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Where do Configuration Constraints Stem From?
An Extraction Approach and an Empirical Study

Sarah Nadi, Thorsten Berger, Christian Kästner and Krzysztof Czarnecki

Abstract—Highly configurable systems allow users to tailor software to specific needs. Valid combinations of configuration options are
often restricted by intricate constraints. Describing options and constraints in a variability model allows reasoning about the supported
configurations. To automate creating and verifying such models, we need to identify the origin of such constraints. We propose a static
analysis approach, based on two rules, to extract configuration constraints from code. We apply it on four highly configurable systems to
evaluate the accuracy of our approach and to determine which constraints are recoverable from the code. We find that our approach is
highly accurate (93 % and 77 % respectively) and that we can recover 28 % of existing constraints. We complement our approach with a
qualitative study to identify constraint sources, triangulating results from our automatic extraction, manual inspections, and interviews
with 27 developers. We find that, apart from low-level implementation dependencies, configuration constraints enforce correct runtime
behavior, improve users’ configuration experience, and prevent corner cases. While the majority of constraints is extractable from code,
our results indicate that creating a complete model requires further substantial domain knowledge and testing. Our results aim at
supporting researchers and practitioners working on variability model engineering, evolution, and verification techniques.

Index Terms—Variability models, reverse-engineering, qualitative studies, static analyses, configuration constraints
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1 INTRODUCTION

Many software systems need to be customized to specific
user needs. Customization is commonly required in
embedded systems, for instance, to support a wide
range of hardware, to improve performance, or to reduce
memory footprints. Consequently, many such systems
are designed to be configurable by presenting the user
with configuration options, or features. By selecting a
specific set of features, customized variants of the system
can be generated. Features can range from options that
tweak small functional- and non-functional aspects, to
those that enable whole subsystems of the software.
Such highly configurable systems range from industrial
software product lines to prominent open-source systems
software, such as the Linux kernel with currently more
than 11,000 features [13], [47], [50].

Configurable systems are usually divided into a problem
space and a solution space [18] as shown in Figure 1. The
problem space describes the supported features and their
dependencies as constraints, while the solution space
is the technical realization of the system and of the
functionalities specified by the features (code and build
files). Thus, features cross both spaces. They are described
in the problem space and mapped to code artifacts in the
solution space.

• Sarah Nadi is with the College of Computer Science at the Technische
Universität Darmstadt, Germany; Thorsten Berger is with the Department
of Electrical and Computer Engineering department at the University
of Waterloo, Canada; Christian Kästner is with the School of Computer
Science School at Carnegie Mellon University, USA; Krzysztof Czarnecki
is with the Department of Electrical and Computing Engineering at the
University of Waterloo, Canada.

Ideally, configurable systems have a formal, docu-
mented variability model describing the features and
constraints of the problem space. Automated and in-
teractive configurators use such models to support users
in navigating a complex configuration space [8], [22],
[61], [62]. However, many systems have no documented
variability model or rely on informal textual descriptions
of constraints (e.g., the FreeBSD kernel [48]). As the
number of features and their dependencies increases,
configuration becomes more challenging [25], [48], and
introducing an explicit variability model is often the way
out to conquer complexity and have one central—human-
and machine-readable—place for documentation. Manual
extraction of constraints and construction of such models
for existing systems is a daunting task though, which
calls for automation.

Constraints prevent invalid configurations for technical
and non-technical reasons. For instance, in an operat-
ing system kernel, a technical constraint could prevent
having multi-threaded I/O locking without the corre-
sponding threading libraries. Non-technical constraints
reflect domain-specific knowledge, such as marketing
requirements placed by a project manager or a sales
department. For instance, a low-cost model of a mobile
phone should not have a high-definition camera.

Despite common use in practice, configuration con-
straints in variability models are not well understood.
Knowing their source, quantity, and quality is important
for adopting, evolving, and refactoring highly config-
urable systems. For instance, understanding sources
of constraints provides the basis for their automatic
extraction, to support the creation of variability models.
It also helps to ensure that no conflicts exist between
constraints in the model and in the code. Furthermore,
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Fig. 1: Overview of our approach and the empirical study

identifying unnecessary constraints in the model can
improve software quality and support co-evolution of
model and code.

