
Exemplar of Automotive Architecture with Variability

Kacper Bak, Marko Novakovic, Leonardo Passos

Generative Software Development Lab

University of Waterloo

Waterloo, Canada

{kbak, mnovakov, lpassos}@gsd.uwaterloo.ca

Abstract—This work presents an exemplar of automotive
architecture with variability. We extracted it from the actual
documentation of Adaptive Cruise Control subsystem. Adap-
tive Cruise Control is a system responsible for maintaining
driver selected speed or driver selected headway. We mod-
eled architecture of the system in two modern architecture
description languages: AADL and SysML. We also modeled
architectural variabilities by applying the upcoming standard
of Common Variability Language by OMG. The work shows
how to introduce variabilities into existing architectures and
presents our experience with modern architecture description
languages.

Keywords-software architecture, ADL, variability, CVL

I. INTRODUCTION

Cars are assembled from physical components, such

as engine, brakes, or lights. Modern cars, however, are

software-intensive systems whose functionality is mostly

implemented as programs. Software provides information

processing functions, such as navigation or driving assis-

tance. Adaptive Cruise Control (ACC) is an example of

such a system. It controls engine and brakes so that the

car automatically maintains selected speed and keeps safe

distance to other cars. Software applications can make the

ride safer and more enjoyable.

Car manufacturers have been using Software Product

Lines (SPLs) to deliver car-specific software from a shared

code and model base. The premise of SPLs is to au-

tomate the process of code generation, thus making it

cheaper, faster, and more reliable. Software families are

often described in terms of features (user-relevant charac-

teristics) and architecture (represented as components and

connectors). Product line architecture has a high degree of

variability, so that it can be tailored to specific requirements.

For example, a configurable ACC can lower the speed if the

vehicle is too close to another car, or can simply generate a

warning on the display. Design of a variable architecture is a

challenging problem in itself, as it requires domain-specific

knowledge to determine common and variable parts.

Engineers have been using models to develop new cars.

They have mathematical models of engines, car aerodynam-

ics or vibrations. The same could not be said about software

engineers who traditionally modeled their solutions directly

in the source code. Nowadays, many companies turn to

model-based software development and in particular to

Model Driven Architecture (MDA) [1] to provide abstrac-

tions over the code. The interesting question is: how to

represent architecture’s variability? A well known method

are preprocessor directives (e.g. IFDEF in C) that switch

on and off blocks of code. This approach, however, is error-

prone, low-level, and hard to validate. Another approach is

to introduce variability into models by annotating them with

presence conditions [2]. Recently, OMG has started working

on Common Variability Language (CVL)[3] to introduce

variability into existing models without modifying them.

Similarly to other OMG standards (e.g. UML2 [4]), CVL

is likely to become a widely-used industry notation.

In this paper we present an exemplar of automotive ar-

chitecture with variability. We extracted the exemplar from

the actual documentation of the Adaptive Cruise Control

subsystem provided by a car manufacturer. Before and

during the process of extraction we faced several questions:

• What languages to use for modeling architecture?

• How to introduce variability into the architecture?

• What are the advantages and drawbacks of different

approaches to variability modeling?

To answer these questions we looked into modern ar-

chitecture description languages and picked AADL and

SysML as promising notations. We then applied CVL to

model architectural variabilities and to couple variability

and architectural models. Due to the lack of good tool

support from SysML and AADL, we designed a domain

specific language so as to facilitate the integration with

CVL. Our work brings the following contributions:

1) To the best of our knowledge ACC is the first ex-

emplar of the actual automotive system with built-in

variability. The SPL community can use it to evaluate

their languages and tools.

2) We modeled various aspects of ACC in two mod-

ern architecture description languages: AADL and

SysML. We describe our experience with both lan-

guages and corresponding tools. Designers of both

languages can use our insights to improve their nota-

tions.

3) We used CVL to model variabilities and provided a

short evaluation of the draft of proposed standard.

This work gives an early feedback to CVL designers.

It also shows how to apply CVL to existing models.

The paper is organized as follows. We introduce Adaptive

Cruise Control subsystem in Sect. II. We describe its AADL

model in Sect. III and SysML model in Sect. IV. We discuss

ACC variabilities and different approaches to variability in



HUD ChimeProducer IPC HighHeadDown 

Telltales

Low Speed CAN

BCM

ACCModule

ACCController

FLS

ABS

High Speed CAN

StopLamp

Control

CruiseSwitches

ACCGap

Switch

ECM + ETC

TCM

Legend

Module Physical connection Control Area Network

BAS

Optional Elements

Figure 1. Physical connections diagram

Sect. V. We conclude in Sect. VII, after having described

our prototype CVL application to ACC in Sect. VI.

II. CASE STUDY: ADAPTIVE CRUISE CONTROL

Adaptive Cruise Control (ACC) is a system responsible

for maintaining driver selected speed or driver selected

headway depending on the environment. It is an extension

over Cruise Control system that only maintains driver

selected speed, leaving the driver responsible for shifting

gears and/or braking if the preceding vehicles drive slower

than the host car. The driver of the host car with Adaptive

Cruise Control system can set the speed and headway mode.

