An interpreter for framework-specific modeling languages

Kacper Bak, Steven She

Abstract

Framework-specific modeling languages (FSMLs)
are specifications of framework concepts and their
intended usages. Interpreting an FSML over a set
of applications enables a user to detect framework
concepts in source code through reverse-engineering.

We describe our FSML interpreter written using
Prolog. The interpreter itself consists of two main
components: a parser that is responsible for reading
an FSML specification and an engine, responsible for
interpreting the constraints of the FSML and reverse-
engineering an FSML instance from a set of program
facts. We discuss the purpose of each component and
further highlight the advantages, as well as disadvan-
tages of our implementation.

1. Introduction

Framework-specific modeling languages (FSMLs)
are domain-specific languages designed to formalize
framework concepts and their intended usage patterns
[1]. For example, an FSML can specify that im-
plementing a key listener in a Java applet involves
implementing the KeyListener interface, registering the
listener and finally de-registering the listener when the
applet is closed. These usage patterns are currently not
checked or detected by compilers. FSMLs augment the
source programming language with domain-specific
concepts and constraints enabling more sophisticated
program checking and code assistance.

FSMLs are specified as a cardinality-based feature
model [2]. The semantics of the features are defined
through mapping definitions. A feature model consists
of a feature tree and a set of additional cross-tree
constraints (which can be empty). The feature tree
specifies dependencies between features in a hierar-
chical manner such that children features can only be
selected if their parent feature is selected. In addition,
features have an associated cardinality. A feature can
be optional [0..1], mandatory [1..1], have zero or more
instances [0..x] or any arbitrary upper and lower bound.
Features can be also be grouped to specify an or-
relationship. FSMLs have the concept of an essential

applet *

name (fullyQualifiedName)

extendsApplet ! (assignableTo: 'Applet’)
extendsJApplet (assignableTo: 'JApplet’)

listensToMouse?
implementsMouseListener

(assignableTo: 'MouseListener’)

registers (calls: 'addMouseListener’)
deregisters (calls: removeMouseListener’)

showsStatus x (calls: showStatus(String))
message : string (argVal: 1)

Figure 1. Subset of the Applet FSML

feature. An essential feature is one that is necessary
and sufficient for detecting the presence of its parent
feature. Finally, mapping definitions describe the corre-
spondence between features and code. They are similar
to pointcuts in aspect-oriented programming [3].

In Figure 1, a subset of the Applet FSML is shown
in our FML textual syntax. The names in bold text
represent features. The cardinality of a feature is
specified using syntax similar to regular expressions: a
‘x> denotes [0..x], a ‘?” denotes [0..1] and no modifier
denotes [1..1]. Next, the angled brackets are used
to specify a feature’s associated mapping definition.
Children of a feature are specified through indentation.
The same rule applies to feature groups, but each group
starts with cardinality specification in angle brackets
(not shown in this example). An exclamation mark is
used to denote an essential feature.

The constraints specified in a cardinality-based fea-
ture model can be translated to first-order logic. This
translation enables reasoning and provides a means for
validating whether a framework application satisfies
the constraints imposed by an FSML.

A key concept of FSMLs is that the model is a
derived artifact. A framework-specific model (FSM)
is constructed by applying static analysis to reverse-
engineer a model from the code of a framework ap-
plication. This operation is where mapping definitions
are used. Mapping definitions specify the criteria that
need to be satisfied for a feature to be detected in code.

Unfortunately, statically determining the run-time
semantics of a program is undecidable. Thus, we
use code queries to approximate the detection of
behavioural patterns. Interpreting a code query returns
values in the source code that satisfy the query. In-
terpreting all code queries in an FSML returns all
framework-specific features present in code.

In this paper, we present our prototype implementa-
tion for a FSML interpreter built using SWI-Prolog [4].
Our interpreter is capable of parsing an FSML speci-
fication, extract facts from a set of Java applications,
reverse-engineer an FSM and check hierarchy and car-
dinality constraints. We describe the function of each
component in our prototype, and where applicable,
give a detailed description of its implementation. We
provide a guide for running the tool in Section 6,
describe future work in Section 7 and conclude in
Section 8.