We address this gap by studying configuration con-
straints in practice. Our goals are (i) to conceive and im-
plement techniques to identify configuration constraints
in code, and (ii) to improve the empirical understanding
of constraints in variability models. The latter goal
strives to determine the reasoning and rationale behind
constraints, to assess the limit of our techniques, and to
identify complementary sources (additional analyses or
expert opinions) of constraints.

We develop scalable static analysis techniques to extract
configuration constraints from code. We focus on C-based
systems with build-time variability using the build system
and C preprocessor. Our analysis technique relies on two
rules: (1) all valid configurations should build correctly,
and (2) they should all yield syntactically different vari-
ants. For both rules, we propose novel scalable extraction
strategies based on the structural use of #IFDEF directives,
and on parser, type, and linker errors. Most importantly,
we statically analyze build-time variability effectively,
without examining an exponential number of all possible
configurations. We empirically study four large open-
source systems—uClibc, BusyBox, eCos, and the Linux
kernel—with three research objectives: (1) evaluating
accuracy and scalability, (2) evaluating recoverability, and
(3) classifying constraints.

We show an overview of our proposed approach and
the empirical study in Figure 1, leaving details for later.
Our results show that our extraction is 93 % and 77 %
accurate respectively for the two rules we use, and that
it can scale to the size of the Linux kernel, in which
we extract over 250,000 unique constraints. We also find
that our automated analysis can recover 28 percent of the
existing configuration constraints across the four systems.

Our work comprises both an engineering contribution

(extracting constraints from C code) and an empirical
contribution (assessing accuracy and recoverability, and
classifying existing constraints). This paper is an extended
version of a prior conference paper [35]. Compared to
the conference version, we improve our static analysis
and, more importantly, we qualitatively study constraints
using questionnaires and interviews with 27 developers
of the studied subsystems. In summary, we contribute
(novel contributions highlighted in bold):

• Adaptations and extensions of existing static analyses
to extract configuration constraints from code.

• A novel constraint extraction technique based on
feature use and code structure.

• A combination of the individual analyses to ac-
count for interactions among different sources of
constraints.

• An evaluation of our analysis infrastructure with
respect to accuracy and recoverability of constraints;

• A classification of constraint sources based on
developer input (interviews and questionnaires),
manual analysis, and additional automated analy-
ses.

• A discussion of the implications of our empirical
results on extraction tools.

2 CONFIGURATION CONSTRAINTS
Variability support in configurable systems is usually
divided into a problem space and a solution space [18], as
shown in Figure 1. This separation allows users to make
configuration decisions without knowledge about low-
level implementation details. Therefore, both spaces need
to be consistent, such that any feature dependencies in
the solution space are enforced in the problem space, and
no conflicts occur. We are interested in understanding
the different types of configuration constraints defined
in the problem space, and how many of these are
technically reflected in the solution space. This can be
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done by extracting configuration constraints from both
the problem and solution spaces and then comparing
and classifying them as shown in Figure 1.

2.1 Problem Space

Features and constraints are described in the problem
space, with varying degrees of formality—either infor-
mally in plain text, such as in the FreeBSD kernel [48], or
using a formal variability model expressed in a dedicated
language (e.g., Kconfig), as in our subject systems. Given
such a model, configurator tools can support users in
selecting valid configurations and avoiding invalid ones.
Figure 2 shows the configurator of BusyBox, one of our
subject systems. The configurator displays features in a
hierarchy, which can then be selected by users, while
enforcing configuration constraints, such as propagating
choices or graying out features that would lead to invalid
configurations. Constraints reside in the feature hierarchy
(a child implies its parent) and in additional rules of cross-
tree constraints [12]. Specifically, the feature hierarchy is
one of the major benefits of a variability model [48], as
it helps users to configure a system and developers to
organize features.

Enforced configuration constraints can stem from tech-
nical restrictions present in the solution space such as
dependencies between two code artifacts. Additionally,
they can stem from outside the solution space such as
external hardware restrictions. Constraints can also be
non-technical, stemming from either domain knowledge
outside of the software implementation, such as market-
ing restrictions, or from configurator-related restrictions,
such as to organize features in the configurator for im-
proved usability or to offer advanced choice propagation.