If there are no preceding vehicles, the system maintains

driver selected speed. As soon as preceding vehicles shows

up, the system may apply braking, control throttle or shift

gears to maintain driver selected headway.

There are many variabilities among different car manu-

factures or models. Those variabilities contribute to the way

ACC controls the host vehicle. For example, in some cars

it is impossible to apply automatic braking; other cars do

not have automatic gear transmission. Driver selected speed

can be displayed in miles or kilometers per hour, etc.

A. Architecture Extraction

We extracted main parts of the ACC architecture from

the official documentation that we received from one of au-

tomotive manufacturers. Figure 1 shows ACC architecture

with connections between ACC system and other vehicle

systems. Here we present modules from the diagram.

A vehicle with installed ACC usually contains many other

embedded systems. Those systems communicate with each

other over a bus, such as Controller-Area Network (CAN).

Depending on the required bus speed, devices use High

Speed CAN (HSCan) or Low Speed CAN (LSCan). We

modeled the core part of ACC as ACC Module. ACC

Module contains ACC Controller and Forward Looking

Sensor which is a sensor that scans the road and deter-

mines the speed of the preceding vehicles. There is also

Forward Collision Alert that provides information-only

functionalities (i.e. if there are preceding vehicles it takes

no action other than displaying information to the driver).

It is important to notice that some of those elements are

optional, since some vehicle configurations might exclude

them.

Transmission Control Module or TCM is on of such

optional devices. It is used for automatic transmission so

as to control car speed. If there is a need for braking,

ACC Module sends appropriate signal to ABS Module

which then applies the brakes to slow down the car. Vehicle

speed can also be changed by increasing/decreasing throttle

injection. This is done by ECM (Engine Control Module)

and ETC (Electronic Throttle Control). All of those infor-

mation/requests are represented as signals transmitted over

the HSCan bus.

Driver-interfacing parts are modeled as Driver Output

Devices and Driver Input Devices. Driver Output Devices

are the top elements in the Fig. 1. HUD or Head Up Display

is an optional device, and is used for projection on the front

screen. IPC or Instrument Panel Cluster is a panel that is

in front of the driver and contains other output devices,

such as HighHeadDown Telltales (small screen next to

speedometer). Chime Producer is a device that is used for

playing sounds in vehicles.

Driver Input Devices read driver inputs for setting driver-

selected headway or speed. CruiseSwitches are On, Off,

Set, Resume switches, and are used for resuming or can-

celing ACC functionalities, or for setting driver selected

speed. ACCGapSwitch is used for increasing or decreasing

Headway. Choices and number of those switches vary

among different car models. The Body Control Module

(BCM) shields the input and output devices from the other

systems in the car. Every access to these devices must first

pass BCM, which then distributes received signal to the

LSCan Bus. Signals from the input/output devices also pass

by BCM, which then broadcast then into the HSCan.

There is another optional device: Brake Apply Sensing

(BAS). it allows illumination of the stop lamps during

automatic braking, with the help of StopLampControl.

III. ARCHITECTURE IN AADL

AADL stands for Architecture Analysis & Design

Language [5]. The language aims at modeling embedded

real-time computer systems. It was designed for automo-

tive, avionics and aerospace systems, and contains domain-

specific modeling constructions. Depending on modeler’s

preferences, AADL provides two notations:

1) Textual notation. AADL is developed to be an Ar-

chitecture Description Language. The language has a

simple and concise syntax that is easy to understand

and use.

2) Graphical notation. Each of the main concepts of

the language has a graphical representation. One

needs proper tool support to benefit from using the

graphical notation. Switching between graphical and

textual representations is done without losing any

information in the model.



Figure 2. AADL Elements

The main element of AADL is called Component. It is

a superclass of other AADL concepts. AADL models are

essentially sets of components and connectors. The latter

specify interactions among components. There are three

main types of components in the language :

1) Application software

• thread, thread group, process: similar to oper-

ating system’s concepts with the same name and

thread group components within a process

• data: used for creating custom data types

• subprogram: concepts such as call-return and

calls-on methods Subprogram is used for mod-

eling behavior

2) Execution platform (hardware)

• processor: schedules and executes threads. Can

be seen as a processor in PCs.

• memory: stores code and data

• device: represents an abstraction of any compo-

nent that communicates with the external envi-

ronment. Example: Forward Looking Sensor

• bus: interconnects processors, memory, and de-

vices. Example: LSCAN in Adaptive Cruise Con-

trol model

3) Composite

• system: system is used for integration of other

components into distinct units within the archi-

tecture. Example: ACC Module

Listed components are described in more details in Fig. 2.

Components can have features. Features can be seen as data

the component provides or requires. Features can contain

more in data port and out data port definitions. There is

also port group for aggregating input and output ports.

AADL distinguishes models and their implementations.

Each model component can have multiple implementations.

In implementation one can model the internals and details

of a system. Implementation part in the model can be seen

as another, more detailed view of architecture. For example,

connections between components can only be defined when

creating system implementation.

A. Adaptive Cruise Control Modeling

We applied AADL to model Adaptive Cruise Control

system and to assess the language along that way. The

process of modeling was iterative, i.e. we were learning

the language and creating models at the same time. This

approach allowed us to avoid bad practices early on and to

refine the models over time.

