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Abstract

Clafer is a textual language for modeling and analysis of software
product lines. The language is able to express a wide range of
models: feature models, meta-models, and feature-based model
templates. Reasoning about those models is required to verify their
consistency, detect dead elements, or to guide the configuration
process for end-users. Clafer uses the Alloy Analyzer as a back-end
to perform analyses on variability models. This paper presents how
optimized translation rules of Clafer models to Alloy simplified
the Alloy models and improved reasoning performance. The work
was evaluated on publicly available feature models, slices of meta-
models, and feature-based model templates. The results showed
that the improved translation shortened reasoning time at least 2
times. The improvement by factor of 4 was not uncommon.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages; D.3.2 [Programming Languages]: Language
Classifications—Design languages

General Terms Design, Languages, Modeling

Keywords feature modeling, meta-modeling, constraints, opti-
mization

1. Introduction

Software product lines (SPLs) are families of related systems built
from shared assets, such as models, or software components. The
premise of SPLs is to increase productivity, decrease time to mar-
ket, and improve overall software quality by systematic reuse of
assets. Software product lines are often described in terms of prob-
lem space, solution space, and a mapping between them. Figure 1
shows this conceptual view.

Problem space specifies high-level requirements and products
available in the SPL. It captures commonalities and variabilities
among the products. For example, every car has an engine; the user,
however, can choose between electric and gasoline engines. Solu-
tion space defines product line architecture, usually as components
and connectors. Mapping links the two spaces, so that elements
from problem space are related to elements from solution space.
That way when user specifies concrete requirements in problem
space, that configuration is reflected in solution space and the user
obtains an automatically generated product.

[Copyright notice will appear here once ’preprint’ option is removed.]

1.1 Problem Space

Feature modeling is a technique used for capturing commonalities
and variabilities in software product lines. Feature models naturally
fit into problem space as they determine the products available in
product line. They were introduced by Kang et al. as a part of
Feature-Oriented Domain Analysis (FODA) methodology [13].

FODA feature models are tree-like structures, as the one in
Fig. 2 representing an automobile product line. Each box represents
a feature, that is a user-relevant product characteristic, such as
Engine or Radio. Mandatory features are marked with filled circles;
optional features with hollow circles. In our example, every car
must have an Engine, but not every car must have a Radio. Feature
models also have alternative groups (marked with empty arcs) and
or-groups (marked with filled arcs). An alternative group allows
to select only one subfeature, e.g. a car must have either Gasoline
or Electric engine. An or-group requires at least one subfeature to
be selected, e.g. a valid car configuration has either CD Player,
or Tape player, or both of them. Finally, some constraints cannot
be encoded in the tree structure. In that case we use Cross-Tree
Constraints (CTCs) specified as propositional formulas to restrict
the feature model. For instance, the constraint below the tree says
that cars with Electric engine must have some Radio player on
board.

Several extensions to feature models have been proposed. The
most common ones include attributes [2] and feature cardinali-
ties [10]. An attribute, allows feature to store a value of primitive
type (such as integer, string, enumeration). Feature cardinalities
allow to have several copies of each feature, e.g. a car can have
several displays. Each display is configured separately, though. In
FODA all features have cardinality either 1 (mandatory feature), or
0..1 (optional feature).

1.2 Solution Space

Solution space is composed of different types of artifacts: software
components, software models, engineering models, etc. Those as-
sets are building blocks for software delivered by the SPL. Assets
have built-in variability, which is resolved later when user config-
ures feature model. In many cases software variabilities are ex-
pressed by conditional compilation, such as IFDEF directives in C
source code. Thus, the artifacts define a family of products.

Problem Mapbin Solution
Space pping Space

Features Assets

Figure 1. Software product line conceptual view
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Figure 2. Feature model for automobile product line

On the high level, components and connectors from solution
space can be modeled by class models, meta-models, and addi-
tional constraints that altogether define product line architecture.
Mapping between problem and solution space specifies relations
between features and assets. It links features to implementations. In
many practical examples of product lines the mapping is defined by
preprocessor directives and makefiles that orchestrate conditional
compilation.

Feature modeling and class modeling notations were designed
with different purposes in mind and model different types of vari-
ability. Feature models capture selections from predefined fixed
structure, thus we always obtain a subset of available features. This
is not usually the case with class models, as they grow and be-
come more complex. Class models support making new structures
by inheritance, creating multiple instances of classes and connect-
ing them via object references.

1.3 Clafer

Clafer [4] is a textual variability modeling language for specifi-
cation and analysis of software product lines. It covers the three
conceptual elements of software product lines: problem space, so-
lution space, and mapping. The language provides a uniform syntax
and semantics to class and feature models. It tries to minimize the
number of underlying concepts. Both feature and class models can
be naturally mixed and coupled via constraints and inheritance. A
Clafer model is composed of clafers and constraints. A clafer is an
element that unifies the notion of feature with the notion of class.

Clafer aims at providing a common infrastructure for analyses
of feature and meta-models. The need for analyses was recognized,
for example, in the operating systems domain by the Linux Kernel
and eCos developers [3]. They both provide variability models of
system kernels that are supported by configuration tools. The tools
guide the configuration process, so that end-users are less likely
to build incorrect kernels. Many non-trivial analyses of variability
models are reducible to the NP-hard problem of finding model
instances by combinatorial solvers. At present, Clafer translates
input models to Alloy [12]. Alloy uses SAT solvers to do model
checking, or to find model instances.

We developed a Clafer to Alloy translator named clafer2alloy.
The translator provides a uniform translation for feature and meta-
models. Unfortunately, it negatively impacts reasoning efficiency
as the reasoner is unable to exploit properties of those models. It
turned out that translation rules heavily influence reasoning time
in Alloy. The clafer2alloy translator generated overly large and
complex Alloy models. The goal of my course project was to
improve reasoning time in Alloy by optimizing Clafer to Alloy
translation rules. We also optimized the clafer2alloy translator to
enable it to handle large input models. In particular, the contribution
includes:

1. Refactoring clafer2alloy code. That step was crucial to make
the code more modular. The translator can use multiple code

Automobile <0—"> Automobile 1..1 {
xor Engine <1—1> Engine 1..1 {
Gasoline <0—"> Gasoline 0..1 {}
Electric <0—"> Electric 0..1 {}
or Radio ? }
CDPlayer <1—"> Radio 0..1 {

Tape <0—"> CDPlayer 0..1 {}
<0—"> Tape 0..1 {}
[Electric = Radio] }
1

[some Electric — some Radio]

a) Concise notation b) Desugared notation

Figure 3. Clafer automobile model

generators (thus is not limited to Alloy), and makes it easier to
add new functions to the translator.