We illustrate these kinds of constraints with examples
from two of our subject systems. In the Linux kernel,
a technical constraint which is reflected in the code is
that “multi-threaded I/O locking” depends on “threading
support” due to low-level code dependencies. A technical
constraint which cannot be detected from the code is
that “64GB memory support” excludes “386” and “486”
CPUs, which stems from the domain knowledge that
these processors cannot handle more than 4GB of physical
memory. In BusyBox (see Figure 2), a technical constraint
is that “Enable ISO date format” requires “date”, since
the code of the former feature could not be compiled
without the latter. A non-technical, configurator-related,
constraint is that feature “date” itself appears under the
menu feature “Coreutils” in the configurator hierarchy.
Such groupings are used to allow users (and developers)
to find features faster.

There has been much research to extract constraints
from existing variability models within the problem
space [10], [46], [54]. Such extractors can interpret the
semantics of different variability modeling languages
to extract both hierarchy and cross-tree constraints, as
shown in Figure 1.

Fig. 2: Configurator of the BusyBox system

2.2 Solution Space
The solution space consists of build and code files. Our
focus is on C-based systems that realize configurability
with their build system and the C preprocessor. The build
system decides the source files and the preprocessor the
code fragments to be compiled. The latter is realized using
conditional-compilation preprocessor directives such as
#IFDEFs.

To compare constraints in the variability model to
those in the code, we must find ways to extract global
configuration constraints from the code (as opposed to
localized code block constraints [54]). We assume that
there is a solution-space (code-level) constraint if any
configuration violating this constraint is ill-defined by
some rule. There may be several sources of constraints
that fit such a description. However, in this work, we
identify two tractable sources of constraints: (i) those
resulting from build-time errors and (ii) those resulting
from the effect of features in build files and in the
structure of the code (e.g., #IFDEF usage). We now explain
the two rules and their justification.

2.2.1 Build-Time Errors
Every valid configuration needs to build correctly. In C
projects, various types of errors can occur during the
build: preprocessor errors, parsing errors, type errors,
and linker errors. Our goal is to detect configuration
constraints that prevent such build errors. We derive
configuration constraints from the following rule:

Rule 1. Every valid configuration of the system must
not contain build-time errors, such that it can be
successfully preprocessed, parsed, type checked, and
linked.

A naive, but not scalable, approach to extract these
constraints would be to build and analyze every single
configuration in isolation. If every configuration with
feature X compiles except when feature Y is selected, we
could infer a constraint X! ¬Y. For instance, in Listing 1a,
the code will not compile in some configurations, due to a
type error in Line 6: The function foo() is called under
condition X, while it is only defined under condition
¬Y; thus, the constraint X! ¬Y must always hold.
The problem space needs to enforce this constraint to
prevent invalid configurations that break the compilation.
However, already in a medium-sized system such as
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1 #ifndef Y
2 void foo() { ... }
3 #endif
4
5 #ifdef X
6 void bar() { foo (); }
7 #endif

(a) type error

1 #if defined(Z)&&defined(X)
2 ...
3 #ifdef W
4 ...
5 #endif
6 ...
7 #endif

(b) feature effect

Listing 1: Examples of constraint sources

BusyBox with 881 Boolean features, this results in more
than 2881 configurations to analyze, which is more than
the number of atoms in the universe. We show how this
can be avoided in Section 3.

2.2.2 Feature Effect
Ideally, variability models should also prevent meaning-
less configurations, such as redundant feature selections
that do not change the solution space. That is, if a feature
A is selected in a configuration, then we expect that A
adds, changes, or removes some behavior (that was not
previously present). If a feature has no effect unless other
features are selected (or deselected), a configurator may
hide or disable it, simplifying the configuration process
for users.

Determining if two variants of a program are equiva-
lent is difficult (even undecidable). We approximate this
by comparing whether the programs differ in their source
code at all. If two different configurations yield the same
code, this suggests some anomaly (as opposed to errors
described in Section 2.2.1) in the model.

We extract constraints that prevent such anomalies.
We use the following rule as a simplified, conservative
approximation of our second source of constraints:

Rule 2. Every valid configuration of the system should
yield a lexically different program.

The use of features within the build system and
the preprocessor directives for conditional compilation
provides information about the context under which
selecting a feature makes a difference in the final product.
In the code fragment in Listing 1b, selecting W without
selecting Z and X will not break the system. However,
only selecting W will not affect the compiled code, since
the surrounding block will not be compiled without Z

and X also being selected. Thus, W ! Z^X is a feature-
effect constraint that should likely be in the model, even
though violating it will not break the compilation.