2. FML Parser

We have designed a textual grammar called FML
for specifying FSMLs. FML is our domain-specific
language for feature modeling enriched with cross-
tree constraints and optional mapping definitions. It is
under active development and here we present the first
version of it.

FML is designed to model hierarchies of features
with cardinalities and optional attributes. The scope
of FML is much larger than what is presented here.
We aim to develop FML into a language suitable for
large scale feature modeling supporting thousands of
features. For example, we would like model the Linux
configuration system containing over 5000 features
using FML [5]. There is a notion of single inheritance
available in the language, but we are not clear about
its semantics and thus do not use this feature in this
project. Similar to many programming languages, it is
possible to limit the scope of visibility by introducing
local definitions. FML also supports the concept of
feature reuse, which is similar to a function call.

The language offers a wide range of cross-tree con-
straints. Sample constructs include logical operators,
If-Then-Else, arithmetic and set operations. Sets can
be constructed either implicitly (by choosing elements
satisfying some condition) or explicitly (by listing
elements). Furthermore, constraints can also be speci-
fied by Alloy-like quantifiers [6], which determine that
some condition is satisfied by all, none, some elements.
As feature models are usually represented as trees,
FML allows navigation within its hierarchical structure
by means of dot (.) and hat (") operators. The former

goes one level down, while the latter goes one level
up.

The current version of FML has quite well defined
syntax, but is still unclear on semantics of some con-
structions. In addition, it uses curly braces for denoting
features instead of whitespace rule. We think it would
be convenient to offer both mechanisms for structuring
code.

2.1. Implementation

The parser is built in Prolog as a set of Definite-
Clause Grammar (DCG) rules [7]. Technically, it is
a recursive descent parser that uses difference lists
and Prolog backtracking. Difference lists represent the
difference between the input and output stream. There
is a straightforward correspondence between language
grammar and DCG rules. Therefore, the default syntax-
tree structure is very close to an input grammar.

DCGs are very easy to implement in Prolog and
easy to use. As they are ordinary Prolog code, the
output syntax tree can be processed during the parsing
stage. A DCG specification in Prolog appears very
similar to a grammar specification in standard Backus-
Naur Form. SWI-Prolog provides convenient syntax
for writing DCGs in the form of the —-> operator.
The ——> operator is preprocessed by the SWI-Prolog
compiler to automatically add arguments representing
the difference list. Prolog backtracking is used to
implement the parser’s lookahead mechanism.

On the other hand, since backtracking is the main
control flow mechanism, there is typically very poor
performance in the case of complicated grammars.
Backtracking also makes it harder to detect ambiguities
in the grammar.

Our recursive descent parser makes substantial use
of higher-order programming and is written in a rather
concise style. However, it does not produce any error
messages if the input is wrong; it simply fails instead.
Parser’s source code can be found in parser.pl file. The
top-level parsing term is declared as parse(File, AST),
where File is a path to FML source code and AST is a
resulting abstract syntax tree. A sample FSML in FML
syntax is provided in the applet.fml file.

FML combines feature models with mapping defini-
tions. Therefore, mapping definitions are part of input
files. Mappings strongly depend on language of source
programs. For instance, mappings for Java programs
are completely different from XML mappings. For this
reason, they should be parsed by specialized tools.
Although a proper implementation will invoke other
parsers for interpreting the mapping definition, we de-
cided to embed some Java-specific mapping definitions

into the current FML implementation.

The Prolog implementation of the parser is certainly
adequate for our prototype. Nonetheless, it is unlikely
we will continue using Prolog for the parser component
when building a more robust, real-world implementa-
tion.

3. Java Fact Extractor

A front-end for the Eclipse Java Development Tools
(JDT) compiler [8] was written to construct a Prolog
database from a set of Java applications. The database
is used to reverse-engineer a set of framework-specific
model in subsequent steps of our prototype. The ex-
tractor builds facts from three constructs of the Java
language: class declarations, method declarations and
method calls. We refer to the set of input source files as
a project. Table 1 shows the facts and their arguments
that are constructed by the extractor.

Class Declarations. Each file in the project corre-
sponds to a class or interface declaration. We ignore
interface declarations since they do not contribute any
run-time semantics. We construct a class fact for
each class declaration. A class fact contains its fully-
qualified name (ie. its package and class name), its
superclass, any implemented interfaces followed by a
list of declared methods.