2. Intermediate language representation. The new data structure
for representing Clafer models is better suited for compile-
time analyses and transformations. It is easier to store analyses
results together with the input Clafer model.

3. Optimization of translation rules. Depending on the input model
the translator tries to apply as many optimizations as possible.
The rules result in producing smaller and less complex Alloy
models.

4. User controls the translation process. Users may leverage their
knowledge about input models to apply certain optimizations
and shorten the translation time.

The paper is organized as follows. We describe variability mod-
eling and analysis in Clafer in Sect. 2. We discuss the challenges
with old translation rules and optimized Clafer to Alloy translation
in Sect. 3. We evaluate the language experimentally in Sect. 4. We
conclude in Sect. 6, after comparing Clafer with related work in
Sect. 5.

2. Variability Models in Clafer

Figure 3a shows a Clafer model that corresponds to the automo-
bile feature model from Fig. 2. Hierarchy of model elements is es-
tablished by code indentation. Feature group (alternative and or)
specification precedes the name (e.g. xor before Engine). Optional-
ity of elements is marked by the question mark following the name
(e.g. Radio). Finally, cross tree constraints are specified in square
brackets.

Such a Clafer model expresses the space of available products.
Its meaning is given by configuration semantics, that is all possible
configurations that conform to the variability model. For our exam-
ple this set is shown in Fig. 4. Please note that each car with Elec-
tric engine must have a Radio. That requirement was specified as a
cross-tree constraint. The number of possible configurations grows
exponentially with the number of elements in the tree. FODA fea-
ture models consider only logical implications and exclusions as
valid constraints. Clafer allows much more complex expressions
including arbitrary first-order logic formulas.

2.1 Consistency

Clafer models are either consistent or inconsistent. A Clafer model
is consistent if there is at least one instance satisfying all struc-
tural and cross-tree constraints. Structural constraints are imposed
by hierarchical dependencies among parent and children elements
(e.g. an Engine cannot exist without Automobile). To restrict the
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{{ Automobile, Engine, Electric, Radio, CDPlayer},

{ Automobile, Engine, Electric, Radio, Tape},

{ Automobile, Engine, Electric, Radio, CDPlayer, Tape},
{ Automobile, Engine, Gasoline},

{ Automobile, Engine, Gasoline, Radio, CDPlayer},

{ Automobile, Engine, Gasoline, Radio, Tape},

{ Automobile, Engine, Gasoline, Radio, CDPlayer, Tape} }

Figure 4. Valid configurations of the model from Fig. 3a

model from Fig.3a to a single configuration we have to add an
extra constraint, e.g. [Automobile A Engine A Gasoline]. The con-
straint corresponds to a selection of features. Such a model results
in the configuration { Automobile, Engine, Gasoline} belonging to
the set defined in Fig. 4. Therefore, it is consistent.

Inconsistent Clafer models have no valid configurations. If we
added the constraint [- Radio A Electric] specifying that there is
no Radio, but the engine is Electric we would obtain an inconsis-
tent Clafer model. The model is inconsistent since { Automobile,
Engine, Electric} does not belong to the set of valid configurations
in Fig. 4. The added constraint contradicts the cross-tree constraint
from Fig. 3a.

2.2 Analyses

Model analyses are useful for software product line developers and
end users who configure products. Analyses over Clafer models
allow to detect problems with SPLs at the earliest possible stage.
This reduces cost of development and deployment. What makes
most of analyses hard in practice is the size of configuration space,
presence of cross-tree constraints, and the use of non-Boolean types
(such as integer or string) in constraints.

The existing Clafer infrastructure supports checking model con-
sistency, and finding contradicting constraints by means of the Al-
loy Analyzer. Semi-automatically, we are able to detect dead ele-
ments and repair inconsistent configurations. A dead element is an
element that never appears in any configuration. Although it exists
in the model or code-base, it is never used by any product. Fur-
thermore, when a configuration is invalid, the tools present a set
of contradicting constraints. Then the user has a chance to fix the
model.

Analyses over Clafer models reason about the whole space of
possible configurations without actually generating all SPL prod-
ucts. This is what Clafer achieves. Theoretically, for a given vari-
ability model one could enumerate all possible configurations, de-
ploy them, and then check for given property. For the automobile
example, there would be 8 configurations, of which one would be
invalid. Each configuration corresponds to building a new software
version. In practice this approach is infeasible, since the number of
products grows exponentially with the number of model elements.

2.3 The Toolchain

Clafer reuses existing tools to perform model analyses. We picked
Alloy as our target language. Alloy is a structural modeling lan-
guage that can do model checking and model instance generation.
The second case can be thought of as generation of test cases for a
given specification. Many analyses are reducible to solving either
of the two problems. Alloy provides clean syntax and has good
expressivity. Alloy models are as expressive as first-order logic ex-
tended with transitive closure. Alloy models are composed of sets,
relations, and constraints. The Alloy Analyzer uses SAT solvers to
reason on models. If a model is consistent, then the analyzer shows
a valid model instance, e.g. Fig. 5 shows an instance of the car vari-
ability model. If a model is inconsistent, it highlights the conflicting
constraints, e.g. Fig. 6 shows contradicting constraints for a wrong
car configuration.

Automobile

r_Radio,

Radio Engine

r_CDPlayer |r_Electric

CDPlayer Electric

Figure 5. Alloy instance of the automobile model

fact | V)
fact { { and L]

Figure 6. Inconsistent Alloy constraints in an invalid automobile
configuration

. Code
Analyzer H Optimizer }—) Generators,

Figure 7. Architecture of the clafer translator

Figure 7 shows architecture of the Clafer translator. The trans-
lator takes Clafer model as input, desugars the model by expand-
ing default values (compare Fig. 3a and Fig. 3b), performs semantic
analysis, applies optimizations, and finally generates Alloy code.
The translator is implemented in Haskell; its frontend is generated
by BNFC [18].