To improve the quality of the models, we focused on

modeling the structural aspect of the Adaptive Cruise Con-

trol system. AADL’s minimalistic syntax was very conve-

nient for structural modeling. We started with representing

external hardware. We then connected this hardware to the

ACC system. Next, we refined the internals of hardware

and software elements. In addition, we connected hardware

with software and modeled signals exchanged in the system

by means of the High Speed CAN and Low Speed CAN.

system implementation car_system.i
subcomponents

acc_module_subsystem:
system acc_module::acc_module;
...
head_up_disp_device_subsystem:

device head_up_disp_device;
...

connections
bcm_to_acc_connection : port group
bcm_device_subsystem.
bcm_to_acc_data_output
→ acc_module_subsystem.

bcm_to_acc_data_input;
...

end car_system.i;

Figure 3. Part of the ACC model in AADL

Figure 3 shows an extract from the ACC model.

It is a part of AADL system implementation of

the Car System. The Car System contains all the

hardware and software that is communicates with

ACC. There are components (under the subcompo-

nents section) and a list of connections. Examples

of subcomponents include acc_module_subsystem and

head_up_disp_device_subsystem. The former repre-

sents Adaptive Cruise Control core part - the logic provid-

ing ACC functionalities. The latter represents High Head

Up Display, modeled as an AADL device. The display

shows information about the current state of ACC to the

driver, e.g. driver selected speed and headway. Furthermore,

there is also one connection visible in Fig. 3. It contains

description of the group of signals coming from Body Con-

trol Module bcm_device_subsystem to the ACC Module

acc_module_subsystem.



Figure 4. The relationship between SysML and UML modeling languages.

B. Pros

Syntax: AADL has a very simple syntax that is suitable

for modeling the structural part of Adaptive Cruise Control.

Documentation: The official website1 has a link for

downloading the Starter Kit, which is a well introduction

to new users. It contains many AADL models that can

be imported into the official IDE for AADL2. Also, doc-

umentation provided by the Starter Kit contains manuals

explaining many aspects of AADL and presents interesting

use cases.

C. Cons

Tool support: Tool support is not good enough. There

is only one free IDE that is still in early phase of devel-

opment. For example, graphical notation is lacking flows

(connections), and the autocomplete option for textual rep-

resentation is not helpful.

Syntax: Syntax for some parts of the language is

hard to follow due to a list of multiple keywords; e.g. in

definitions of property sets.

Behavior modeling: Behavior modeling is not sup-

ported in the original version of AADL. It is provided as

an extension in the Behavior Annex. Although AADL can

model behavior, there are no first-class constructions for

expressing it.

IV. ARCHITECTURE IN SYSML

SysML (System Modeling Language) is a general pur-

pose modeling language for system engineering that sat-

isfies the requirements of the UML System Engineering

Request for Proposal, as published by OMG [6].

SysML is based on a subset of UML, called

UML4SysML, along with some extensions on its own (the

SysML profile). The relationship between SysML and UML

is shown in Fig. 4.

SysML defines nine diagrams that altogether allow one

to model the behavior and the structure of a system. To

limit scope, we modeled only the structural part of the ACC

exemplar in SysML. For this task, all structural diagrams

that the language provides were used so as to model differ-

ent aspects of the system. Next, we describe each of them

1http://www.aadl.info
2OSATE: http://www.aadl.info/aadl/currentsite/tool/osate.html

parameters

Ra: Meter

DTR: Meter

BOR: Meter

constraints

{{C} Ra = DTR + BOR ;}

«constraint»

Ra

Figure 6. A range constraint (Ra) defined over the the ForwardColli-
sionAlert block.

along with some examples. We assume some familiarity

with UML modeling language and its vocabulary.

Package Diagram: groups elements that share a com-

mon responsibility, semantics, etc.

Block Definition Diagram: allows modeling of the

entities (blocks) of a given domain. In system engineering, a

block might represent either a physical or a logical element

from a given domain. A block in SysML corresponds

to class in UML. Figure 5 presents the core blocks in

the block definition diagram for the ACCModule. The

ACCController is an ECU - Electronic Control Unit, which

is a dedicated hardware responsible for controlling a specific

part of a car. Modern cars can have as many as 80 ECUs

[7]. Each ECU runs an instance of a software; in this case

the ACCController runs the ACCControllerSoftware. The

ACCControllerSoftware may have a ForwardCollision-

Alert, responsible for warning the driver of a imminent

collision. The ACCController communicates directly with

the ForwardLookingSensorController, which processes

the environment and detects other vehicles within a given

range. All communications of the ACCController to and

from other modules of the car are performed by broadcast-

ing signals through the HighSpeedCAN.

Internal Block Diagram: zooms into a given block.

Generally, it is used for modeling the relationship of a

given block to other blocks in terms of port connections.

It is also used to define the set of constraints (generally

seen as equations) that must be applied to a given block.

