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ABSTRACT
This paper presents Clafer, a class modeling language with
first class support for feature modeling. In the work we
identify key differences between class and feature models and
show how to unify the two notations. Our language offers
simple, yet powerful constraint notation to restrict models
and define mappings between features and classes. In the
paper, we describe how to use Clafer to express problem
and solution spaces and specify mappings between them.
We also present a Clafer-to-Alloy translator, our primary
tool that gives precise semantics to Clafer.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages; D.3.2 [Programming

Languages]: Language Classifications—Design languages

General Terms
Design, Languages

Keywords
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1. INTRODUCTION
Feature modeling is a technique used for capturing com-
monalities and variabilities in software product lines. It was
introduced by Kang et al. as a part of Feature-Oriented Do-
main Analysis methodology [12]. Original FODA feature
models, are tree structures supplemented with additional
constraints to specify dependencies among features.

The primary purpose of feature models is to describe vari-
ation space in terms of user-relevant products characteris-
tics. Feature models naturally fit into the problem space (see
Fig. 1), as they determine what products are available in the
particular software product line. The solution space, on the
other hand, is usually expressed in terms of class models. It
defines components, connectors and additional constraints
that make up product line architectures.
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Figure 1: Problem and solution spaces

The two modeling notations were designed with different
purposes in mind and model different types of variability.
Feature models capture selections from predefined fixed (tree)
structure, thus we obtain a subset of available features. This
is not usually the case with class models, as they grow
and become more complex. Class models support making
new structures by inheritance, creating multiple instances
of classes and connecting them via object references.

There have been attempts to merge feature with class mod-
eling. It was achieved either by extending feature models
so that they become class models or by clumsily simulating
containment hierarchy in class models. Unfortunately, both
approaches tend to make feature modeling notation more
complex and less intuitive. Our belief that simplicity of the
original FODA notation is an important advantage has been
confirmed in a recent study [13].

In this paper, we present Clafer (class, feature, reference), a
class modeling language with first-class support for feature
modeling. Our textual language provides a uniform syn-
tax and semantics to class and feature models. It tries to
minimize the number of underlying concepts. Both feature
and class models can be naturally mixed and coupled via
constraints and inheritance.

Our recent work on Clafer focused on polishing existing
constructions, adding Alloy-like constraints, providing name
resolution strategy and developing a Clafer-to-Alloy transla-
tor. Thus, the language semantics is mostly defined in terms
of Alloy constructions, but complete specification includes
rules of semantic analysis, which are part of the translator.

The rest of the paper is organized as follows. We relate
class to feature modeling in Sect. 2. We show how both



modeling notations are unified in Clafer in Sect. 3. We then
describe the structure of our translator and function of each
component in Sect. 4. We argue that Clafer satisfies its
design goals in Sect. 5. We outline future directions for
Clafer design in Sect. 6, compare the language with existing
solutions in Sect. 7 and conclude in Sect. 8.

2. UNIFYING CLASS AND FEATURE MOD-

ELING
Class and feature modeling capture different abstractions.
The former gives a good high-level picture of the applica-
tion’s functionality, while the latter is a preferable notation
for representing implementational models.

The two complimentary formalisms cannot be easily com-
bined in the existing class modeling notations, such as UML
and Alloy, since they do not provide first-class support for
feature modeling. It is possible to express feature models
in terms of class models by using composition, inner classes
and OCL constraints, but the result carries undesirable no-
tational complexity.

In contrast to class diagrams, there is no one standard no-
tation for feature models. The whole variety of notations
is discussed in the literature [11]. Some of them are tree-
like structures, where each non-root feature has one parent.
Other notations do not impose this restriction and allow
more general Directed Acyclic Graphs to form feature mod-
els. We believe that further extensions, such as cardinality-
based feature diagrams [8] and attributes [5] bring feature
modeling much closer to class modeling than to the original
FODA modeling notation.

The two modeling notations can be elegantly unified by pro-
viding a class modeling language with first-class support for
feature modeling. We postulate that such a language should
satisfy the following design goals:

1. Provide a concise notation for feature modeling

2. Provide a concise notation for class modeling

3. Allow mixing feature models and class models

4. Use minimal number of concepts and have uniform se-
mantics

The last goal expresses our desire that the new language
should unify the concepts of feature and class modeling as
much as possible, both syntactically and semantically. In
other words, we do not want a hybrid language with over-
lapping constructions.