Hierarchical structure is one of the most important characteris-
tics of Clafer models, while in Alloy the hierarchy must be estab-
lished manually. The Clafer to Alloy translator maps each clafer
to a set and relation that relates the set to its owner. In the Alloy
model, each signature corresponds to single clafer and contains a
list of relations to its children. The signature is followed by an op-
tional list of invariants that must hold for each signature instance.
For example, the Engine clafer from Fig. 3a is translated to Engine
signature in Fig. 8. The Engine signature has two relations to its
children: Gasoline and Electric. Engine is related with its parent by
the r_Engine relation . The r_Engine relation is placed under the
parent (i.e. Automobile). In that way we establish hierarchy among
Alloy signatures.

Alloy performs bounded model analysis on the model. Before
performing the analysis we need to set the scope parameter. The
scope determines the maximum number of elements belonging to
each set (signature). The scope of analysis is set in the second line
of Fig. 8 to 1. So for our example there is at most one element of
each signature, i.e. at most one Automobile, at most one Engine,
etc. The larger the scope, the longer it takes to reason about the
model. For each model one has to determine the scope separately.
If the scope is too small, then the Alloy Analyzer will not be able
to do the analysis. An Alloy model is a mixture of relational, first-
order, and navigational logic. The Alloy Analyzer uses KodKod to
translate the input model to a 3CNF formula that can be reasoned
upon by a SAT solver.

2011/7/26



pred show {}
run show for 1

one sig Automobile
{r_Engine : one Engine
, r_Radio : lone Radio }

one sig Engine

{ r_Gasoline : lone Gasoline

, r_Electric : lone Electric }

{ let children = (r_Gasoline + r_Electric) | one children }

lone sig Gasoline {}
{ one r_Gasoline }

lone sig Electric {}
{ one r_Electric }

lone sig Radio
{ r_CDPlayer : lone CDPlayer
, r_Tape : lone Tape }
{ one r_Radio
let children = (r_CDPlayer 4 r_Tape) | some children }

lone sig CDPlayer {}
{ one r_CDPlayer }

lone sig Tape {}
{oner_Tape}

fact { (some r_Electric) — (some r_Radio) }

Figure 8. Alloy automobile model

3. Optimizations

We created the old clafer2alloy translator as a research prototype.
It was good at handling small models, but made reasoning on
models with more than 20 elements virtually impossible. Below we
describe various optimizations that allowed to scale the translator
to automatically handle models with thousands of elements.

3.1 Improved Name Resolution

The hierarchical structure of Clafer models allows arbitrary nesting
of clafers. Each clafer implicitly introduces a new namespace.
Names do not have to be globally unique; the only restriction is that
a parent cannot have two children of the same name. Such a naming
policy requires a name resolution algorithm to resolve ambiguous
names. Those ambiguities appear especially in constraints since
they may refer to any names used in the model.

A name is resolved in context of a clafer in up to six steps. First,
it is checked to be a special name like this or parent. Secondly, the
name is looked up in subclafers in breadth-first search manner. If it
is still not found, the algorithm searches in the top-level definition
that contains the clafer in its hierarchy. Otherwise, it searches in
other top-level definitions. If the name cannot be resolved or is
ambiguous within a single step, an error is reported.

A significant difference between Clafer and Alloy is lack of
nesting in the latter. Alloy namespace within a file is mostly flat.
The Clafer translator must keep track of clafer names. The old
translator provided limited support for that, which resulted in ac-
ceptance of incorrect models. For example, if we added the con-
straint [Engine.Hybrid] under Engine in Fig. 3 (requiring that there

is a hybrid engine), then we would reference a non-existing clafer:
Hybrid. The new translator uniquely identifies each name by com-
bining its original name with an integer. It allows to statically detect
ill-specified constraints.

Furthermore, when a name is resolved in Clafer, the translator
generates a fully qualified name as a path expression. Paths expres-
sions are lists of identifiers separated by dots, e.g. Engine.Electric.
They are used for navigation in programming languages, OCL, or
Alloy. Path expressions in programming languages have always
unique source, e.g. a concrete instance of Engine. In databases and
Alloy there may be multiple sources, i.e. multiple instances of En-
gine. There dot is not a simple mechanism of referencing elements,
but more of a database join operator.

Path expressions in Alloy use the dot operator (relational join) to
navigate among relations. Alloy’s dot operator removes the column
on which relations are joined. For example, the Electric identifier
from constraint in Fig. 3a is resolved as Automobile.Engine.Electric.
The result of joining the three relations in Alloy is a set of electric
engines of all automobiles. In the running example there may be
only one such engine as there is only one automobile.

In programming languages path expressions are just pointers to
memory addresses. They are computed within constant time. Path
expressions in Alloy are the actual operations of joining relations.
They require reasoning to navigate from Automobile to the Electric
engine. In practice the use of path expressions slows down the
reasoning process, as SAT solver has more work to do. The Clafer
translator is aware of this problem and uses a simple heuristic to
eliminate reasoning over path expressions.

The translator checks if all names in the model are unique. If
this is the case, then no path resolution is required (no use of the
dot operator). So Electric in the constraint would be kept as is (see
last line in Fig.8), since it is the only clafer of this name, and
does not require disambiguation. If names are not unique, then the
translator uses path expressions to resolve names. The improved
name resolution algorithm shortens reasoning time and decreases
the size of Alloy models.

3.2 Inheritance Flattening

There are three types of clafers: concrete, abstract, and reference.
Concrete clafers define a new type and have cardinalities that spec-
ify the number of possible instances. All elements in Fig. 3 are of
this type. Concrete clafers are always part of the configuration se-
mantics. If an element is concrete, then all its subelements are con-
crete. Abstract clafers define only a type and cannot be instantiated
unless extended by a concrete clafer. Thus, they are part of config-
uration semantics if at least one concrete clafer extends them. This
distinction is somehow similar to abstract classes in object-oriented
programming: one cannot create an object of abstract class. Finally,
reference clafers are references that point to instances of clafers ex-
isting in the configuration semantics. Thanks to references Clafer
models are not restricted to trees, but may be arbitrary graphs.