Consider, for instance, the constraint Ra defined over the

ForwardCollisionAlert block. It defines the range, mea-

sured in meters, in which the ACC must alert the driver of a

possible collision. The Ra constraint uses two parameters,

DTR (projected range of the vehicle ahead of the ACC

vehicle) and BOR (projected range in which the vehicle

will start braking), both defined as constraints. A constraint

in SysML is coded in a specific programming language. In

the presented diagram, the constraint was defined using the

C programming language.

Parametric Diagram: shows how a given constraint

can be calculated in terms of the block properties and

how the result of one constraint calculation can be passed

to either a parameter of another equation or stored as a

property value. Properties in SysML resemble attributes in

UML.

Parametric diagrams allow the simulation of the equa-



«block»

ACCController

Runs

«block»

ForwardLookingSensorController

values

isActive:boolean

pStationary:float

range:float

pMovingNotBraking:float

pMovingAndBraking:float

K7Second

K6:Second

K5:Second

K4:Second

K3:MeterPerSecond

K1:MeterPerSquaredSecond

K2:MeterPerSquaredSecond

operations

determineFCAAlert()

FLSDataAccessInterface

«block, active»

ForwardLookingSensorSoftware

«block»

ACCControllerSoftware

Runs on

operations

processeEnvAndDetermineState()

controlVehicleSpeedAndHeadway()

determineACCAlert()

values

currentState:ACCState

flsStatus:boolean

currentDriver:DriverIdentifier

driverSelectedHeadway:Meter

driverSelectedVehicleSpeed:MeterPerSecond

wheelRotationalStatus:Degree

isEnable:boolean

isAdjustmentEnable:boolean

«block»

ForwardCollisionAlert

fca

<<delegates>>

operations

processRoadEnvironment(vd:VehicleData):PrecedingVehicleData

status():boolean

parts

precedingVehicleData:PrecedingVehicleData

vehicleData:VehicleData

driverSelection:DriverSelection

«block»

Car::HighSpeedCAN

ios:Signal

ios:Signal

«dataType»

DriverPreference

values

driverIdentifier:DriverIdentifier

driverSelectedSpeed:MeterPerSecond

driverSelectedHeadway:Second

1..7

Figure 5. A partial view of the ACCModule block definition diagram.

Figure 7. A fragment of the parametric diagram for the ACC.

tions associated with a given block if one configures the

set of property values. Consider, for instance, a fragment

of the parametric diagram defined for the ACC, as in

Fig. 7. The Ra constraint outputs its value to the range

property, defined in ForwardCollisionAlert. It uses the

values produced by the BOR and DTR constraints with

its corresponding parameters. Note that the direction of

input/output values is implicit in parametric diagrams.

A. Pros

SysMŁwas expressive enough to model all aspects of

the ACC system given the documentation provided by an

automotive company. Although only structural modeling

was used, SysML allows one to easily model behavior,

which is not a straightforward task in AADL.

B. Cons

Our experience with SysML shows that constraint and

parametric diagrams are very useful to allow one to simulate

equations. However, parametric diagrams restrict modelers

to bind equation parameters only to block properties. One

cannot, for example, bind a parameter to an operation

(method in UML) in order to receive a value from it. We

believe that this is too restrictive.

Another drawback from SysML is the lack of good

supporting tools. We evaluated the following set of tools

when experimenting with SysML: Topcased 3, Papyrus 4,

MagicDraw 5 and Microsoft Visio 6. Papyrus and Topcased,

although promising tools, are not yet mature; usability

proved to be an issue and we found many compromising

bugs while using them.

MagicDraw supports SysML by means of a plugin 7.

Together, they provide simulation and validation of models.

However, due to the commercial characteristic of the plugin,

which is not freely available for academic purposes, we did

not further explore it.

Microsoft Visio: in terms of the quality of the produced

diagrams and usability, Visio proved to be the best tool. By

means of a third-party stencil 8, Visio supports all elements

defined by the current SysML specification [6]. However,

it produces raw diagrams, from which it is impossible to

perform any kind of consistency checking, nor simulation.

Another drawback of SysML comes from lack of docu-

mentation. Currently, there are only two main books ([8],

3http://www.topcased.org
4http://www.eclipse.org/modeling/mdt/papyrus
5http://www.magicdraw.com
6http://office.microsoft.com/en-ca/visio
7Available at: http://www.magicdraw.com/sysml
8Available at http://softwarestencils.com/sysml



[9]) about it besides its official specification [6].

V. VARIABILITIES

The extracted ACC subsystem is deployed in a range of

car models. Different cars serve for different purposes and

are further customized to match client’s needs. Although car

models significantly differ from each other, they are built

from shared components. Such a production process is more

economical and arguably less error-prone than building new

components from scratch for each car model. The process

significantly impacts ACC subsystem’s architecture by in-

troducing variation points to support components reuse. For

example, a configurable ACC can lower the speed if the

vehicle is too close to another car, or can simply generate a

warning on the display. Variation points are removed during

the configuration stage by specializing them with chosen

option. Selection of a particular set of options results in a

single product.

A. ACC as a Software Product Line

Adaptive cruise control is an interesting example of

configurable software-intensive system. First of all, it is

a software product line, i.e. a family of related software

assembled from shared assets, such as models or compo-

nents. Furthermore, it is an embedded system where the

distinction between software and hardware is rather blurry,

since a piece of software can be easily turned into FPGA

hardware. Thus, a change in ACC configuration affects

software, hardware and systems architecture.