3. CLAFER: CLASS, FEATURE, REFERENCE
We introduce Clafer by presenting a running example: sim-
ple telematics product line. Vehicle telematics systems inte-
grate multiple telecommunication and information process-
ing functions in an automobile, such as navigation, driv-
ing assistance, emergency and warning systems, hands-free
phone, and entertainment functions, and present them to
the driver and passengers via multimedia displays. Figure 2
presents a variability model of a sample telematics product
line.

telematics

System

single dual

Figure 2: Problem space: product features

3.1 Feature Modeling
A concrete telematics system can support either a single or
two independently controllable channels; two channels afford
independent programming for the driver and the passengers.
The choice is represented as the xor-group telematicsSystem.
The corresponding Clafer model is presented in Fig. 3.

xor telematicsSystem1

single2

dual3

Figure 3: Feature model in Clafer

In general, a Clafer model is a set of type definitions, fea-
tures, and constraints. A type can be understood as a class
or feature type; the distinction is immaterial. The enclosing
type provides a separate name space for this content (so it
is similar to nesting inner classes in UML class diagrams).

A type definition can contain one or more features. Fea-
tures are slots that can contain one or more instances or
references to instances. Mathematically, features are binary
relations. Original FODA feature models incorporate only
containment features, i.e., features that contain instances.
All features visible in Fig. 3 are of this type. An instance can
be contained by only one feature, and no cycles in instance
containment are allowed. The parent-children hierarchy is
indicated by simply indenting subfeatures under parent fea-
ture.

A containment feature definition creates a feature and, im-
plicitly, a new concrete type, both located in the same name
space. For example, the feature definition single (line 2) in
Fig. 3 defines both the feature single, and, implicitly, the type
single. The new type is nested in the type telematicsSystem.

Features have feature cardinalities, which constrain the num-
ber of instances or references that a given feature can con-
tain. Cardinality of a feature is specified by an interval
m..n, where m ∈ N, n ∈ N ∪ {∗},m ≤ n. As conciseness is
an important goal for Clafer, we provide syntactic sugar for
common constructions. For example, feature cardinalities
resemble syntax of regular expressions: ? (optional) denote
0..1; * denote 0..∗; and + denote 1..∗. Feature cardinality
specification follows the feature name or its reference type,
if any. No fature cardinality specified denotes 1..1 (manda-
tory) by default (e.g. telematicsSystem in Fig. 3), modulo
three exceptions explained next.

Features and types have group cardinalities, which constrain
the number of child instances, i.e., the instances contained
by subfeatures. Group cardinality is specified by an interval
〈m–n〉, with the same restrictions on m and n as for feature
cardinalities, or by a keyword: xor denotes 〈1– 1〉; or denotes



〈1– ∗〉; and mux denotes 〈0– 1〉; further, each of the three
keywords makes subfeatures optional by default. If any, a
group cardinality specification precedes a feature or type
name. For example, xor on telematicsSystem (line 1) in Fig. 3
states that only one child instance of either single or dual is
allowed. Because the two subfeatures single and dual have no
explicit cardinality attached to them, they are both optional.
No explicit group cardinality stands for 〈0– ∗〉, except when
it is inherited as illustrated later.

3.2 Class Modeling
So far we expressed our problem space in Clafer. Let us
move on to the solution space. Figure 4 shows components
of a generic telematics system, represented by a class model.
There are two types of components: ECUs (electronic control
units) and displays. Each display has exactly one ECU as its
server. Further, all components have a version.

server

*1
displayECU

version : int

comp

Figure 4: Solution space: component model

The corresponding Clafer representation is visible in Fig. 5.
Again, the model is a set of type definitions, features and
constraints. The abstract modifier indicates that no in-
stance of the type will be created, unless extended by a con-
crete type. Now features correspond to attributes or role
names of association or composition relationships in UML.

abstract comp1

version : integer2

3

abstract ECU extends comp4

5

abstract display extends comp6

server : ECU7

[version >= server.version]8

Figure 5: Class model in Clafer

For example, in Fig. 5, the feature version (line 2) corre-
sponds to the attribute of the class comp in Fig. 4; and the
feature server (line 7) corresponds to the association role
name next to the class ECU in Fig. 4. Features declared us-
ing the colon notation and having no subfeatures, like in
server : ECU, are reference features, i.e., they hold refer-
ences to instances. The reference feature server points to an
existing ECU instance.