Clafer provides inheritance as a mechanism of reuse. Figure 9a
shows Clafer model with an abstract Component. Each compo-
nent has the isDependent flag indicating whether the component
depends on other components or not. There are also two concrete
components: display and ecu. The constraint in the last line requires
that there is at least one dependent component. In total, there are
three possible configurations of the model, i.e. display and ecu are
always present, but at least one of them must have the isindepen-
dent flag set.

Inheritance allows to write models more concisely and in a way
that better matches user’s mental model. Unfortunately, it slows
down the analysis in the Alloy Analyzer, because requires increas-
ing the analysis scope. In Fig. 9a both concrete elements are of type
component, therefore the smallest scope must be set to 2. The Com-
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abstract Component
isDependent ?

display
isDependent ?

display extends Component ecu
isDependent ?
ecu extends Component
[display.isDependent ||

[Component.isDependent] ecu.isDependent]

a) Inheritance b) Flattened inheritance

Figure 9. Inheritance flattening in Clafer

ponent signature in Alloy will contain two elements: one display
component, and one ecu component. When using inheritance, the
scope can grow very rapidly. One solution to this problem is to use
inheritance flattening.

Inheritance flattening rewrites subfeatures of an abstract clafer
as subfeatures of a concrete clafer that extends the abstract one (see
Fig.9b). The Clafer translator must also rewrite constraints that
refer to abstract elements. For example, the constraint from Fig. 9a
concerns all components. Therefore, the constraint must be split so
that the name of abstract clafer is substituted by names of concrete
clafers that extend it.

The translator must carefully analyze the model to be sure
whether it can apply the flattening. In cases when there are circular
dependencies, flattening leads to an infinite loop. The translator
automatically detects when it can flatten inheritance. After applying
inheritance flattening the resulting Alloy models typically grow in
size (in terms of lines of code), but they are much easier to analyze
for SAT solver. Elimination of inheritance allows to reduce the
scope in Alloy. In our example from Fig. 9b there is one instance of
display and ecu, and they have no common superclafer. The scope
can be set to 1. Alloy reasons on such signatures very efficiently.

3.3 Dead Abstract Clafers Removal

Some Clafer models (especially meta-models), contain a significant
number of abstract clafers. Figure 10a shows a model with two
abstract clafers (Display and HD), and a concrete one: allDisplays.
The allDisplays clafer aggregates all displays available in a car. Here
the car has only one standard display. We use inheritance to say
that standard is of type Display, i.e. it extends the abstract element.
Furthermore allDisplays also has the hdRef reference pointing to
an HD display. References point to clafer instances of given type.
Please note that in the model there are no instances of HD. We will
discuss this issue later.

An abstract clafer is considered dead if it is not extended by
any concrete clafer (directly or indirectly). In the example HD
is a dead element, but Display is not. The latter is extended by
standard that belongs to a concrete clafer. To reduce the size of
Alloy models, the Clafer translator automatically finds and removes
dead abstract clafers. Dead elements are safe to remove, because
they have no impact on configuration semantics of Clafer model.
Figure 10b shows the same model, but with removed dead element.
Configuration semantics of both models is exactly the same.

The algorithm for finding dead abstract clafers is only con-
cerned with inheritance among clafers. It does not, however, take
references into account. Although, hdRef points to HD, it does not
prevent the algorithm from removing the clafer. This is an interest-
ing case because in Fig. 10 hdRef points to the type that is no longer
available in the model. The resulting model is incorrect. At present
the Clafer translator does not issue any warning when that happens,
but the problem is reported later by the Alloy Analyzer.

abstract Display abstract Display

color ? color ?
abstract HD extends Display allDisplays
touchscreen? standard extends Display
hdRef — HD
allDisplays
standard extends Display
hdRef — HD

a) Clafer model b) Removed dead clafers

Figure 10. Removal of dead clafers

Referencing a dead abstract clafer that has no valid instances in-
dicates a problem with the model. Such a model is invalid, because
pointing to something that cannot exist cannot be satisfied by the
reasoning engine. The Alloy Analyzer reports this problem during
the type-checking phase, so user has a chance to learn about the
error even before the actual reasoning. To fix the issue user should
either add a concrete element that extends the abstract clafer, or
should remove the problematic reference. Besides decreasing the
size of Alloy models, removal of dead abstract elements helped us
to discover errors in some parts of the eCos variability model trans-
lated to Clafer (the original eCos model was correct, though).

3.4 Hierarchical Constraints

Clafer models are mostly hierarchical structures, i.e. parents own
their subclafers and a child cannot exist if its parent is absent. Those
two constraints must hold between each pair of clafers in parent-
child relation. Figure 11a presents Clafer model with features of a
Car. Each car must have an engine, may optionally have Adaptive
Cruise Control system (acc), and may have any number of displays.
The syntactic sugar for clafer cardinalities (marked with the ques-
tion mark, asterisk, or nothing) is expanded in Fig. 11b.

The parent-child constraints are among the most often appear-
ing constraints in Clafer models. Therefore, it is a good idea to have
them as few as possible to simplify reasoning. For our car example
the old clafer2alloy translator generated the Alloy model in Fig. 12a.
Each signature extends an abstract set named clafer. The clafer sig-
nature declared the parent relation among two clafers. That way,
the translator did not have to define this relation for each signature
but had to constrain the parent relation to point to the actual parent.
It simplified translation, because the translator did not have to keep
track of all types and names.

The acc, engine, and display signatures have the constraint spec-
ified below them. The <: operator corresponds to mathematical do-
main restriction. It was needed to overcome the limited name res-
olution to avoid name clashes. Once the domain of relations is re-
stricted to those belonging to Car, it is joined by the dot operator
with the current instance of a signature (this). Relational join is sim-
ilar to join in databases but it removes the column on which join
occurs. Join with this uniquely identifies parent, since only parent
can own the this instance. This uniform constraint must be solved
by SAT solver. It negatively impacts the overall reasoning perfor-
mance and also clutters Alloy models.