2.3 Problem Statement
We can summarize that variability-model constraints
arise from different sources. We discussed two such
sources above where the constraints exist for technical
reasons discoverable from the code. Our work strives
to automatically extract such constraints. However, it
is not clear if other sources of constraints exist beyond
implementation artifacts and how prevalent they are. We,
therefore, also aim to identify any additional sources of

configuration constraints and analyses used to extract
them.

Improving empirical understanding of constraints in
real systems is crucial, especially since several studies
emphasize configuration and implementation challenges
for developers and users due to complex constraints [9],
[13], [25], [34]. Such knowledge not only allows us to
understand which parts of a variability model can be
reverse engineered and checked for consistency from
code, and to what extent; but also how much manual
effort, such as interviewing developers or domain experts,
would be necessary to achieve a full model. For example,
a main challenge when reverse-engineering a variability
model from constraints is to disambiguate the hierar-
chy [48]. Thus, this process could be supplemented by
knowing which sources of constraints relate to hierarchy
information in the model.

We focus on the sources of constraints described in both
rules above, since such constraints can be extracted using
decidable and scalable static analysis techniques. There
are, of course, also other possible kinds of constraints
in the code resulting from errors or other rules (e.g.,
buffer overflows or null-pointer dereference). However,
many of these require looking at multiple runs of a
program (which does not scale well or requires imprecise
sampling), or produce imprecise or unsound results when
extracted statically.

3 AUTOMATIC EXTRACTION METHODOLOGY
We used the following methodology to extract configura-
tion constraints from code, as illustrated in Figure 3.

3.1 Extracting File Presence Conditions
To accurately analyze files and to derive constraints, we
first need to know under which condition the build
system includes each file. We use the term presence
condition (PC) to refer to a propositional expression over
features that determines when a certain code artifact is
compiled. For example, a file with presence condition
HUSH _ ASH is compiled and linked if and only if the
features HUSH or ASH are selected.

Such file presence conditions are encoded in the build
system, which typically consists of several imperative
scripts, descriptions, or Makefiles. We need to manually
or automatically extract a presence condition for each
file. These file presence conditions allow us to derive
global constraints from the low-level sources within each
file. For example, if a type error occurs under condition
X in a file guarded by a presence condition Y, then the
error actually occurs under X ^ Y. In other words, local
presence conditions induced by conditional compilation
directives are conjoined with the file presence condition
before deriving (global) constraints from our low-level
sources.

In Section 5.1, we mention the tools we use to mechan-
ically extract file presence conditions. In the remainder of
this section, without restriction of generality, we assume
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Fig. 3: Variability-aware approach to extract configuration constraints from code

that we have already identified a presence condition
� for each file and encoded it inside the file as an
#IFDEF � condition that wraps the whole file (e.g., Line 0
in Listing 2, effectively pushing the file presence condition
into each file.

3.2 Extracting Code Constraints
We use the two rules described in Section 2 to extract
code constraints from preprocessor errors, parser errors,
type errors, linker errors, and feature effect. A simple
approach to do this is to analyze every single possible
configuration to find which ones contain errors. To avoid
such an intractable brute-force approach and to avoid
incompleteness from sampling strategies, we build on
our recent research infrastructure, TypeChef, to analyze
the entire configuration space of C code with build-time
variability at once [27]–[29].

Our overall strategy for extracting code constraints
is based on parsing C code without evaluating condi-
tional compilation directives. We extend and instrument
TypeChef to accomplish this. TypeChef only partially
preprocesses a source file—it resolves all #INCLUDEs and
expands all macros, but preserves conditional compilation
directives. On alternative macro definitions or #INCLUDEs,
it explores all possibilities, similar to symbolic execution.
Partial preprocessing produces a token stream in which
each token is guarded by a corresponding accurate
presence condition (including the file presence condition,
see Section 3.1), which is subsequently parsed into a
conditional abstract syntax tree, which again can be sub-
sequently type checked. This variability-aware analysis
is conceptually sound and complete with regard to a
brute-force approach of preprocessing, parsing, and type
checking all configurations separately. However, it is
much faster since it does the analysis in a single step
and exploits similarities among the implementations of
different configurations; see [27]–[29] for further details.

Typically, TypeChef is called with a given variability
model and it only emits error messages for preproces-
sor, parser, or type problems that can occur in valid
configurations—discarding all implementation problems

that are already excluded by the variability model. This is
the classic approach to find implementation errors, which
a user can subsequently fix in the implementation or in
the variability model [19], [55], [56]. Since we need to
extract all constraints without knowledge of valid con-
figurations, we run TypeChef without a variability model
to process all reported problems in all configurations.