Constraints are a significant aspect of Clafer, as they express
dependencies among features or restrict string or integer val-
ues. Constraints are always surrounded by square brackets
and are a conjunction of first-order logic expressions. We
modeled constraints after Alloy; the Alloy constraint nota-
tion is elegant, concise, and expressive enough to restrict
both feature and class models. Logical expressions are com-
posed of terms and logical operators. Terms either relate
values (integers, strings) or are set expressions. The value
of a set expression is always a relation, therefore each expres-
sion must be preceded by a quantifier, such as no, one, lone

or some. However, lack of explicit quantifier before Boolean
expression stands for some, meaning that the relation cannot
be empty (presented later).

The constraint defined in the context of display states that
display’s version cannot be lower than server’s version. Al-
though version is itself just a reference, Clafer is instructed
to compare the actual integer values and not just references.

Each feature in Clafer introduces a local namespace, which
is rather different from namespaces in popular programming
languages. Name resolution is required to identify: target of
a reference feature, and features used in constraints. In both
cases, names are path expressions (similar to navigation in
OCL or Alloy), where the dot operator joins two relations.
A name is resolved in a context of a feature in up to four
steps. First, it is checked to be a special name like this.
Secondly, the name is looked up in subfeatures in breadth-
first search manner. If it is still not found, the algorithm
searches in the top-level definition that contains the feature
in its hierarchy. Otherwise, it searches in other top-level
definitions. If the name cannot be resolved or is ambiguous
within a single step, an error is reported.

Clafer supports single inheritance. In Fig. 4, the type ECU
inherits features and group cardinality of it supertype. The
type display extends comp by adding a feature and a con-
straint.

3.3 Specializing and Extending the Class Model
The class model presented in Fig. 5 is a very generic meta-
model, representing infinitely many different products. We
would like to specialize and extend it to create a particular
architectural template. A template makes most of the archi-
tectural structure fixed, but leaves some points of variability.

Figure 6 shows such a template for our example. We special-
ize the generic metamodel via inheritance and constraints.
In our example, a concrete product must have at least one
ECU (ECU1) and can optionally (indicated by a question
mark in line 7) have another ECU (ECU2). The two ECU’s
extend the plaECU stating that each ECU contains a display.
The quotation notation (line 2 in Fig. 6) is a syntactic sugar
for inheritance.

Syntactically, quotation is just a name of abstract type pre-
ceded by left quote (‘), which in the example is expanded
as display extends display. The first name indicates a new
feature, and the second refers to the abstract type. Seman-
tically, this notation creates a containment feature display
with a new concrete type plaECU.display, which extends the
top-level abstract type display from Fig. 6. The concrete type
inherits group cardinality and features of its supertype.

Besides, we need to constrain the server reference in a display,
so that it points to its associated ECU. The reference this
points to the current instance of plaECU. Also, ECU2 extends
the base type with master, pointing to ECU1 as the main
control unit.

3.4 Gluing Class and Feature Models
We already defined our high-level representation of a prod-
uct line and a template architectural model. Mapping be-



abstract plaECU extends ECU1

‘display2

[display.server = this]3

4

ECU1 extends plaECU5

6

ECU2 extends plaECU ?7

master : ECU18

Figure 6: Architectural template

tween the two models is still missing. A correct configura-
tion shall always have at least one concrete ECU (ECU1)
and optionally ECU2. This mapping is provided by adding
a constraint to the original feature model (Fig. 3) resulting
in a constrained feature model (Fig. 7). The constraint says
that the dual feature is present if and only if ECU2 is present.
Thus, we defined a mapping from the problem space to the
the solution space.

xor telematicsSystem1

single2

dual3

[dual <=> ECU2]4

Figure 7: Feature model with mapping constraint

Constraints allow us restricting a model to a single or dual
configuration. Figure 8 shows a top-level constraint defin-
ing a single product, with two ECUs and all components in
version 1. Such a global constraint removes all variability
from the feature and class model.