Domain

Engineering

Application

Engineering

Feature

Model

Assets with

Variability

Points &

Relations to

Features

Feature

Configuration

Assets with

Resolved

Variability

Problem Space Solution Space

Figure 8. Idealized View of Software Product Lines

Software product lines are traditionally described in terms

of problem space and solution space, as shown in Fig. 8.

Problem space captures high-level requirements, usually in

the form of feature models [10]. Feature models are tree-

like structures that specify commonalities and variabilities

within a software family. Solution space contains shared

assets, such as models, or components and connectors.

There is no one widely-accepted notation for solution space,

as it depends on the domain. In our ACC exemplar, AADL

and SysML models express architecture, but the complete

solution space includes mathematical models of car physics.

Mathematical models are used for simulation and code

generation for target platform. Although this aspect is

important in embedded systems, we excluded it due to time

constraints.

Figure 8 also shows an orthogonal view of software

product lines, i.e. domain engineering and application engi-

neering. Domain engineering focuses on modeling software

for a particular application area. It contains concepts and

assets for expressing a range of products. For example,

we scoped our course project to engineer the automotive

domain. Application engineering, on the other hand, focuses

on generating a single product from the domain. It contains

configuration knowledge, which applied to domain assets,

removes variability from them. Configuration knowledge is

usually a set of binary decisions, or a set of (numerical,

string) parameters.

B. ACC Variability Specification

The extracted ACC subsystem has two classes of variabil-

ities: optional elements and calibrations. Optional elements

are binary decisions that result in inclusion or exclusion

of a particular asset. Exponential growth of binary deci-

sions leads to hundreds of possible ACC configurations.

Calibrations, on the other hand, are value assignments to

variables. The ACC subsystem has tens of calibrations that

can be fine-tuned within a certain interval. For example,

the minimum speed to enable ACC must be between 30

and 50 km/h with resolution of 1 km/h. Value specifica-

tions increase the number of valid ACC configurations to

the order of billions. Even though calibrations have more

degrees of freedom than optional elements, they have lower

impact on system’s architecture. Therefore, we focused on

modeling binary decisions.

Feature models naturally express binary decisions by

means of mandatory features, optional features and group

cardinalities. Figure 9 shows a feature model of the ACC

exemplar. Mandatory features (marked with filled circles)

must be present in all configurations; e.g. each ACC must

have a forward looking Sensor to measure the speed of

preceding car. Furthermore, ACC must be connected to

Powertrain to be able to increase speed or request braking.

Part of ACC is exposed to the user who can turn on/off the

subsystem by Switches on the driving wheel and see status

on the Display.

Optional features (marked with empty circles) may or

may not be present in all products; some versions of ACC

may issue forward collision Alert to the driver if the pre-

ceding car is to close. In other versions this feature may be

unavailable and ACC will automatically reduce the speed.

The Cancel button is another example of optional feature.

Some car models might allow the driver to disengage ACC

by pressing the button.

Group cardinalities impose restrictions on the number of

selected children. In Fig. 9 there are only xor cardinalities

(marked as empty arcs) that require exactly one subfeature

to be selected from the group. For example, ACC must have

either Radar or Lidar sensor. The Powertrain subsystem

stores DriverIdentifiers and recognizes either Single or

Multiple drivers to load their preferences. Most of the



groups include two elements, but it is not always the case.

For example, there are three types of displays: projection

on the front screen (HeadUp), a display placed between

the driver and the passenger (HighHeadDown), or a small

screen next to speedometer (Cluster).

C. Variability Implementation

One of the recurring questions in SPL community is:

how to implement software variabilities in the source code?

Answering the question alone is not enough, as there are

several factors that must be taken into consideration: code

quality, maintainability, evolvability, scalability, and error-

proneness. Here we briefly describe several approaches and

discuss their strengths and weaknesses.

1) Cloning: Cloning is a manual technique for deriving

software products from shared assets. A programmer looks

at requirements, selects relevant models and components

from a shared pool and glues them together. This technique

is so simple, that it does not require specialized knowledge

or tool support, and can be applied to virtually any type of

assets. Programmers have known code-clones for decades.

It is one of the reasons why cloning is used in the industry

for applications of moderate size. Other than that, cloning is

error-prone, does not scale, and leads to different versions

of initially single component.

2) Annotations: Annotations are probably the most pop-

ular means of introducing variability. They are usually

implemented as presence conditions [2] or preprocessor

directives (e.g. IFDEF in C). Presence conditions are logical

formulas attached to model elements. An engine processes

the model and excludes elements whose presence conditions

evaluate to false. Preprocessor directives play similar role

to presence conditions, but they annotate the source code.

Preprocessor reads input file and conditionally includes

parts of the code. A good and complex example of us-

ing preprocessor for variability realization is the Linux

kernel [11]. Despite the ease of use, fine-granularity, and

familiarity to programmers, preprocessor directives have

been heavily criticized in academia for negative impact on

code quality and maintainability [12], [13]. Recent work by

Kästner [14] argues that preprocessors are still a reasonable

solution but better tool support is needed.