The new Clafer translator is much smarter about establishing
parent-children relationships. Figure 12b shows the car model with
the same configuration semantics, but different Alloy representa-
tion. The translation does not introduce an explicit parent relation
anymore. Also, it avoids the domain restriction operation thanks
to better name resolution algorithm. Furthermore, the parent-child
relationship may be unnecessary in cases when both parent and
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Element Cardinality
Car Car 1..1
acc ? acc 0..1
engine e_ngine 11
display * display 0..*%

a) Car Clafer model b) Elements’ cardinalities

Figure 11. Clafer model with various cardinalities

abstract sig clafer
{parent : one clafer}

one sig Car

{r_acc : lone acc

, r_engine : one engine
sig Car extends clafer , r_display : set display }
{r_acc : lone acc

, r_engine : one engine
, r_display : set display }

lone sig acc {}
{oner_acc}

sig acc extends clafer {}
{ parent = (Car <:r_acc).this }

one sig engine {}

sig display {}
sig engine extends clafer {} { one r_display.this }

{ parent = (Car <:r_engine).this }
sig display extends clafer {}
{ parent = (Car <:r_display).this }

a) Extra integer signatures b) Integer attribute

Figure 12. Integer optimization

Element Cardinality Global cardinality
display ? display 0..1 0..1
color color 1..1 0..1

a) Clafer model b) Elements’ cardinalities

Figure 13. Global cardinalities

child are mandatory, such as Car and engine. When the element
is optional, such as acc, then only the information about one parent
is necessary to enforce parent-child relationship. In most general
cases, such as display, where there can be any number of displays,
the join is unavoidable. It must be there to uniquely identify par-
ent of current instance (this). Lack of this constraint would allow to
have an instance of child when the parent is absent. The new trans-
lation eliminates a fair number of constraints and leverages domain
knowledge to optimize Alloy models.

3.5 Global Cardinalities

Each definition of a clafer consists of several properties. As we
could see each clafer has a name. It also has a cardinality that
specifies the number of clafer instances. In Clafer optional features
are followed by the question mark. Features whose cardinality is
not explicitly specified are mandatory in most of the cases. For
example, Fig.13a shows model of a display that must be color.
The color feature is mandatory, while display itself is optional.
Those cardinalities are specified explicitly in the second column
of Fig. 13b.

A straightforward translation to Alloy yields the code visible
in Fig. 14a. There are two sets (signatures): one for display and

sig display
{ r_color : one color}

lone sig display
{ r_color : one color }

lone sig color {}
{oner_color}

sig color {}
{ one r_color}
fact { lone display }

a) No global cardinalities b) Global cardinalities

Figure 14. Added signature cardinalities

one for color. The display signature contains the r_color relation
that indicates that each display instance is related with one color
instance. On the other hand, color cannot exist when its parent
does not exist. For this reason we add one constraint under color
to indicate that there is exactly one parent: the r_color relation has
one element. Those two constraints guarantee that the child exists
if and only if parent is part of the model. The parent (display) is
itself optional, which is specified by the fact in last line. In Alloy
lone stands for one or less than one.

This model expresses the configuration semantics that we have
in mind. The practical problem is that the Alloy Analyzer does not
know in advance how many instances of display and color there
will be (so 0, 1, 6 are equally likely numbers). It cannot make any
assumptions, and will use SAT solver to determine this number. The
SAT solver will have to find a solution that satisfies the constraint
specified as a fact. This obviously has negative impact on the
reasoning time since SAT solver has more constraints to satisfy.

A modeler, on the other hand, already knows the maximum
number of clafer instances. If display is present then color is also
present (hence the upper limit of color is equal to 1). If there is no
display, then there is no color (hence the lower limit of color is equal
to 0). We define clafer’s global cardinality as a range mm’.nn’,
where m..n is parent’s global cardinality and m’..n’ is clafer’s
cardinality. For elements that have no parent global cardinality is
equal to element’s cardinality. Global cardinality tells us how many
instances of given element there might be on the whole (depending
on presence of its parent). The third column of Fig. 13b shows
global cardinalities for the example from Fig. 13a.

Alloy provides special syntax for those global cardinalities.
They may precede a signature definition as in Fig. 14b. Both sig-
natures have 0..1 global cardinalities and are specified by the lone
keyword. That way the Alloy Analyzer knows in advance that there
will be up to one instance of each signature. The SAT solver no
longer has to find that number. It enables the Alloy Analyzer to do
more optimizations and generate formulas that are easier to solve in
SAT solver. From our experience we can tell that those global car-
dinalities are of huge help to the Alloy Analyzer, especially when
dealing with big feature models.

3.6 Primitive Types

FODA feature models involve only propositional constraints. Many
practical variability models are much richer, i.e. they involve con-
straints over integers and strings. [3, 9]. Reasoning over feature
models with attributes of primitive types is even harder than rea-
soning over FODA feature models. Currently Clafer uses Alloy to
provide limited reasoning over integers and strings. Certain string
operations (such as equality) are easily reducible to reasoning over
integers.

Figure 15 shows a small example of model with primitive types.
The model has a Component with a subclafer that specifies com-
ponent’s major version. Version is specified as integer, a primitive
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Component
version : integer
subversion : integer

Figure 15. Component Clafer model

abstract sig integer {val : Int} one sig Component

{ r_version : one version }
one sig Component

{ r_version : one version } one sig version
{ref : one Int
one sig version extends integer , r_subversion : one Int }

{ r_subversion : one subversion }

one sig subversion extends integer {}

a) Extra integer signatures b) Integer attribute

Figure 16. Integer optimization

type in Clafer. The version clafer contains subversion that specifies
component’s minor version.

The old Clafer to Alloy translation treated all model elements
in a uniform way. For that reason version, subversion and integer
were distinct signatures in Alloy (see Fig. 16a). Whenever integers
were used in the model, there was always an extra clafer extending
the integer signature. Those clafers had the val relation that pointed
to Int, which is Alloy’s primitive type for integer. Such a solution
obviously introduced overhead, both to model size and reasoning
time. The main problem was extension of the integer signature.
Each extension required to increase the global scope for model
analysis in Alloy. Even in small models the number quickly reached
value that made it impossible to perform analysis in a reasonable
time.