-- concrete product1

[dual && comp.version == 1]2

Figure 8: Constraints determining a single product

We tested our approach by automatically translating the
Clafer model to Alloy and subjecting the resulting code to
the Alloy Analyzer. The analyzer generates the expected in-
stance of the product-line, which confirms that the model is
not constrained too much. The solution is represented as a
graph, where vertexes correspond to signatures and edges
correspond to relations in the Alloy model. The output
graph is unique up to structural equivalence. The Alloy
Analyzer generates multiple instances of our example, but
all of them have exactly the same structure within tested
scope (each signature instantiated no more than 7 times).
Although Alloy can detect some equivalent solutions, it does
not perform full graph isomorphisms detection.

4. CLAFER-TO-ALLOY TRANSLATOR
Clafer is designed simultaneously with the clafer2alloy trans-
lator. It takes a Clafer model and transforms it to cor-
responding Alloy model. The translation gives precise se-
mantics to our language by performing semantic analysis
and establishing a mapping to Alloy. The translator enables
us to experiment with new language constructions, detect
cross-cutting concerns and dependencies.

The software is written in Haskell and comprises several
chained modules: lexer, layout resolver, parser, desugarer,
semantic analyzer, and code generator. Lexer and parser

were generated from a labeled BNF grammar by BNFC [14],
which is a multilingual front-end generator. The rest of the
code was hand-coded in a purely functional style with occa-
sional use of monads [17].

Translation is not a straightforward process because of pos-
sible dependencies among features and substantial amount
of syntactic sugar offered by Clafer. We present our soft-
ware step-by-step by describing each module’s purpose and
operation. For the sake of clarity, the input Clafer model
from Sect. 3 is summarized in Fig. 9.

abstract comp1

version : integer2

3

abstract ECU extends comp4

5

abstract display extends comp6

server : ECU7

[version >= server.version]8

9

abstract plaECU extends ECU10

‘display11

[display.server = this]12

13

ECU1 extends plaECU14

15

ECU2 extends plaECU ?16

master : ECU117

18

xor telematicsSystem19

single20

dual21

[dual <=> ECU2]22

23

[dual && comp.version == 1]24

Figure 9: Telematics PLA: Clafer model

4.1 Layout Resolver
Layout resolver makes the use of braces grouping subfeatures
optional. The relation parent-child can be expressed simply
by indenting subfeatures further. This way of structuring
code makes a model shorter, and arguably, easier to read.

The resolver is a fairly simple module that processes a stream
of tokens before they reach the parser. It automatically in-
serts brackets when necessary, so that the output stream
complies to parser rules generated from the context-free BNF
grammar. Braces should only be placed before and after a
collection of subfeatures (e.g. compare lines 1 and 3 in Fig. 9
and Fig. 10).

Clafer is not a typical programming language, thus requires
some customization of the popular layout resolution algo-
rithm. For example, we do not want to modify constraints
or strings spanning over multiple lines. Another significant
difference concerns lack of explicit keywords for indicating a
block of code. It makes the analysis slightly more complex
since the resolver needs to find out whether a line-break oc-
curred within a feature hierarchy or in other construction
(e.g. enumeration).

4.2 Desugarer
Clafer is composed of two languages: the core and the full
language. The first one is a minimal language with well-



abstract comp {1

version : integer2

}3

4

abstract ECU extends comp5

6

abstract display extends comp {7

server : ECU8

[version >= server.version]9

}10

11

abstract plaECU extends ECU {12

‘display13

[display.server = this]14

}15

16

ECU1 extends plaECU17

18

ECU2 extends plaECU ? {19

master : ECU120

}21

22

xor telematicsSystem {23

single24

dual25

[dual <=> ECU2]26

}27

28

[dual && comp.version == 1]29

Figure 10: Telematics PLA: resolved layout

defined translational semantics. The latter is built on top
of the core language and provides large amount of syntactic
sugar. Separation of the two layers makes the language not
only more elegant, but also simplifies semantic analysis and
code generation stages.

Desugarer removes syntactic sugar from the input model.
The most straightforward solution would be to implement
it as a text file preprocessor. Yet we decided to perform an
Abstract Syntax Tree transformation instead. Large part
of the code is generated by BNFC so our work limits to
constructing the actual tree rewriting rules.