We extend and instrument TypeChef, and implement a
new framework FARCE (FeAtuRe Constraint Extractor)1,
which analyzes the output of TypeChef and the structure
of the codebase with respect to preprocessor directive
nesting, derives constraints according to our two rules
described in Section 2.2, and provides an infrastructure
to compare extracted constraints between a variability
model and code.

We now explain how we extract code constraints using
our two rules in detail. We use the C code in Listing 2 as
a running example to illustrate the various constraints
we can extract.

3.2.1 Preprocessor, Parser, and Type Constraints
Preprocessor errors, parser errors, and type errors are
detected at different stages of analyzing a translation unit.
However, the post-processing used to extract constraints
from them is similar; thus, we discuss them together.
In contrast, linker errors require a global analysis over
multiple translation units, which we discuss separately.

Preprocessor Errors: A normal C preprocessor stops
on #ERROR directives, which are usually intentionally
introduced by developers to avoid invalid feature combi-
nations. We extend our partial preprocessor to log #ERROR
directives with their corresponding condition, and to
continue with the rest of the translation unit instead
of stopping on the #ERROR message. In our example
(Listing 2), Line 3 shows a #ERROR directive that occurs
under the condition ASH ^ NOMMU.

Parser Errors: Similarly, a normal C parser stops
on syntax errors, such as unclosed parentheses. Our

1. https://bitbucket.org/tberger/farce
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0 #ifdef ASH //represents the file presence condition
1
2 #ifdef NOMMU
3 #error "... ash will not run on NOMMU machine"
4 #endif
5
6 #ifdef EDITING
7 static line_input_t ⇤line_input_state;
8
9 void init() {

10 initEditing()
11
12 int maxlength = 1 ⇤
13
14 #ifdef MAX_LEN
15 100;
16 #endif
17 }
18 #endif //EDITING
19
20 int main() {
21 #ifdef EDITING_VI
22 #ifdef MAX_LEN
23 line_input_state�>flags |= 100
24 #endif
25 #endif
26 }
27 #endif //ASH

Listing 2: Running example of C code with compile-
time errors (adapted from ash.c in Busybox)

TypeChef parser reports an error message together with a
corresponding condition, but continues parsing for other
configurations. In Listing 2, a parser error occurs on
Line 12 because of a missing semicolon if MAX_LEN is
not selected. In this case, our analysis reports a parser
error under condition ASH ^ EDITING ^ ¬MAX_LEN.

Type Errors: Where a normal type checker re-
ports type errors in a single configuration, TypeChef’s
variability-aware type checker [27], [29] reports each
type error together with a corresponding condition. In
Listing 2, we detect a type error in Line 23 if EDITING is not
selected since line_input_state is only defined under
condition ASH^EDITING on Line 7. TypeChef would, thus,
report a type error (undefined symbol) under condition
ASH ^ EDITING_VI ^ MAX_LEN ^ ¬EDITING.

Constraints: Following Rule 1, we expect that each
file should compile without errors. Every error message
with a corresponding condition indicates a part of the
configuration space that does not compile and should
hence be excluded in the variability model. For each
condition e of an error, we add a constraint ¬e to the set
of automatically extracted configuration constraints.

In our running example, we extract the following
constraints (rewritten to equivalent implications): ASH!
¬NOMMU from the preprocessor, ASH ! (EDITING !
MAX_LEN) from the parser, and ASH ! ((EDITING_VI ^
MAX_LEN)! EDITING) from the type system.

More formally, we create a single formula to represent
each of these categories of error constraints as follows:

�parser/preprocessor/type =
^

i

(¬ei) (1)

where ei is the presence condition of a preprocessor/-
parser/type error.

TABLE 1: Example of two conditional symbol tables

translation unit symbol kind presence condition

Listing 2 init export ASH ^ EDITING
main export ASH
initEditing import ASH ^ EDITING

other file initEditing export INIT

3.2.2 Linker Constraints

To detect linker errors in configurable systems, we build a
conditional symbol table for each translation unit during
type checking. The symbol table describes all non-static
symbols as exported symbols and all called but not
defined symbols as imports. All imports and exports
are again guarded by corresponding presence conditions.
We show the conditional symbol table (without type
information) of our running example in Table 1, assuming
that symbol initEditing is defined under presence
condition INIT in some other translation unit (not shown).
More details on conditional symbol tables can be found
in related publications on variability-aware module sys-
tems [5], [29].