The new Clafer translator simplified handling of primitive types
in several ways. First of all, it no longer needs the global signature
for integers. Lack of global signature decreases the scope parameter
in Alloy. Secondly, the translator recognizes clafers of integer type
and treats them in a special way. Whenever there is an integer
clafer and it has no subclafers, it is translated directly to a relation
with Int, e.g. r_subversion in Fig. 16b. In cases when there are
subclafers, the translator must still create a new signature, e.g. for
version in Fig. 16b to relate it with subversion. The extra ref relation
specifies component’s version. In either case the Alloy model can
be analyzed with small scope.

3.7 References

In class/meta-modeling it is common to use references to point
to elements in other parts of the model. References may simplify
constraints, or might be necessary when setting some property
according to existing element. References add expressiveness to
the language, since the models are no longer trees, but arbitrary
graphs. An example of model with references is shown in Fig. 17.
The model is composed of two concrete clafers: Controller and
Engine. The former has a flag indicating whether it is the main
engine controller. The Engine contains a reference to the Controller
that controls it. The ctrl clafer has also a reference subclafer that
points to the isMain flag of its controller.

The old clafer2alloy translator relied very much on Alloy con-
straints when generating code for reference clafers. Figure 18a
shows translation of the engine controller model to Alloy. One

Controller Engine
isMain ? ctrl — Controller
mainCtrl — isMain

Figure 17. Engine Clafer model

one sig Controller extends clafer
{ isMain : lone isMain }

one sig Controller
{ r_isMain : lone isMain }

lone sig isMain extends clafer {}
{ one r_isMain }

lone sig isMain {}
{ one r_isMain }

one sig Engine extends clafer
{ ctrl : one ctrl }

one sig Engine
{r_ctrl : one ctrl }

one sig ctrl extends clafer
{ ref : one clafer
, mainCitrl : lone clafer }
{ ref in Controller
mainCtrl in Controller.r_isMain }

one sig ctrl
{ ref : one Controller
, r_mainCtrl : lone isMain }

a) Extra reference signatures b) Simplified referencing

Figure 18. Reference optimization

can notice that all signatures extend clafer, which is an abstract sig-
nature of all clafers. This solution enabled the translator to apply
very simple translation rules. Whenever it encountered a reference
clafer, it just pointed to a generic clafer type (e.g. ref and mainCitrl).
Later it restricted the type by attaching constraints as the two last
lines of Fig. 18a. There are two significant drawbacks of this trans-
lation. First, all signatures have to be subsets of clafer. In practice, it
required increasing the scope analysis in Alloy and allowed reason-
ing only over models with several elements. Second, constraints are
used for restricting types. Effectively, the Alloy Analyzer was us-
ing SAT solver to do type-checking, which is redundant and slows
down model analysis.

The optimized translator solves both problems. In the first place,
proper name resolution algorithm eliminated the need for the ab-
stract clafer signature. A quick look at Fig. 18b shows that none of
the signatures extends clafer. Thanks to it, the Alloy Analyzer can
efficiently handle models with thousands of features. Additionally,
the translator makes better use of Alloy’s type system to specify
references. Both ref and r_mainCitrl are specified as relations with
well defined types. It results in fewer constraints passed to the SAT
solver and better reasoning efficiency.

3.8 Parameters and Model Statistics

The old release of clafer2alloy translator took a Clafer model and
generated Alloy model. It had no configuration options and printed
only error messages. Users of the application had no control over
behavior of the tool. It prevented them from leveraging their knowl-
edge to speed up the translation process. Then the translation could
take quite a time for huge models.

In the new translator end-users may manually turn on and off
certain features. All of the previously described optimizations are
applied automatically and they usually do no harm. Even in the
worst case the time of analysis is shorter. There are two exceptions,
though. Removal of dead abstract clafers and inheritance flattening
might result in models that are hard or impossible to analyze.
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Although, by default the translator applies both optimizations when
possible, user can turn them off.

In Clafer it is impossible to have an instance of abstract signa-
ture without extending it by a concrete clafer. The translator maps
abstract clafers to abstract signatures in Alloy. In Alloy, instances
of abstract signatures are legal if the signature is not extended by
any other signature. For this reason, users might want to depend
on this “hackish” behavior of Alloy when generating model in-
stances. It frees them from defining concrete instances of abstract
clafers when those clafers are referenced (that point was discussed
in Sect. 3.3).

Inheritance flattening is a very useful option that helps to keep
the Alloy scope low. It is especially useful for meta-models because
reduces the reasoning time. The side effect of inheritance flattening
is potentially significant grow of Alloy models (in terms of lines of
code). Those models are easy to analyze for the SAT solver, but it
takes more time for the Alloy Analyzer to generate 3CNF formulas
for them. In extreme cases size of the model may explode, and
might be too large to translate it to a 3CNF formula in a reasonable
time.

The tool also contains other parameters that allow user to set
options of its internal modules, such as layout resolver and name
resolver. Clafer models use code indentation to indicate parent-
child dependency among clafers. Layout resolver inserts braces
where necessary to make the model parsable. One can turn off the
resolver to skip the phase of inserting missing braces. Furthermore,
the name resolver applies several strategies to disambiguate names.
When user knows that all the names are unique, that can save a
huge amount of time when translating models with thousands of
elements. The problem is rather technical and is a limitation of
current implementation.

Finally, after performing the translation, the translator shows
a short summary of the model. The summary shows statistics of
the model, such as the number of abstract, reference clafer, the
number of constraints, information about ambiguous names, and
also minimal scope of analysis. The last parameter might be very
useful to set the least possible scope in Alloy for analyzing the
model. The number is imprecise, since the scope may be influenced
by constraints. In practice the estimation returned by the translator
is fairly good and saves time on finding the optimal scope (which
must be done manually).

4. Evaluation

The new Clafer translator was evaluated on a variety of models:
feature models, meta-models, and feature-based model templates
(FBMTs). We believe that end-users may perform complex analy-
ses on rich Clafer models in a reasonable time. We reevaluated the
translator following the same methodology as in [4]. In fact, we
take our clafer2alloy implementation that was evaluated in [4] as a
baseline. In that implementation we optimized Alloy models man-
ually. Therefore, the current evaluation compares the new Clafer
translator with manually optimized models generated by the old
translator. Comparison of the new translator with the old one (with-
out all automatic optimizations) would yield much better improve-
ments but would not be totally fair. The old translator had several
versions that had hard-coded optimizations for specified types of
models.