3) Modularized Variability: Modularization and separa-

tion of concerns are two main ideas that tame software

complexity. Modularized variability implements features in

terms of closed modules, such as files, classes, packages.

They are automatically composed by frameworks, mixing

layers, and aspects. Modularized variability is preferable

from the point of view of software evolvability or main-

tainability, but it also imposes more overhead to implement

different variants. In the annotation approach, 1-2 lines

of code are enough to conditionally include a chunk of

code. In the compositional approach, the whole module

must be written. Therefore, the level of granularity is

much coarser than with annotations. Among practitioners

compositional approach is not as popular as annotations.

It requires appropriate tool support to establish mappings

between problem and solution spaces. Tools for software

product lines are still mostly prototypes.

D. ACC Assets with Variability

Selection of a single feature from feature model affects

several assets from the architectural model. We investigated

SysML and AADL to see how to implement model vari-

abilities in these languages. SysML offers calibrations but

provides no facilities for introducing structural variability.

Without external technologies, the language is better suited

for application engineering than for domain engineering.

AADL, on the other hand, makes distinction between model

and its implementation. Models express domain concepts,

while implementations belong to application engineering.

For a single model there can be multiple implementations.

Implementations can contain signal value assignments to

set calibrations. It is more interesting, however, to look into

structural variabilities.

We start by mapping xor groups from Fig. 9 to elements

of the AADL model. For example, forward looking Sensor

is either Radar or Lidar-based. The device for forward

looking sensor always exists in the model:

device forward_looking_sensor_device
...

end forward_looking_sensor_device;

Then there are two alternative implementations of the

device:

device implementation
forward_looking_sensor_device.radar_based

end forward_looking_sensor_device.radar_based;

device implementation
forward_looking_sensor_device.lidar_based

end forward_looking_sensor_device.lidar_based;

In this way all alternative feature groups map to different

implementations in the AADL model.

AADL cannot conditionally include model elements,

so the only way to model optional elements is

to provide empty implementations for excluded

features. In practice it is a problem, because

optional functionalities, such as Alert, impact many

model elements (alert_commands_data_output,

alert_commands_data, alert_commands_data_inv,

determine_alert, etc.) and for each element there should

be an empty implementation. AADL model would have

to accommodate a union of all possible variations, which

makes the model less readable and probably affects its

maintainability. Another problem with AADL is that the

user has no clear view of all variabilities. There is no

single structure that would correspond to feature models.

Our conclusion is that neither SysML nor AADL provide

adequate support for introducing variability into models.

E. Common Variability Language

OMG is working on a new standard for modeling vari-

ability: Common Variability Language (CVL). The purpose

of CVL is to introduce variability into existing models



Radar Lidar

Sensor

Haptic Audible

Alert

Automatic Manual

Transmission

Single Multiple

DriverIdentifier

BAS Discrete

Braking

Powertrain

TwoButtons ThreeButtons

Gap

Cancel

CruiseInput

Switches

HeadUp HighHeadDown Cluster

Display

ACC

Figure 9. Feature Model of ACC Product Line

without modifying them. The language is in early stage of

development. We wanted to understand what challenges im-

plementers and users of the standard might have. Figure 10

presents the standard as proposed by Haugen [3]. It has a

layered architecture with the following layers:

Base Model Handles

Base Model

Variability Realization

B
in

d
in

g

Variability Abstraction

Variability Encapsulation

Figure 10. CVL Architecture

1) Base Model: contains the model to which CVL intro-

duces variability. The standard assumes that the base model

is a graph structure, composed of nodes and edges. CVL

targets models whose meta-models comply with MOF [15].

2) Base Model Handles: reference nodes and edges from

the base model. Base model handles provide an interface

between CVL and external models.

3) Variability Realization: provides constructs for defin-

ing direct, concrete impact on the base model through

definition of variation points. There are three types of

variation points: existence, substitution, value assignment.

Existence indicates optionality of nodes and edges. Substi-

tution indicates that a model fragment may be substituted

for another. Value assignment indicates that a value may be

assigned for a particular element of base model.

4) Bindings: connect variability realization and abstrac-

tion. It is a 1-1 mapping that separates direct effect on base

model from variability specification.

5) Variability Abstraction: provides constructs for spec-

ifying and resolving abstract variability. Variability spec-

ification has no direct effect on base model. Instead, it

presents variability in terms of choices (binary decisions)

and variables. Thus, it is very close to feature models.

6) Variability Encapsulation: builds on variability re-

alization and abstraction layers and provides facilities for

modularizing and aggregating variabilities.

Common Variability Language integrates the annotation

and compositional approaches. On the one hand, it annotates

base model elements with variation points. On the other

hand, it separates base and variability models and stores

annotations in its variability realization layer.

We found CVL relevant and well-suited to our project.

First, we wanted to separate responsibilities so that mem-

bers can work in parallel on base and variability models.

Second, CVL naturally expresses feature models, such as

the ACC feature model from Fig. 9, in the abstraction layer.

Furthermore, SysML and AADL have their meta-models

defined in MOF, so CVL can reference them by base model

handles. Implementing variability realization was the only

thing left to introduce variability to ACC architecture. It

turned out to be more involving than we expected.