In contrast to the file-local preprocessor, parser, and
type constraint analyses, linker analysis is global across
all translation units. From all conditional symbol tables,
we now detect linker errors and derive corresponding
constraints. Again, we follow Rule 1: a linker error arises
when a module imports a symbol which is not exported
(def/use) or when two modules export the same symbol
(conflict). We derive constraints for each symbol s as
follows:

def/use(s) =
� _

(f, )2imp(s)

 
�
!

� _

(f, )2exp(s)

 
�

conflict(s) =
^

(f1, 1)2exp(s);(f2, 2)2exp(s);f1 6=f2

¬( 1 ^  2)

where imp(s) and exp(s) look up all imports and exports
of symbol s in all conditional symbol tables and return a
set of tuples (f, ), each determining the translation unit
f in which s is imported/exported and the presence con-
dition  under which this happens. The def/use constraints
ensure that the presence condition of an import implies
at least one presence condition of a corresponding export,
while the conflict constraints ensure mutual exclusion of
the presence conditions of exports with the same symbol
name.

An overall linker formula can be derived by conjoining
all def/use and conflict constraints for each symbol in the
set of all symbols S:

�linker =
^

s2S

def/use(s) ^ conflict(s) (2)

If the two files shown in Table 1 were the only files
of our running example, we would extract constraint
ASH ^ EDITING! INIT for symbol initEditing.
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3.2.3 Feature Effect
To ensure Rule 2 of lexically different programs in all valid
configurations, we detect the configurations under which
a feature has no effect on the compiled code and create a
constraint to disable the feature in those configurations.
The general idea is to detect nesting among #IFDEFs:
When a feature only occurs nested inside an #IFDEF of
another feature, such as EDITING that occurs only nested
inside ‘#IFDEF ASH’ in our running example, the nested
feature does not have any effect when the outer feature is
not selected. Hence, we would create a constraint that the
nested feature should not be selected without the outer
feature, because it would not have any effect: EDITING!
ASH in our example.

Unfortunately, extraction is not that easy. Extracting
constraints directly from nesting among #IFDEF directives
produces inaccurate results, because features may occur in
multiple locations inside multiple files, and #IF directives
allow complex conditions including disjunctions and
negations. Hence, we developed the following novel
and principled approach, deriving a constraint for each
feature’s effect from presence conditions throughout the
system.

First, we collect all unique presence conditions of
all code fragments occurring in the entire system (in
all translation units, including the corresponding file
presence condition as usual). Technically, we inspect
the conditional token stream produced by TypeChef’s
partial preprocessor and collect all unique token presence
conditions (note that this covers all conditional compila-
tion directives, #IF, #IFDEF, #ELSE, #ELIF, etc. including
dynamic reconfigurations with #DEFINE and #UNDEF).

To compute a feature’s effect, we use the following
insights: given a set of presence conditions P found for
code blocks anywhere in the project and the set of features
of interest F , then we say a feature f 2 F has no effect in
a presence condition ⇢ 2 P if ⇢[f  True] is equivalent to
⇢[f  False], where X[f  y] means substituting every
occurrence of f in X by y. In other words, if enabling
or disabling a feature does not affect the value of the
presence condition, then the feature does not have an
effect on selecting the corresponding code fragments.

Furthermore, we can identify the exact condition when
a feature f has an effect on a presence condition ⇢ by find-
ing all configurations in which the result of substituting
f is different (using xor: ⇢[f  True] � ⇢[f  False]).
This method is also known as unique existential quantifica-
tion [24].

Putting the pieces together, to find the overall effect of
a feature on the entire code in the project, we take the
disjunction of all its effects on all presence conditions.
We then require that the feature may only be selected
when the feature has an effect, resulting in the following
constraint:

f !
_

⇢2P

⇢[f  True] � ⇢[f  False]

We then create a conjunction of all such nesting con-

straints, and call the final result �feffect. More formally,
�feffect would be calculated as follows, where F is the set
of all features:

�feffect =
^

f2F

(f !
_

⇢2P

⇢[f  True] � ⇢[f  False]) (3)

We could also enable a feature by default and forbid
disabling it when disabling has no effect (or use some
different default per feature): we just need to negate f
on the right-hand side of the above formula. However,
we assume the more natural setting where most features
are disabled by default, and so we look for the effect of
enabling a feature.