Method Declarations. For method declarations,
we construct a fact method that contains its name,
return type, list of parameter types followed by a list of
method calls. A method’s name is its signature, which
consists of its declaring class followed by its method
name and parameters.

Method Calls. Method calls are represented by
the methodCall fact. They are nested under method
declarations and contain three arguments. The first, is
its receiving object name. We currently use this field
to distinguish between self-references using this and
known static fields such as System.out. The second
argument is the signature of the called method fol-
lowed by a list of resolved argument expressions. The
argument resolution is based on some form of pointer
analysis. We currently perform no pointer analysis and

Table 1. Extracted Prolog fact structure

Functor Arguments

project [classes]

class Name, superclass, [interfaces], [methods]
method Name, return type, [parameter types], [calls]

methodCall Receiver object, signature, [arguments]

public class Simple extends Applet
implements MouseListener {

public void init () {
showStatus("foo");
addMouselListener(this);

}

public void destroy() {
showStatus("bar");

}

Figure 2. Java source of a Simple applet

project([
class(‘Simple’, ‘Applet’, ['MouseListener’],
[method(‘init’, ‘void’, [],
[methodCall(‘this’, ‘showStatus(String)’, [‘fo0’]),
methodCall(‘this’, ‘addMouseListener(...)’,
[this’]),
)

... —— destroy method omitted

)

Figure 3. Prolog fact extracted from Java source

as a result, only constants are retrieved for arguments.
If the argument cannot be resolved, a special none
atom is returned.

In Figure 2, the Java implementation of a simple
applet is shown. The implemented methods of the
MouseListener are omitted. This applet makes two
calls to the showStatus method and registers itself as a
mouse listener through the addMouselListener method
call. Note that a call to removeMouseListener is absent.
The Java fact extractor builds the Prolog fact shown in
Figure 3.

3.1. Implementation

The extractor is built on top of the JDT compiler
which is implemented in Java. JDT parses and com-
piles an AST for a source file and exposes it using the
visitor design pattern. We have opted to use the Scala
programming language [9] to implement the extractor.
Scala is a hybrid language combining functional and
object-oriented programming concepts that runs on the
JVM and is inter-compatible with Java.

The internal representation of an AST in the JDT
compiler is optimized for speed and space. Conse-
quently, much of its structure is stored as primitives
such as char arrays instead of strings for class names

and where possible, fields are used over methods.

Scala provides several benefits for interacting with
such mixed-data structures. First, fields and parame-
terless method accesses are the same (ie. the empty
parentheses following a method call can be omitted).
Scala also provides a uniform way of interacting with
Java primitives through its type system. In Scala, every
value is represented as an object, thus, Scala does
away with Java primitives. For example, an character
array is written as Array[Char], which specifies an Array
parameterized by the Char type. Conversions between
Java primitives and Scala objects are performed au-
tomatically by the Scala compiler through implicit
conversions. A further consequence of this type system
is that Scala implements all operations as method
calls; there are no reserved operators. For example, the
expression 1 + 2 is in fact shorthand for the expression
1.+(2). As a result, Scala provides a convenient and
uniform way of working with collections. For example,
the higher-order functions map and append (using the
++ operator) are available to both Arrays and Lists.
In fact, these operations are available to any type
implementing the Iterable interface.

The fact extractor constructs an in-memory represen-
tation of the Prolog fact structure. We used a functional
pretty-printer combinator library based on the paper by
Wadler [10] to render the fact structure to text. The
pretty-printer library provides combinators to concate-
nate, group, nest and line-break text fragments called
documents. A call to a document’s format renders the
combined document as text that tries to respect a given
margin width. These combinators are part of the Scala
standard library.

4. Linearizing Facts

The tree structure generated by the Java fact ex-
tractor is a concise representation of the nesting rela-
tionship between the various constructs. However, this
tree representation is difficult to query using Prolog.
Therefore, we perform a step where we expand, or
linearize this tree structure into a list of facts. The
tree structure is retained through a unique identifier
for each fact and an argument referencing its parent.
In Table 2, a subset of the facts generated through this
linearization is shown.