The desugarer works as follows. First, it converts enumer-
ations to a bunch of abstract features (not present in the
running example). Then sets implicit clafer supertype for
classes/features (e.g. line 1 in Fig. 11). Thanks to one com-
mon supertype we can easily perform set operations (e.g.
union, relational join) on them.

In the next step attribute navigation is converted to a set
expression – this AST transformation is not reflected in the
code but simplifies code generation by unifying AST nodes.
Sample navigational expressions include target features of
reference features (e.g. ECU in line 8 in Fig. 11).

Finally, feature cardinalities are transformed to their nu-
merical values (e.g. lines 2 and 19 in Fig. 11). This transfor-
mation does not, however, update cardinalities of abstract
feature definitions (e.g. line 1 in Fig. 11) because we do not
impose any feature cardinality restrictions on type defini-
tions. If needed, this kind of constraint could be expressed
by additional constraints.

The transition from input code to desugared code does not
seem to be a big change. On the other hand, the role of
desugarer will certainly grow if Clafer is used as a base
language for more customized notations. In that case, a
domain-specific notation shall be provided and desugared
by external tools.

abstract comp extends clafer {1

version extends clafer : integer 1..1 {}2

}3

4

abstract ECU extends comp {}5

6

abstract display extends comp {7

server extends clafer : ECU 1..1 {}8

[version >= server.version]9

}10

11

abstract plaECU extends ECU {12

display extends display 1..1 {}13

[display.server = this]14

}15

16

ECU1 extends plaECU 1..1 {}17

18

ECU2 extends plaECU 0..1 {19

master extends clafer : ECU1 1..1 {}20

}21

22

xor telematicsSystem extends clafer 1..1 {23

single extends clafer 0..1 {}24

dual extends clafer 0..1 {}25

[dual <=> ECU2]26

}27

[dual && comp.version == 1]28

Figure 11: Telematics PLA: desugared

4.3 Semantic Analyzer
There are certain semantical differences between Clafer and
Alloy. They mostly come from properties of feature models.
For example, Alloy does not allow signature nesting and thus
all names shall be resolved by the analyzer to avoid name
clashes. Furthermore, in Clafer it is possible to overwrite
inherited group cardinality. It is especially useful when we
want to extend a feature and constrain the number of all
subfeatures. In Alloy such an operation is impossible be-
cause we cannot ignore constraints of the supertype.

For the above reasons significant part of translation is de-
voted to semantic analysis. This stage distinguishes our
translation from direct mapping of metamodels. Similarly
to the desugarer, semantic analysis is an AST rewriting pro-
cess. However, to transform an AST node we need a context,
i.e. the transformation depends on other nodes and could
not be easily performed by a preprocessor.

Semantic analysis starts with determining feature’s inherited
artifacts: group cardinality and attribute (reference). Group
cardinality is inherited by default (e.g. line 5 in Fig. 12)
unless specified explicitly (e.g. line 23 in Fig. 12, where xor
is expanded as 〈1– 1〉).

An attribute is also inherited from the supertype if not spec-
ified otherwise. Explicit specification of an attribute never
overwrites the inherited one. It can only further restrict



the type a reference points to. This design decision goes
along with Liskov substitution principle. We should note
that if attribute types are disjoint then the attribute yields
an empty set.

Each feature introduces a new namespace in Clafer model.
In contrast, Alloy namespace within a file is mostly flat. To
deal with this issue the analyzer keeps track of Clafer names
and determines absolute path in set expressions. For exam-
ple, the dual name (line 28 in Fig. 11) is resolved as @telem-
aticsSystem.@dual (line 28 in Fig. 12). Each name preceded
by @ indicates that the feature will no longer be resolved.

Clafer constraints are not limited to Boolean expressions.
They include relational operators to compare string and in-
teger values. Internally these primitive types are features
extending the clafer supertype. By wrapping primitive types
we achieve more uniformity among language concepts. Fea-
tures containing primitive types differ from other features in
the sense that they contain the actual value field of primitive
type. The value field is attached by the analyzer whenever
value-comparing operators are used (e.g. in line 9 in Fig. 12
@val is attached).

A quick look at the initial model in Fig. 9 and the model
in Fig. 12 reveals verbosity of the second representation.
It comes mainly from assuming certain defaults about fea-
ture/class modeling constructions. In our opinion assuming
intuitive defaults improves usability and clarity of the lan-
guage.