In our running example in Listing 2, we can identify
five unique presence conditions (excluding tokens for
spaces and line breaks): ASH, ASH^NOMMU, ASH^EDITING,
ASH^EDITING^MAX_LEN, and ASH^EDITING_VI^MAX_LEN.
To determine the effect of MAX_LEN, we would substitute
it with True and False in each of these conditions,
and create the the following constraint (assuming that
MAX_LEN does not occur anywhere else in the code):

MAX_LEN!
⇣
(ASH� ASH)_

�
(ASH ^ NOMMU)� (ASH ^ NOMMU)

�
_

�
(ASH ^ EDITING)� (ASH ^ EDITING)

�
_

�
(ASH ^ EDITING ^ True)� (ASH ^ EDITING ^ False)

�
_

�
(ASH ^ EDITING_VI ^ True)� (ASH ^ EDITING_VI ^ False)

�⌘

⌘MAX_LEN! ASH ^ (EDITING _ EDITING_VI)

This confirms that MAX_LEN only has an effect if ASH

and either EDITING or EDITING_VI are selected. In all
other cases, the constraint enforces that MAX_LEN remains
deselected.

Additionally, to determine how many configuration
constraints the build system alone provides, we do the
same analysis for file presence conditions only instead of
presence conditions of code blocks (which include both
file and local presence conditions). Note that this analysis
is incomplete and provides only a rough approximation of
configuration constraints. On the other hand, it provides
insight into the role of the build system in enforcing
configuration constraints.

3.2.4 Full Code Formula

Besides having individual formulas that represent each
constraint source, we also conjoin them into a single
formula representing all code constraints. This ensures
that any interaction among the individual constraints is
accounted for in an overall, global formula. However,
recall that the reasoning behind Rule 1 and Rule 2 is
different; the former represents errors, whereas the latter
is a heuristic whose violation does not break the system.
Thus, we still distinguish between both and yield the
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following three global formulas:

�rule1 = �preprocessor ^ �parser ^ �type ^ �linker (4)
�rule2 = �feffect ^ �feffect_build (5)
�code = �rule1 ^ �rule2 (6)

In addition to the individual formulas 1–3, we will
also use these global formulas 4–6 when assessing
recoverability of existing variability-model constraints
as will be shown in Section 5.

4 EMPIRICAL STUDY OVERVIEW

To understand what configuration constraints are en-
forced in practice and to what extent they can be extracted,
we study four real-world systems with existing variability
models. Existing models are required to have a basis for
comparison. In this section, we describe the four subject
systems as well as our three objectives.

4.1 Subject Systems
We chose four highly-configurable open-source projects
from the systems software domain. All are large,
industrial-strength projects that realize variability with
the build system and the C preprocessor. Our selection
reflects a broad range of variability model and codebase
sizes, in the reported range of large commercial systems.

All subjects have a variability model, which we use
in the comparison. The first three use the Kconfig lan-
guage [63], and the last one uses the CDL language [60],
each with the respective configurator infrastructure in
the problem space.

uClibc is an alternative, resource-optimized C library
for embedded systems. We analyze the x86_64 archi-
tecture in uClibc v0.9.33.2, which has 1,628 C source
files and 367 features described in a Kconfig model.
BusyBox is an implementation of 310 GNU shell tools
(ls, cp, rm, mkdir, etc.) within one binary executable.
We study BusyBox v1.21.0 with 535 C source files and
921 documented features described in a Kconfig model.
eCos is a highly configurable real-time operating system
intended for deeply embedded applications. We study
the i386PC architecture of eCos v3.0, which has 579 C
source files and 1,254 features described in a CDL model.
The Linux kernel is a general-purpose operating system
kernel. We analyze the x86 architecture of v2.6.33.3, which
has 7,691 C files and 6,559 features documented in a
Kconfig model.

In all systems, the variability models have been created,
maintained, and evolved by the original developers of
the systems over periods of up to 13 years. Using them
reduces experimenter bias in our study. Prior studies of
the Linux kernel and BusyBox have also shown that their
variability models, while not perfect, are reasonably well
maintained [12], [28], [29], [34], [41], [54]. In particular,
eCos and Linux have two of the largest publicly available
variability models today.

4.2 Objectives
Our empirical study aims at three objectives:

Objective 1 to evaluate accuracy and scalability of our
extraction approach. This is done by checking if the config-
uration constraints that we extract from implementation
are enforced in existing variability models.