We use a single functor, creatively called fact, to
store each linearized fact. A fact has five parameters:
(1) is its type, (2) is the node id of its parent, (3) is
the type of its attribute, (4) is the fact’s own node id,
and (5) is the attribute value.

This stage acts much like the parse function in our
class interpreters. However, in this case, we convert

the input tree structure into a flat Prolog-centric list
of facts. These facts are then asserted into the Prolog
database.

5. Engine

The engine is the central point of our project,
as it glues together the two other components: the
parser and extractor. The engine is responsible for
instantiating framework-specific models by detecting
the presence of features in source programs. Feature
instantiation is done by invoking code queries which
are approximations of the mapping definitions spec-
ified in the FSML. A code query returns all source
code facts matching its criteria. For example, a code
query for fullyQualifiedName would return all facts
with a class’ fully qualified name. The semantics of
mapping definitions, queries and facts is separated
from semantics of feature models since mappings are
language dependent.

The engine provides a function instantiate that
interprets an FSML’s AST. To instantiate a feature,
all subsequent parent features must be present. The
presence of a feature is determined by whether its code
query returns a result. If there are multiple results, then
a feature is instantiated multiple times. A further check
on a feature’s essential subfeatures is also performed. If
all essential subfeatures are present, then we instantiate
the feature. At this stage, we perform a check of
cardinalities. If a cardinality constraint is not essential
but is still violated, the subfeature will be marked

Table 2. Linearized facts

fact type parent attr. type id attribute

project - jproject n;

class n jclass ns

assignableTo n3 string ng ‘Applet’

name ns string ns ‘Simple’
implements n3 string ne ‘MouselListener’
hasMethod n3 jmethod n7 init’

returnType ny jtype ng void

calls ny jmethod njo ‘showStatus(String)’
recObject nio string ny; this

argVal nio tuple ni3 (1, foo)

calls ny jmethod ni4 ‘addMouselistener...’
recObject N4 string nis this

argVal Nniq tuple nie (1, this)

... remaining facts omitted.

Represented in Prolog as:
fact(fact type, parent, attr. type, id, attribute)

Applet
name = Simple showsStatus
extendsApplet message = foo
listensToMouse showsStatus
implementsMouseListener message = bar
registers

Figure 4. Framework-specific model

by a missing tag. The tree is currently interpreted in
depth-first search manner, but we may find other, more
suitable strategies in the future.

The result from running instantiate with the as-
serted linearized facts is shown in Figure 4. Here, the
framework-specific model is shown as a list of instan-
tiated features and their associated attribute values if
any. In this example, most features of the Applet FSML
are instantiated. However, the deregisters feature is
missing since it was not in code and thus, the code
query for this feature failed to return a result. We will
go into further detail on the implementation of code
queries in the following sub-section.

After instantiation, the constructed model is passed
to the constraint checker. Although cross-tree con-
straints can be as essential as constraints imposed by
cardinalities, they are validated at later stage. The two
functions are separated because additional constraints
may refer to features which are not instantiated at
feature model traversal time.

5.1. Implementation

Similar to other components, we implemented the
engine and code queries in Prolog. Source programs
are represented as asserted facts in Prolog database.
These facts make up a linearized tree structure which
resembles the Java source AST. This representation
makes code queries very simple, concise and exten-
sible.

All code queries operate on a single fact, and
thus have very similar structure. That makes meta-
programming in Prolog an easy task. Although queries
are defined statically, each query call is constructed
dynamically when interpreting the FSML tree by using
the univ (=..) operator. The univ operator transforms
a list of elements into a term where the head of the
list acts as the functor and the remaining elements
act as arguments. In our case, the functor is always
the query term. The first argument to a query is the
fact type (ie. assignableTo or calls) and determines
the semantics of the query. The next arguments of the
query term represent input parameters of the query. For

query(assignableTo, 'Applet’, X).
X = fact(assignableTo, ns, string, ny, 'Applet’).

query(calls, 'showStatus(String)’, X).

X = fact(calls, n7, jmethod, nyg, 'showStatus(...)) ;
X = fact(calls, n7, jmethod, nig, 'showStatus(...)’).