The methodology for our experiment is the following. First, we
selected representative models, and selected representative analy-
ses. Next, all models were translated to Clafer from other formats.
Finally, we executed the Clafer translator, run the analyses in the
Alloy Analyzer, and reported performance results. We did the ex-
periment on a laptop with Core Duo 2 @2.4GHz processor and
2.5GB of RAM, running Linux. The Alloy Analyzer was config-

ured to use Minisat as a solver. The subsequent sections present
and discuss the results for the three subclasses of models.

4.1 Feature Models

SPLOT [15] is a popular repository of Boolean feature models. We
automatically translated to Clafer 58 models created by humans (as
of July 4th, 2010). The human-made models were rather small in
size; they contained up to hundreds of features. To test the translator
and efficiency of reasoning we also included machine-generated
models with thousands of features and hundreds of constraints. For
each model we checked its consistency, by finding a valid instance.
All of the models were consistent.

Table 1 summarizes the results. Human-made models were an-
alyzed within the range of tens milliseconds. For those models the
new version of Clafer translator shortened the reasoning time 2
to 5 times. For larger, machine-generated, models the reasoning
speedup was around the factor of 2. Boolean feature models bene-
fited mainly from optimization of hierarchical constraints, and from
finding global cardinality for each feature.

When doing the experiments we noticed that the Alloy Ana-
lyzer performs reasoning in several stages. First, it translates the
model into a 3CNF logical formula, and then the formula is passed
to a SAT solver. The actual reasoning takes up to hundreds of mil-
liseconds for SAT solver for the largest models. Rest of the time
is spent on translation to 3CNF formula. Probably the Alloy Ana-
lyzer was optimized for handling other kinds of models: those that
are small, but still complex. Ours were rather large but used only
propositional constraints.

4.2 Meta-Models

The Ecore Meta-model Zoo (www.emn.fr/z-info/atlanmod/index.
php/Ecore) is a public repository of meta-models. UML2 is the
largest and the most complex meta-model in the repository. Un-
fortunately, none of the meta-models contained OCL constraints.
For UML2 we decided to extract OCL constraints from the UML
specification [16] and to manually add them to the Clafer encoding
of UML2. The use of constraints is what makes reasoning harder.

We performed automated analyses on slices of the UML?2 meta-
model: Class Diagram from [7], State Machines, and Behaviors
(Tab. 2). Each slice has between 10 and 20 classes. When selecting
slices we were looking for elements with a variety of OCL con-
straints. We checked the strong consistency property [6] for these
meta-models. To verify this property, we instantiated meta-models’
elements that were at the bottom of inheritance hierarchy, by re-
stricting their cardinality to be at least one. The analysis confirmed
that none of the meta-models had dead elements.

Meta-models are fairly rich models, i.e. they use abstract
classes, inheritance, references, primitive types, constraints. A wide
range of Clafer constructions allowed to apply all Clafer optimiza-
tions. After applying those optimizations reasoning time in the
Alloy Analyzer was 3 to 4 times shorter. For the evaluated slices it
dropped from hundreds to tens of milliseconds.

4.3 Feature-Based Model Templates

A FBMT combines feature with meta-models and contains a map-
ping to couple the two kinds of models. Configuration of a FBMT
is automatically reflected in configuration of class/meta-models.
For analysis the mapping was established by means of logical con-
straints. To the best of our knowledge, Electronic Shopping [14]
is the largest example of a model template found in the literature.
We used two its templates of activity diagrams (listed in Tab. 3) for
evaluation: FindProduct and Checkout. Furthermore, Telematics is
a model template of a car information system. Although it is rel-
atively small, it uses a wide range of Clafer constructions. Each
template had substantial variability in it. All templates have be-
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Table 1. Results of consistency analysis for feature models expressed in Clafer.

running time

model name nature [# features] [# constraints] old[s] new][s] improvement[x]
Digital Video System  Realistic 26 3 0.012 0.003 4.0
Dell Laptops Realistic 46 110 0.025 0.007 3.6
Arcade Game Realistic 61 34 0.040 0.008 5.0
eShop Realistic 287 21 0.15 0.077 1.9
FM-500-50-1 Generated 500 50 0.45 0.212 2.1
FM-1000-100-2 Generated 1000 100 1.5 0.731 2.1
FM-2000-200-3 Generated 2000 200 4.5 2.300 2.0
FM-5000-500-4 Generated 5000 500 28.0 15.0 1.9

Table 2. Results of strong consistency analysis for UML2 meta-model slices in Clafer

running time

meta-model/instance size [#classes] [#constraints] old[s] new([s] improvement[Xx]
State Machines 11 28 0.08 0.029 2.8
Class Diagram 19 17 0.15 0.037 4.0
Behaviors 20 13 0.23 0.057 4.0

tween 10 and 20 features, tens of classes and from tens to hundreds
constraints.

We performed two types of analyses on FBMTs. First, we cre-
ated sample feature configurations and instantiated templates in
the Alloy Analyzer. Next, we did element liveness analysis for
each template. The analysis is similar to element liveness for meta-
models [6], but now applied to template elements.

Table 3 summarizes the inspected models, times of analyses,
and improvement factors. For the Telematics example the new
Clafer translator allowed for analyses 5 times shorter. In the other
two cases, the analyses took about half of the time required for
the model generated by the old translator. Improvement factors for
element liveness analyses were similar. It was anticipated since el-
ement liveness analysis is equivalent to performing several model
instantiations.

4.4 Summary of the Experiment

Overall, the results look very encouraging. Although the Clafer
model optimizations were relatively simple, they provided good
results. Majority of the analyses times were a way below one
second. That makes those analyses fast enough to apply them in
end-user tools . There is still much room for improvement. Model
creators have extra knowledge that is not fully used by the Clafer
translator or the Alloy Analyzer. Further improvements should
reduce the costs of translating Alloy models to 3CNF formulas.
Our current work was vulnerable to the same threats to validity
as the previous experiment [4]. In addition, the new Clafer trans-
lator might have changed configuration semantics of input models.
Change of semantics might have influenced reasoning times.