Semantic analyzer worked fairly well for most of the models
we tested. Nevertheless, the name resolution algorithm still
partly relies on Alloy name-lookup strategy. In some cases
it results in name clash and errors from the Allow Analyzer.
We acknowledge that more precise semantics for Clafer name
resolution is needed.

4.4 Code Generator
The code generator transforms the core language into Alloy.
The input Clafer model is assumed to have fully resolved
dependencies and expanded convenient syntactic construc-
tions. The generator traverses input Abstract Syntax Tree
and for each node creates corresponding string with Alloy
code. The output code (in Fig. 13) is much more verbose
than the original Clafer model (in Fig. 9). Our rough ap-
proximations show that Alloy models are 2-3 times longer in
terms of lines of code, and about four times longer in terms
of number of characters. Alloy code is necessarily longer de-
spite of certain optimizations performed by the translator.

Let us now go through the Alloy model in Fig. 13. The
translated file starts with a standard header. The two first
lines are required to instantiate an Alloy model (we do not
check any property here). The line 4 defines a supertype of
a feature, and declares that each feature has a parent. Then
we create a feature holding integer value and for the sake of
convenience specify that it is its own parent. Line 7 and 8
contain a function that for each class/feature returns their
all subfeatures.

The next part contains the translated model. Features in
Fig. 12 are in different order than corresponding Alloy sig-

abstract <0-*> comp extends clafer {1

<0-*> version extends clafer : @integer 1..1 {}2

}3

4

abstract <0-*> ECU extends comp {}5

6

abstract <0-*> display extends comp {7

<0-*> server extends clafer : @ECU 1..1 {}8

[this.@version.@val >= this.@server.@version.@val]9

}10

11

abstract <0-*> plaECU extends ECU {12

<0-*> display extends display 1..1 {}13

[this.@display.@server = this]14

}15

16

<0-*> ECU1 extends plaECU 1..1 {}17

18

<0-*> ECU2 extends plaECU 0..1 {19

<0-*> master extends clafer : @ECU1 1..1 {}20

}21

22

<1-1> telematicsSystem extends clafer 1..1 {23

<0-*> single extends clafer 0..1 {}24

<0-*> dual extends clafer 0..1 {}25

[this.@dual <=> @ECU2]26

}27

[@telematicsSystem.@dual && @comp.@version.@val == 1]28

Figure 12: Telematics PLA: core Clafer model

natures in Fig. 13. In our description we follow the Alloy file.
Lines 10–14 in Fig. 13 correspond to lines 7–10 in Fig. 12. An
abstract feature is translated to an abstract signature. Su-
pertype is the same in both models. Next we place the server
subfeature as a field. The field points to ECU as specified in
the Alloy constraint. Finally the constraint from line 9 in
Fig. 12 is almost the same in the Alloy model. Please note
that in abstract signatures we never specify the parent fea-
ture, since they are just type definitions and indeed do not
have a well-defined parent.

Non-abstract features are translated in a very similar fash-
ion. However, their signatures are not preceded by the ab-
stract keyword, and the parent is stated explicitly in at-
tached constraints (e.g line 47 in Fig. 13).

Group constraints are translated as proper Alloy constraints
(e.g. the one from line 23 in Fig. 12 is written in line 43 in
Fig. 13). They are reasonably short thanks to the children
function. However, it does not deal with reference features,
and if we were to include them in the subclafers set, we would
have to enumerate them explicitly.

Clafer allows to use Boolean constraints even though the
underlying semantics is relational logic (compare line 28 in
Fig. 12 and lines 51–52 in Fig. 13). This is done by assuming
the default some quantifier before a logical term.

The last lines of Alloy model specify feature cardinalities of
top-level features (ECU1, ECU2 and telematicsSystem). They
are placed outside the rest of the model, because Alloy model
cannot contain relational definitions outside signatures.

