generality and its
penalty in performance versus minimality with performance
gain is ultimately a user decision.

RQ6. Is the theory of software line refinements adequate to
model evolution of the Linux kernel?

The theory works well with our understanding of general-
ization edit, but it breaks when two components are merged
into a single component. We assume that the merged com-
ponent has the same observable behavior as the single com-
ponents.

According to the theory, assets are uniquely identified by
their names. Furthermore, when asset a belongs to the orig-
inal line and its refined version a

′ belongs to the refined
product line, then their names should be equal. Assuming
that there are two different assets a1 and a2 belonging to the
original line, they must have different names. If a′ is a re-
fined asset that covers functionality of both a1 and a2, then



its name can only match one of the original names, while it
is expected to match both at the same time, which leads to
a contradiction.

8. THREATS TO VALIDITY

External. Concerning the external validity of our study,
there are also some threats that can be identified. The
classes defined in order to perform the classification of the
patches investigated, were determined empirically by obser-
vation of the type of changes that seemed possible to occur
on the variability model and source code of the same set of
patches. Therefore, the question of completeness can rise i.e.
whether the classes chosen are adequate for the whole set of
patches where both the Kconfig file and source code files
were altered. Since only a sample of the entire population
of such patches was selected for investigation, it is possible
that changes imposed on the remaining number of patches
might not comply to any of the defined classes in which case
a revision of the selected classification would be required.
However, the number of patches investigated constitutes an
adequate sample specimen according to the laws of statisti-
cal analysis. More specifically, it can be calculated that in
order to conduct a successful statistical analysis over a pop-
ulation of 7955 elements which is our case, with a confidence
level of 95% and confidence interval of approximately 5%,
an adequate data sample should contain 360 elements which
is the number of patches we manually investigated for this
study. Thus, we can make the hypothesis that the classes
selected can be considered representative.

It should also be noted that the manual classification of the
Linux kernel patches was feasible due to the good organi-
zation of the Git repository as well as the clear remarks
and comments made by the developers who committed the
changes. However, this can be a threat to the validity of the
study since this might not be easily generalized. It is not
necessary that all or most SPLs are organized in a similar
proper manor that would enable the application of the same
classification and procedure in order to conclude to valid
results.

Also, as it can be seen by the results, a significantly larger
number of cases falls into the category of generalization edit.
However, many of the conclusions refer to the notion of refac-
toring when the number of cases classified as refactorings
does not constitute a majority. It is, therefore, of question
whether the size of the refactoring specimen is adequate to
come to valid conclusions concerning the term. To our de-
fence, the overall size of the total sample of patches is compli-
ant with the rules of statistics, as mentioned earlier, and the
samples were selected randomly. Thus, the total refactoring
cases can be assumed to maintain approximately the same
percentage over the overall cases proportionally as observed
within the sampled data. Therefore, the sample chosen is
likely to be a good indication of the population’s behaviour
in order to base our results upon. After all, no statistical
analysis can result to conclusions with a 100% confidence.

Consequently, it should be noted that only patches modify-
ing both the Kconfig and underlying source code were ana-
lyzed for this study. However, it is considered possible that
there is a probability of such modifications occurring sepa-

rately and independently from each other. These cases were
ignored for the purposes of this analysis. This can constitute
a threat to validity since ignoring such cases can have led to
disregarding significant pieces of information which would
alter the results of this study.

Finally, the possibility of the Linux kernel not being feature-
driven should be mentioned. For the purposes of this study,
it was assumed that the Linux kernel is feature-driven i.e.
any modifications made to Kconfig files are considered very
important aspects of the kernel and its behavior and, there-
fore, they were expected to be mapped respectively to the
source code. However, if this assumption is not valid, this
could have led to improper classification choices from our
part.

Internal. Concerning the internal validity of this study, there
is one threat to validity that ought to be mentioned. As one
can observe, the classification of the patches was held manu-
ally by taking into account the commentary and the changes
into the Kconfig file, underlying source code and Makefile of
each commit. Nevertheless, this method lacks a formal set
of rules based on which the classification decision is taken.
The existence of such a set would provide more credibility
and add a sense of formality and objectiveness in the classi-
fication procedure. It would, therefore, be of great value if a
concrete group of guidelines to be followed in order to make
this categorization, could be determined. To our defence,
the difficulty of defining such rules should be underlined.
While conducting our study, we encountered many cases for
which the classification was unclear and arguable. Thus,
since there is a certain amount of subjectiveness in the way
the changes of each commit are viewed by each reviewer, it
can be understood that the definition of a set of rules is not
a straightforward and easy task and would not be feasible
regarding the time restraints and scope of this project.

The Git repository permits history rewriting to treat cases
such as forgotten file additions or improve commenting. Us-
ing the diff and log tools of the Git repository, only the latest
version is investigated, therefore it is possible that important
changes made in previous versions might have been over-
written so are unintentionally ignored by our study. To our
defence, investigating the latest version seems more useful
since it provides information over the features currently en-
capsulated in the real product line of the Linux kernel and,
thus, reflects changes regarding the present condition of the
kernel.

9. RELATED WORK
Recent work on software product line edits focused on fea-
ture model updates. Relatively little, however, has been
done about classification of edits in the solution space.