5. Related Work

There are several languages for variability modeling. There are
also tools for automated analysis of various models. Most of the
work has been done in the area Boolean feature models (without
attributes and cardinalities). This section presents some of the re-
sults and relates them with Clafer.

SPLOT [15] is the biggest public repository of feature models. It
supports the original FODA feature models; they have no attributes
and features cannot be multiply instantiated. SPLOT uses BDDs
to reason about the models and is able to find inconsistencies,

detect dead features, count core features, and count the number of
valid configurations. In contrast with Clafer, SPLOT does not need
to recognize input models, since all of them are Boolean feature
models. In terms of expressivity, SPLOT models are a small subset
of what Clafer can represent. Real world variability models, such as
the Linux kernel Kconfig model are much more complex than the
original feature models [3]. They involve operations on integers,
strings, which are unsupported by SPLOT.

TVL [8] is a textual variability modeling language that covers
feature models with attributes. TVL is aimed at feature modeling,
while Clafer models also capture structural variabilities. Besides
attributes, Clafer models cover classes, and references to features
and classes. At present, the tool support for TVL and Clafer is
similar. TVL uses the Sat4] SAT solver to find a model instance.
It can also list products derivable from the variability model. Clafer
uses Alloy to perform the same operations. Additionally, the Alloy
Analyzer can use unsat core to indicate contradicting constraints.

Gheyi et al. worked on translation of FODA feature models to
Alloy. They provided two theories [11], one for checking properties
of feature models, and another one for verification whether given
model is a refactoring of the other one. The two theories in Alloy
significantly differ from Clafer’s translation. Gheyi’s translation
of FODA feature models utilizes only propositional formulas and
Boolean variables, while Clafer introduces a new set (signature)
for each feature. It is necessary to use sets to model features if the
language supports feature cardinalities. Furthermore, their Alloy
models generate a set of feature model instances; Clafer models
generate only one instance. In practice, it is infeasible to generate
all instances of variability models at once, since that number grows
exponentially with the number of features.

Evolution of software product lines requires automated reason-
ing to relate an evolved SPL model with the original one. If es-
tablishing the relationship can be done efficiently, then we can do
incremental analysis on the new SPL. Incremental analysis shall be
much shorter than analyzing the new SPL from scratch. Thiim et al.
presented an efficient algorithm that can determine whether the new
feature model is a refactoring, specialization (has fewer features),
generalization (has more features), or an arbitrary edit. Recent work
by Borba et al. [5] describes a theory of software product line re-
finements. It gives theoretical basis for checking whether the new

2011/7/26



Table 3. Analyses for Feature-Based Model Templates expressed in Clafer. Parentheses by the model names indicate the number of optional

elements in each template.

instantiation element liveness

FBMT #features/#classes/#constraints old[s] new][s] improvement[x] old[s] new][s] improvement|[Xx]
Telematics (8) 8/7/17 0.04 0.007 5.7 0.26 0.049 5.3
FindProduct (16) 13/29/10 0.07 0.041 1.7 0.18 0.080 2.3
Checkout (41) 18/78/314 1.6 0.734 2.2 5.8 2.52 2.3

SPL is a refactoring of the original SPL. Besides feature models,
it considers also assets and mapping from feature models to assets.
Clafer does not offer any reasoning on SPL evolution, but we leave
it as a future work.

FAMA [2] is a framework for automated analyses of feature
models. It covers feature models with attributes and uses various
reasoners which are chosen based on type of analysis. FAMA al-
lows to add new reasoners, new file formats of variability models,
and new analyses. There is certain overlap between FAMA’s func-
tionality and the functionality we envision for Clafer. Both tools
have very similar goals, therefore we might use FAMA to reason on
a subset of Clafer models. Besides attributed feature models Clafer
also supports classes. Consequently, constraints over Clafer models
are more complex than FAMA’s constraints. Clafer constraints op-
erate on sets, while FAMA’c constraints include Boolean formulas
and attribute expressions.

Common Variability Language (CVL) [17] is the upcoming
OMG standard for variability modeling. In contrast with other
work, CVL models are not self-contained. They introduce variabil-
ity into existing models (such as UML) without modifying them.
CVL models are slightly less expressive than Clafer models (they
do not support references), but they have choices, classifiers, and
parameters that correspond to clafers. The fundamental difference
between Clafer and CVL is that Clafer unifies different kinds of
variability, while CVL treats them as distinct concepts. The aim
of CVL is to introduce and resolve variability in existing models;
Clafer focuses on SPL analyses.

An important aspect of Clafer is its human readable and tex-
tual notation. It evolved from framework-specific modeling lan-
guages (FSMLs) proposed by Antkiewicz [1]. FSMLs define ab-
stractions and rules of framework’s programming interfaces. They
are formalized in the form of feature models with mapping defini-
tions that describe the correspondence between features and source
code. Textual notation of FSMLs introduced code indentation to
form tree hierarchy, it also specified feature and group cardinali-
ties, and feature attributes. Clafer uses a subset of that notation,
but it also extends the notation to capture some notions from class
modeling (e.g. inheritance, references).

6. Conclusion

In this work we presented optimized translation of Clafer models
to Alloy. We also described other improvements done to the Clafer
translator. Most of the optimizations are relatively simple, but they
make use of domain knowledge about variability models. It was
equally important to learn about specifics of our back-end: the Al-
loy Analyzer. Our evaluation showed that we can perform complex
analyses on a wide range of models in a reasonable time.

We acknowledge that there are more opportunities to improve
the reasoning time over Clafer models. First, the translator itself is
still a research prototype. Proper engineering may fix some tech-
nical issues here and there. Second, the Alloy Analyzer overhead
may be reduced by translating Clafer models directly to KodKod
(Alloy’s engine) and thus skipping Alloy’s front-end. Finally, one
can translate models to SAT or SMT solvers to provide the best

encoding and reduce all the overhead introduced by the tools in
between.

In the future, we would like to provide translations to different
back-ends, including KodKod, SMT solvers, and BDDs to perform
the analyses more efficiently. We would also like to implement
more analyses to support configuration completion to minimize
the number of required configuration steps, to count the number
of distinct products available in SPL, and to support reasoning on
SPL evolution.
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