VI. VARIABLE ARCHITECTURE MODELING

CVL offers a very general approach for modeling vari-

ability, but it is unusable without proper tool support. To

apply CVL to our AADL and SysML models we first turned

to CVL Tool from SINTEF9 which is a prototype imple-

mentation of the standard proposal. Unfortunately, we were

unable to reproduce examples from the user’s guide due to

usability issues with the Eclipse plug-in. The documentation

was unclear about realizing variability. We finally decided

to implement both CVL and a domain specific language for

automotive architecture in Meta-Programming System.

A. Meta-Programming System

Meta-Programming System is an open-source projec-

tional workbench developed by JetBrains10. It follows the

language-oriented programming paradigm [16] and is sig-

nificantly different from common methods of writing source

code. Projectional workbenches store all artifacts as models.

Programmer operates directly on the abstract syntax tree

instead of using a parser to recognize the input code.

Projectional workbenches greatly simplify the development

of new languages and allow arbitrarily mixing and matching

different languages. For example, one could directly use

SQL statements within Java programs. Projectional work-

benches can show different views of one model, which

improves code clarity and separation of concerns. For

example, a single model could describe architecture and

variabilities. Two different views would project these two

aspects separately.

B. ACC Architecture in CArch

To address the problems of tool support in AADL and

SysML and to overcome the limitation of SINTEF’s pro-

totype, we implemented a domain specific language called

CArch. The design of CArch allowed us to:

9Available at: http://www.omgwiki.org/variability/doku.php?id=cvl_
tool_from_sintef

10Available at: http://www.jetbrains.com/mps



• express the main concepts that we captured in SysML

and AADL;

• ease integration with CVL, since CVL and CArch were

both coded in a common environment – MPS. The use

of MPS allows one to access the abstract syntax tree

of any coded model so as to manipulate its structure,

which is a requirement to implement CVL;

• create the language according to what is specific to

ACC. For instance, in SysML there’s no direct concept

of hardware, software and system, i.e., one has to

model them in terms of stereotype definition or rely

on name convention. In contrast, CArch has software,

hardware and system as first class elements. Addition-

ally, CArch allows constraints definition over integers

to limit their value range and resolution, something that

is very recurrent in the domain of embedded systems.

CArch has the following language constructs:

• Package: as in SysML, it allows to group semantically

related elements. A package can use services from

other packages;

• Property: properties are similar to SysML block prop-

erties and UML class attributes. Properties in CArch

define instances of types or containers. A property of

an integer primitive type can be constraint in the range

of values it might store, along with its resolution;

• Container: it is either a system, software or hardware.

A container can only extend a container of the same

kind. It contains properties, ports and connections

between ports. Hardware and software can contain

functionalities. System can contain hardware, software

and data instances (properties), whereas hardware and

software containers are allowed only data type proper-

ties. A System connects a set of hardware and software

instances. A Container only exports its ports;

• Data types: extensible user defined composite types.

Data types can be local, i.e., visible only inside the

container in which its declaration occurs, or can be

exported if declared inside a package;

• Functionality: a service that a software or hardware

provides. Functionalities can contain data type proper-

ties and have input and output ports.

To illustrate part of the modeled exemplar, consider the

fragment shown in Fig. 11. The system ACCPhysicalCon-

nectionsSystem is defined inside the package ACCPhys-

icalConnections, which in turn uses the packages ACC-

Module, DriverOutput, DriverInputs and Common. These

packages contain data types, software and hardware used in

the definition of properties in ACCPhysicalConnection-

sSystem. Next in the fragment, the system connects its

properties by ports.

Compared to SysML and AADL, CArch allowed us to

easily model the ACC system architecture because it was

built according to a specific domain. CArch is still a work

in progress. It currently does not support any behavior

modeling or general constraints in the way SysML does.

package ACCPhysicalConnections
use ACCModule
use DriverOutput
use DriverInputs
use Common
system ACCPhysicalConnectionsSystem

accController is hardware ACCController
chasisDevice is hardware ChasisDevice
transmissionController is hardware TransmissionController
hsCan is hardware HSCan
lsCan is hardware LSCan
onOff is hardware OnOffButton
cancelButton is hardware CancelButton
bodyControlModule is hardware BodyControlModule
instrumentPanelClusterController is hardware

InstrumentPanelClusterController
connect onOff → OnOfStatusSignal_O to

hsCan → Signal_I
connect accController → ACCToBCMSignal_O

to hsCan → ACCMToBCMSignal_I
connect hsCan → ACCMToBCMSignal_O

to bodyControlModule → ACCToBCMSignal_I
connect bodyControlModule → BCMToACCSignal_O

to hsCan → BCMToACCMSignal_I
connect hsCan → BCMToACCMSignal_O

to accController → BCMToACCSignal_I
...

Figure 11. Fragment of the modeled exemplar in our DSL - the CArch
language.

C. ACC Variability in CVL

We modeled ACC variability by implementing essential

elements from CVL meta-model and constructed MPS

editors to provide concrete textual syntax. Figure 12a shows

the forward collision Alert part of the ACC feature model

from Fig. 9. Corresponding CVL model with mappings to

the base model is depicted in Fig. 12b.