4.5 Operation



pred show {}1

run show for 72

3

abstract sig clafer {parent : one clafer}4

one sig integer extends clafer {val : Int}5

{parent = this}6

fun children(p : clafer) : set clafer{7

{c : clafer | c != p && c.@parent = p}}8

9

abstract sig display extends comp10

{ server : one clafer }11

{ server in @ECU12

(((this).(@version)).(@val)) >=13

((((this).(@server)).(@version)).(@val)) }14

sig absdisplay extends display {}15

{ no absdisplay }16

abstract sig plaECU extends ECU17

{ display : one plaECU_display }18

{ (((this).(@display)).(@server)) = (this) }19

sig absplaECU extends plaECU {} { no absplaECU }20

sig plaECU_display extends display21

{}22

{ parent = (plaECU <: display).this }23

abstract sig ECU extends comp24

{}25

{}26

sig absECU extends ECU {} { no absECU }27

abstract sig comp extends clafer28

{ version : one clafer }29

{ version in @integer }30

sig abscomp extends comp {} { no abscomp }31

sig ECU1 extends plaECU32

{}33

{ parent = this }34

sig ECU2 extends plaECU35

{ master : one clafer }36

{ parent = this37

master in @ECU1 }38

sig telematicsSystem extends clafer39

{ single : lone telematicsSystem_single40

, dual : lone telematicsSystem_dual }41

{ parent = this42

let subclafers = this.children | one subclafers43

(some (this).(@dual)) <=> (some @ECU2) }44

sig telematicsSystem_single extends clafer45

{}46

{ parent = (telematicsSystem <: single).this }47

sig telematicsSystem_dual extends clafer48

{}49

{ parent = (telematicsSystem <: dual).this }50

fact { (some (@telematicsSystem).(@dual)) &&51

((((@comp).(@version)).(@val)) = (1)) }52

fact { one ECU1 }53

fact { lone ECU2 }54

fact { one telematicsSystem }55

Figure 13: Telematics PLA: Alloy model

The clafer2alloy translator is available as a source code and
a binary. The code can be run in a Haskell interpreter (such
as GHCi) by loading the clafer2alloy.hs file and invoking the
runFile 2 pModule function with specified Clafer model file.

The binary is run by the command:

clafer2alloy sourceFile.cfr

where sourceFile.cfr is a Clafer model. The translator gen-
erates three output files: sourceFile.des, sourceFile.ana and

sourceFile.als. The first one contains desugared Clafer model,
the second one the same model after semantic analysis and
the third one the Alloy model.

The Alloy model can then be loaded into the Alloy Analyzer
and checked/instantiated. As each analysis requires speci-
fying the number of instances of each signature, it can be
updated in the second line of the als file.

5. DISCUSSION
Clafer provides a concise notation for feature modeling (e.g.,
Fig. 3). Our language design reveals four key ingredients al-
lowing a class modeling language to provide a concise nota-
tion for feature modeling:

• Containment features: A containment feature defini-
tion creates both a feature and a type in one step.
Neither UML nor Alloy provide this mechanism.

• Feature nesting : Feature nesting is a single construct
accomplishing both instance composition and type nest-
ing. UML provides composition; however, type nesting
has to be specified separately (by using inner classes).
Alloy has no built-in support for composition and thus
requires explicit set-up of parent-child constraints. It
also has no signature nesting.

• Group constraints: Group constraints are defined con-
cisely as intervals. Group constraints can be expressed
in OCL or Alloy; however, the resulting encoding can
be lengthy since it requires enumerating reference fea-
tures.

• Constraints with default quantifiers: Default quanti-
fiers on relations, such as some, allow us writing con-
straints that look like propositional logic, even though
their underlying semantics is first-order predicate logic.

Clafer tries to use a minimal number of concepts and has
uniform semantics. In principle, a Clafer model is a set
of relations. While integrating feature modeling into class
modeling, our goal was to avoid creating a hybrid language
with duplicate concepts. In Clafer, there is no distinction
between class and feature types. Features are relations and
thus, besides their obvious role in feature modeling, they
also play the role of attributes in class modeling. We also
contribute a simplification to the realm of feature modeling:
Clafer does not have an explicit feature group construct; in-
stead, every feature can use a group cardinality to constrain
the number of its children. We believe that this is an im-
portant simplification, as we no longer need to distinguish
between “grouping features”, i.e., features used purely for
grouping, such as menus, and feature groups. In Clafer, the
grouping intention and grouping cardinalities are orthogo-
nal.

6. FUTURE WORK
Clafer is still in the early stage of development. Although
we are mainly focused on semantics of the language, we also
spent significant amount of time on defining clean, intuitive
syntax.