Figure 5. Sample queries with results

example, the assignableTo query has a parameter for
specifying the class name. Finally, the last argument
is the resulting fact. The constructed query term is
executed as a Prolog goal and then returned if the
goal can be satisfied, otherwise it fails. This meta-
programming approach lets us use Prolog’s searching
capabilities and also makes code very reusable.

In our running example there are two sample
mapping definitions — assignableTo: ’Applet’ and
calls: showStatus(String). They are translated into two
queries, each with one argument. The first query re-
turns facts that are superclasses of Applet. The second
query searches for facts about a method call. Here we
are interested in finding calls to the showStatus method
with String parameter. Figure 5 shows how the queries
are invoked and what results they return. The fields
with n; uniquely identify each node and are used to
reference their parent nodes.

The instantiate term traverses FSML abstract syn-
tax tree in depth first search fashion and instantiates
features by executing relevant code queries. There is
direct correspondence between mapping definitions in
FSML AST and available code queries. Although they
should be separated from the interpreter, we decided
to combine the two artifacts for this project. Each code
query returns only a single fact from the database,
but retains additional results through backtracking.
Therefore we use the findall predicate to fetch all
relevant facts. Facts are matched not only on basis
of mapping definitions, but also by parents. Matching
by parents is the only way to associate a particular
feature instance with instances of subfeatures. For
example, if there are two applets, and only one of
them implements MouseListener interface, then we
want to associate this fact with proper applet instance.
After query execution, the number of returned facts is
checked with its cardinality constraint from the model.

Information on whether a subfeature is correct or
not bubbles from leaves up to the FSML root. Our
implementation of error propagation is not very far
from the Maybe Monad known from functional pro-
gramming [11]. This idea will be pushed further in
future implementations.

The engine still has very limited capabilities. First of
all, it is not complete, which means that it can interpret
only the most basic constructions of FML. We are
still unsure about semantics of certain constructions.
Besides, FML is rather non-trivial to interpret if we
take into account possible interactions between mod-
ules and cross-tree constraints. Another limitation is
the analysis of only a subset of the constructs available
in code. The engine also has performance issues related
with the way Prolog searches its database. We tested
the interpreter on a project containing 20 applets and
about 11 thousands facts. Instantiation of our applet
models took about 90 seconds on a modern computer
(Intel Core2 Duo, 2.40GHz).

6. Operation

The java fact extractor is available as a compiled jar
containing all dependencies!. The extractor is executed
with the following command:

java -jar extractor.jar {-f output.pl) {source files | directories)

The first option, -f, specifies whether the output is
sent to a file instead of standard output. The remaining
parameters specify any source files or directories for
the extractor to analyze. Any additional options are
passed to the internal JDT compiler.

We provide two extracted Prolog projects with our
tool. The first, simple.pl is an example similar to the
one presented in this paper. A larger project, sun.pl
consists of the extracted facts for 20 Java applet
downloaded from the Java applet tutorials available
from Sun.

Model instantiation starts with loading engine.pl file
into Prolog interpreter. Assuming that the Prolog inter-
preter is started in the project directory, it is enough to
type [engine]. Next, it is required to load the extracted
AST of the source project. For example, this could
be either [simple] or [sun]. Finally, execute run(File),
where File is path to the FML source file. We provide
the example Applet FSML shown in this paper as
applet.fml. The run term parses the input feature model,
extracts facts about the source project, instantiates the
framework-specific model and prints the output model.

7. Future Work

Our project is still in a very early stage of develop-
ment. First of all, we are going to work on both syntax
and semantics of FML. There are still many questions
about useful features of the language. We would like

1. http://www.eng.uwaterloo.ca/~shshe/extractor.html

to determine which constructions are just syntactic
sugar and which are beyond the expressiveness of pure
feature models. Another work concerns code mappings
and their placement within feature models. It is still
not clear whether they should be mixed with feature
models or defined separately. We would also like to
work on preprocessing the FSML AST returned by
parser. Its current form is very similar to the parse tree
and complicates interpretation and the engine itself.

The extractor component extracts only basic facts
from the source program. Our current prototype does
not implement any form of pointer analysis. For exam-
ple, the introduction of a variable is enough to cause
the analysis to fail at detecting the value of an method
call argument.