Haptic Audible

Alert

ACC ACC
1−1 Alert ?

Haptic → HapticSeat
Audible → Audible

a) Feature Model b) CVL Model with Mappings

Figure 12. Alert Variability Models

There is a direct correspondence between feature models

and our textual syntax. Feature hierarchy is established

through code indentation, e.g. Alert is a subfeature of ACC.

Furthermore, the question mark after feature name indicates

that the feature is optional. Alert contains two subfeatures

and precisely one of them must be selected (indicated by 1-

1). The arrow following feature name in CVL model points

to element from ACC base model (e.g. Haptic feature points

to HapticSeat). The effect of selecting/excluding Haptic in

feature model will be selection/exclusion of HapticSeat in

the architectural model. In many cases single feature in-

cludes/excludes multiple base model elements. We handled



these cases by nesting mappings under the optional feature

(not shown in Fig. 12). The full ACC variability model

covers all features specified in the ACC feature model and

defines mappings to elements from the architectural model.

Figure 13 depicts a high-level part of it.

ACC
1−1 ForwardLookingSensor

Radar
Lidar

Alert ?
1−1 Type

Haptic
hapticSeat → HapticSeat

Audible
audioSignal → Audible

Powertrain
1−1 Transmission

Automatic
Manual

1−1 DriverIdentifier
Single
Multiple

1−1 Braking
BAS
Discrete

Switches
1−1 GapSwitches

TwoButtons
ThreeButtons

CruiseInputSwitches
Cancel ?

1−1 Display
HeadUp
HighHeadDown
Cluster

Figure 13. ACC Variability Model in CVL

We scoped CVL implementation to best fit our purpose.

Common Variability Language applies to models whose

meta-models conform to MOF. There is no MOF imple-

mentation for MPS, since MPS provides own elements

for nodes (BaseConcept) and edges (LinkDeclaration).

We used MPS primitives to reference ACC elements. We

also restricted the CVL meta-model so that features (called

VSpecs) explicitly form a hierarchical structure. These

minor changes did not invalidate CVL applicability but

simplified implementation in MPS.

Overall, our experience with CVL was positive, although

initially it seemed to be another huge standard. The ar-

chitectural layers are “thin” and usually involve only one

element from each layer to connect abstraction layer with

the base model. Probably the most complex is variability

encapsulation layer, but we did not need to use it in the ACC

exemplar. Separation of variability and base model allowed

us to work independently on both parts. We found MPS

very helpful in the integration phase of the two models.

Model-centric MPS paradigm made it very easy to reference

external elements. There is no doubt that CVL requires great

tool support to make the standard usable in practice. We

hope that future Eclipse implementations of CVL plug-in

will be at least as usable as our MPS prototype.

VII. CONCLUSIONS

We extracted an exemplar of Adaptive Cruise Control

from actual documentation. Our experience shows that

AADL and SysML are fairly well-suited for modeling

automotive systems, but a better tool support for these

languages is required. None of these languages deals well

with variability so we applied the draft of upcoming CVL

standard for this purpose. Our prototype implementation in

MPS showed that the language can be applied to existing

models in a straightforward way. Creating mappings from

the variability model to the base model is an additional cost

that one has to pay for separating both concerns. We hope

that good tool support will help practitioners in transforming

their software into software product lines.

REFERENCES

[1] J. D. Poole, “Model-driven architecture: Vision, standards
and emerging technologies,” in ECOOP’01.

[2] K. Czarnecki and M. Antkiewicz, “Mapping features to mod-
els: A template approach based on superimposed variants,”
in GPCE’05.

[3] O. Haugen, CVL - Common Variability Language - a generic
approach to variability for OMG standardization, 2010.

[4] OMG, OMG Unified Modeling Language, 2009.

[5] J. J. H. Peter H. Feiler, David P. Gluch, The Architecture
Analysis & Design Language (AADL): An Introduction,
2006.

[6] OMG, OMG SysML v. 1.2, 2010.

[7] C. Ebert and C. Jones, “Embedded software: Facts, figures,
and future,” Computer, vol. 42, pp. 42–52, April 2009.

[8] J. Holt and S. Perry, SysML for Systems Engineering. IET,
2007.

[9] T. Weilkiens, Systems Engineering with SysML/UML: Mod-
eling, Analysis, Design. Morgan Kaufmann Publishers Inc.,
2008.

[10] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,”
CMU, Tech. Rep. CMU/SEI-90-TR-21, 1990.

[11] S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “Vari-
ability model of the linux kernel,” in VaMoS’10.

[12] J.-M. Favre, “The CPP paradox,” in EWSM’95.

[13] M. D. Ernst, G. J. Badros, and D. Notkin, “An empirical
analysis of C preprocessor use,” TSE, vol. 28, no. 12, 2002.

[14] C. Kästner, “Virtual separation of concerns: Toward prepro-
cessors 2.0,” Ph.D. dissertation, University of Magdeburg,
2010.

[15] OMG, Meta Object Facility (MOF) Core Specification, 2006.

[16] S. Dmitriev, Language Oriented Programming: The Next
Programming Paradigm, 2004.