There are several directions that we would like to explore
in the nearest future. Clafer requires a lot of work as a
language to become more usable. For example, the lan-
guage cannot handle strings although they are used in prac-
tical variability modeling languages, such as KConfig [15] or
CDL [4].

We would like to support programmers with better type
checking/inference mechanisms. This is especially useful if
default values (integers, strings) can be specified by the pro-
grammer. Type inference would eliminate explicit enumer-
ation of type when it can be inferred from the value.

Besides, to improve scalability and reusability we plan on
adding a modularization mechanism. We expect it to be
slightly different than in popular languages, since we ob-
served that a Clafer library would consist mostly of abstract
features instead of instances. Thus intuitive defaults are to
be designed.

Another direction concerns chaining Clafer translator with
related tools. Therefore, we plan exploring different target
reasoners and translation strategies for Clafer. We envision
syntactic analyzers that classify Clafer models as belonging
to specific sublanguages and using this classification to use
the most efficient reasoner and encoding for each model.

7. RELATED WORK
Asikainen and Männistö present Forfamel, a unified concep-
tual foundation for feature modeling [3]. The basic con-
cepts underlying Forfamel and Clafer are similar; Forfamel
also includes subfeature, attribute, and subtype relations.
The main difference is that Clafer’s focus is to provide con-
cise concrete syntax, such as being able to define feature,
feature type, and nesting all just by stating an indented
feature name. Also, the conceptual foundations of Forfamel
and Clafer differ in many respects; e.g., features in Forfamel
correspond to Clafer’s instances, but features in Clafer are
relations. Also, a feature instance in Forfamel can have one
or more parents; in Clafer, an instance can have at most one
parent. These differences likely stem from the difference in
perspective: Forfamel takes a feature modeling perspective
and aims at providing a foundation unifying the many exist-
ing extensions to feature modeling; on the other hand, Clafer
limits feature modeling to its original FODA scope [12], but
integrates it into class modeling. Finally, Forfamel consid-
ers a constraint language as out of scope, hinting at OCL.
Clafer’s goal is to provide a concise constraint notation.

TVL is a textual feature modeling language [7]. It favors
the use of explicit keywords, which some software develop-
ers may prefer. The language covers Boolean features and
features of other types such as integer or enumerations. The
key difference is that Clafer is also a class modeling language
with multiple instantiation, references, and inheritance. It
would be interesting to provide a translation from TVL to
Clafer. The opposite translation is likely impossible.

Nivel is a metamodeling language, which was applied to de-
fine feature and class modeling languages [2]. It supports
deep instantiation, enabling concise definitions of languages
with class-like instantiation semantics. Clafer’s purpose is
different: to provide a concise notation for combining fea-

ture and class models within a single model. Nivel could be
used to define the abstract syntax of Clafer, but it would not
be able to naturally support our concise concrete syntax.

Clafer builds on our several previous works, including en-
coding feature models as UML class models with OCL [9];
a Clafer-like graphical profile for ecore, having a bidirec-
tional translation between an annotated ecore model and
its rendering in the graphical syntax [16]; and the Clafer-
like notation used to specify framework-specific modeling
languages [1]. None of these works provided a proper lan-
guage definition and implementation like Clafer; also, they
lacked Clafer’s concise constraint notation.

Gheyi et al. [10] pioneered translating feature models into
Alloy; their translation targets Boolean feature models, which
is a small subset of Clafer.

8. CONCLUSIONS
The premise for our work are usage scenarios mixing feature
and class models together, such as representing components
as classes and their configuration options as feature hier-
archies and relating feature models and component models
using constraints. Representing both types of models in sin-
gle languages allows us to use a common infrastructure for
model analysis and instantiation.

We take the perspective of integrating feature modeling into
class modeling, rather than trying to extend feature model-
ing as previously done in its cardinality-based variant. We
propose the concept of a class modeling language with first-
class support for feature modeling and define a set of design
goals for such languages. Clafer is an example of such a
language, and we demonstrate that it satisfies these goals.
The design of Clafer revealed that a class modeling lan-
guage can provide a concise notation for feature modeling if
it supports containment feature definitions, feature nesting,
group cardinalities, and constraints with default quantifiers.
Our design contributes a precise characterization of the rela-
tionship between feature and class modeling and a uniform
framework to reason about both feature and class models.
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