There is already published work on using declarative
languages for specifying and executing static pointer
analysis. Bravenboer presented work on using Datalog
to specify points-to analysis [12]. Datalog is a syntactic
subset of Prolog that guarantees that query evaluation
is sound and complete. We can apply similar tech-
niques to implement the static analysis necessary for
executing more complex code mappings (e.g. control-
flow and data-flow analysis).

Our interpreter relies on an extractor to build a
preloaded set of facts. Realistic programs can contain
a large number of facts, therefore we will have to
determine which information should be stored in the
database and which to gather at run-time. Incorporating
run-time analysis would mean connecting our Prolog
implementation with a JVM-based language. There
are tools for accomplishing this task such as the JPL
project from SWI-Prolog [13].

The engine component implements only a very
limited subset of FSML syntax tree. It still requires
more design and development work, which is tightly
coupled with the parser part. Some of missing and
non-trivial features include support for modules and
navigation capabilities. We also plan to improve code
by making it more higher-order and fully apply Maybe
Monad concept. Furthermore, the abstract syntax tree
with resulting FSM should be simplified by unifying
nodes representation.

The instantiate term currently performs only basic
cardinality checks; it does not validate additional con-
straints. Certainly, check should be a separate stage, but
we are still considering using specialized tools, such
as Alloy, for this task.

Finally, type checking can be used to validate the
composition of mapping definitions. Mapping def-
initions can be composed through the parent-child
relation in the tree hierarchy or through cross-tree
constraints. For example, a common pattern is to nest

the argVal mapping under a call mapping. However, it
is possible to nest semantically invalid mappings, such
placing an argVal as a child of a class. We currently
make no attempt at detecting these semantically invalid
mappings. This is an exciting task and we hope to be
able to address this in the near future.

8. Conclusions

In this project, we have developed an interpreter that
parses an FSML specification and creates instances of
the FSML through Prolog queries. Furthermore, we
have implemented a fact extractor for Java programs
using Scala. In this paper, we identified the main com-
ponents of the infrastructure and interactions between
them. Our prototype implementation is capable of
supporting the reverse-engineering of simple FSMLs.
Although there are still many challenges to overcome,
we believe that Prolog has, and will continue to be an
effective language for implementing our interpreter.

References

[1] M. Antkiewicz, “Framework-specific = modeling
languages,” Ph.D. dissertation, University of
Waterloo, Sep 2008. [Online]. Available: http:

//hdl.handle.net/10012/4030

[2] K. Czarnecki, S. Helsen, and U. Eisenecker, ‘“For-
malizing cardinality-based feature models and their
specialization,” in Software Process: Improvement and
Practice, 2005, p. 2005.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-
oriented programming,” in ECOOP, 1997, pp. 220-242.

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

J. Wielemaker, “Logic programming for
knowledge-intensive interactive applications,”
Ph.D. dissertation, University of Amsterdam, 2009,
http://dare.uva.nl/en/record/300739.

S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czar-
necki, “The variability model of the linux kernel,” in
VaMoS, 2010, submitted for review.

D. Jackson, Software Abstractions: Logic, Language,
and Analysis. The MIT Press, 2006.

C. M. Sperberg-McQueen, “A brief introduction
to definite clause grammars and definite clause
translation grammars,” W3C, 2004. [Online]. Available:
http://cmsmcq.com/2004/1gintro.html

Eclipse Foundation, “Eclipse java development tools
(JDT),” 2009. [Online]. Available: http://www.eclipse.
org/jdt/

“The Scala programming language,” Ecole Polytech-
nique Fédérale de Lausanne (EPFL), 2009. [Online].
Available: http://www.scala-lang.org

P. Wadler, “A prettier printer,” in Journal of Functional
Programming. Palgrave Macmillan, 1998, pp. 223-
244.

J. Newbern, “The maybe monad.” [Online].
Available: http://www.haskell.org/all_about_monads/
html/maybemonad.html

M. Bravenboer and Y. Smaragdakis, “Strictly declara-
tive specification of sophisticated points-to analyses,”
in OOPSLA, S. Arora and G. T. Leavens, Eds. ACM,
2009, pp. 243-262.

P. Singleton, “A SWI-Prolog to Java interface,”
2009. [Online]. Available: http://www.swi-prolog.org/
packages/jpl/prolog_api/overview.html