Thüm et al. [18] presented an algorithm for automatic clas-
sification of variability model edits according to generaliza-
tion, specialization, refactorings and arbitrary edits. Their
algorithm aims to help product line designers measure the
impact of their changes on a given feature model. Their
main focus regards the correctness of their algorithm and
its performance in terms of execution time. The authors do
not present any empirical experiments regarding common



patterns of edits in variability models of software product
lines, nor any indication of how representative their pro-
posed edit categories are. Our work, on the other hand,
gives evince that their proposed work is indeed complete, at
least, in what concerns the Linux kernel.

Borba et. al. [5] presented a theory on software product
line refinements, which was discussed in Sect. 6.3. Borba’s
theory has the drawback that it only handles generaliza-
tions. Altough the theory is mathematically correct (it was
proved using the theorem prover PVS [12]), it is sensitive to
cases where two given features are merged, as we noticed by
studying the theory itself and the set of patches from the
Linux kernel.

Lotufo et al. [9] investigated the evolution of the Linux kernel
variability model in terms of 200 randomly selected patches
for the x86 architecture. Their sample, in contrast to ours,
only considered patches that touched KConfig files. Out
of that sample, they categorized modifications into several
classes: refactorings, deletions, or arbitrary edits. Their
work took into account the number of modified lines in the
source code, but disregarded the contents of the changes.

Other product lines resemble the Linux kernel. eCos, for
instance, is an open source real time operating system for
embedded applications [6]. It has a configurator that differ-
ent from menuconfig detects conflicts about inconsistencies
on a given configuration. As with Linux, it uses a DSL,
called Component Description Language (CDL), to express
its variability model. Berger et. al. [3] studied the practi-
cal use of KConfig and CDL. The authors compared their
constructs, semantics, usage and tools, along with the dif-
ferences with FODA-like languages.

There is no consensus as to whether the Linux kernel is a
software product line. Sincero et al. [15] discussed argu-
ments for and against it. There is no doubt that the Linux
kernel has artifacts belonging to problem and solution space.
An orthogonal dimension to problem and solution spaces is
domain versus application engineering. Domain engineer-
ing focuses on capturing commonalities and variabilities in
a particular domain and on organizing assets for systematic
reuse. The Linux kernel development misses domain engi-
neering, although it achieves many goals of software prod-
uct lines, i.e. configuration, reusability, automatic product
derivation. We, however, do believe in Linux as a SPL due
to its feature-driven development characteristic.

10. CONCLUSIONS
The purpose of this study was to investigate the notion of
evolution in software product lines as well as the way that
changes into the variability model affect the source code in
real large software product lines. It is expected that in many
cases, modifications to feature models should be reflected ac-
cordingly into the underlying source code. This attempt of
keeping the underlying source code with its feature model in
sync poses challenges to software developers which expresses
the importance of such an investigation over this subject
and, therefore, motivated our work. For the above purpose,
the Linux kernel which seems to behave as an SPL and man-
ifests many such characteristics, was chosen as a case study.
The conclusions resulting by the statistical analysis held over

patches of the Linux kernel can be mainly summed through
the following points :

• Refactoring in software product lines is a significant
notion although it is not the most common type of al-
teration met. It concerns all the changes made in the
variability model and/or the source code in order for
the first to preserve the group of products supported
and for the second to maintain the same functional-
ity. Therefore, as expected, in most refactoring cases
investigated, both were modified simultaneously.

• Evolution observed in the variability model of the case
study was confirmed to affect accordingly the under-
lying source code, as expected. The addition or re-
moval of features, functionalities and dependencies in
the variability model of the SPL, which in this case
is manifested through Kconfig files, seems to invoke
similar types of changes in the source code in the ma-
jority of the samples investigated. Therefore in overall,
the variability model is congruent with the underlying
source code which generally was assumed necessary to
maintain the correct functionality of the system.

• Automated tooling could facilitate the evolution of an
SPL. For this purpose, tools should provide support
for handling the basic types of changes observed. More
specifically, they should enable refactoring, make ap-
propriate changes when new features and functionali-
ties are added or removed and be able to detect and
handle dependency updates.

• The addition of new features is the most common case
observed. New features mostly concern the support
of new devices through the development of driver soft-
ware. This can be justified if one considers the vast im-
provement of hardware products, the rapid rate with
which they are being released along with the increase
in hardware development corporations appearing in
the market.

Finally, through this study, previous work was confirmed
and additional information was provided concerning soft-
ware product line refinement and the manor with which
evolution is reflected upon the variability models and source
code.
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[11] K. Pohl, G. Böckle, and F. J. van der Linden. Software
Product Line Engineering - Foundations, Principles
and Techniques. Springer, 1st edition edition, 2005.

[12] PVS. Pvs specification and verification system.
http://pvs.csl.sri.com/, 2010.

[13] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and
Y. Bontemps. Generic semantics of feature diagrams.
Computer Networks Journal, 51, 2007.

[14] D. Sharp. Reducing avionics software cost through
component based product line development. 1998.

[15] J. Sincero, H. Schirmeierand, W. Schröder-Preikschat,
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