Objective 2 to study the recoverability of variability-
model constraints using our approach. Specifically, we are
interested in how many of the existing model constraints
reflect implementation specifics that can be automatically
extracted from the solution space.

Objective 3 to classify variability-model constraints.
We want to understand which constraints are technically
enforced and which constraints go beyond the code
artifacts. This allows us to understand what reverse-
engineering approaches to choose in practice.

Since Objectives 1 and 2 primarily evaluate our infras-
tructure, we discuss them together in Section 5. Objective
3 is more exploratory, aiming at understanding the types
of constraints enforced by developers and requires a
different research method. Thus, we discuss it separately
in Section 6. In both sections, we explain the experiment
setup and present the respective results.

5 ACCURACY, SCALABILITY, AND RECOVER-
ABILITY
In this section, we report on the accuracy and scalability
of our infrastructure (Objective 1), and identify the
recoverability of existing variability-model constraints
(Objective 2) from code.

We first describe the study setup in Section 5.1 and then
present the results of objectives 1 and 2 in Sections 5.2
and 5.3, respectively.

5.1 Study Setup
For the setup, we first describe how we extract constraints
from the variability model and then how we evaluate
our code analysis against these model constraints.

5.1.1 Methodology and Tool Infrastructure
We follow the methodology shown in Figure 1. We first
extract hierarchy and cross-tree constraints from the
variability models (problem space) of our subject systems.
We rely on our previous analysis infrastructures LVAT [3]
and CDLTools [1], which can interpret the semantics of
Kconfig and CDL respectively to extract such constraints
and additionally produce a single propositional formula
representing all enforced constraints (see the work on
analyzing Kconfig and CDL [10], [46] for details).

We then run TypeChef on each system and use our
developed infrastructure FARCE to derive solution-space
constraints from its error output (Rule 1, cf., Section 2.2.1)
and the conditional token stream (Rule 2, cf., Section 2.2.2).
As a prerequisite, we extract file presence conditions from
build systems by using the build-system analysis tool
KBuildMiner [2] for systems using KBUILD (BusyBox and
Linux), and a semi-manual approach for the others.
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5.1.2 Evaluation Technique and Measurement Strategy
After problem and solution-space constraints are ex-
tracted, we compare them according to the first two
objectives.

To address Objective 1 (evaluate accuracy and scala-
bility), we verify whether extracted solution-space con-
straints hold in the propositional formula representing
the variability model (problem space formula) of each
system. We also measure the execution time of the
involved analysis steps. For this objective, we assume
the existing variability model as the ground truth, since
it reflects the system’s configuration knowledge specified
by developers, and measure accuracy as follows. We
keep constraints extracted in the individual steps of our
analysis separate. That is, for each build error (Rule 1) and
each feature effect (Rule 2), we create a separate constraint
↵i. For each extracted constraint ↵i, we check whether
it holds in the problem space formula ⌫ (representing
variability model constraints) with a SAT solver, by
determining whether ⌫ ) ↵i is a tautology (i.e., whether
its negation is not satisfiable).

For scalability, we record execution time of each
analysis step separately to measure the scalability of
our approach. All our experiments are executed on a
server with two AMD Opteron processors (16 cores each)
and 128GB RAM. For all analysis steps performed by
TypeChef and KBuildMiner, which can be parallelized,
we report the average and the standard deviation of
processing each file. In addition, we provide the total
processing time for the whole systems, assuming se-
quential execution of file analyses. For the derivation
of constraints, which cannot be easily parallelized, we
report the total computation time per system.

To address Objective 2 (recoverability of model con-
straints), we determine whether each existing variability
model constraint holds in the solution-space constraint
formulas we extract. We use the term recoverability instead
of recall, because we do not have a ground truth in terms
of which constraints can be extracted from the code. Since
no previous study has classified the kinds of constraints
in variability models, we cannot expect that 100% of
them represent low-level code dependencies which can
be statically extracted.

Measuring recoverability is a bit more challenging
than measuring accuracy since for the latter, we have
the individual, extracted constraints to compare against.
However, variability models in practice are described in
different modeling languages. Semantics of a variability
model are typically expressed uniformly as a single large
Boolean function expressed as a propositional formula
describing the valid configurations. After experimenting
with several slicing techniques for comparing these
propositional formulas, we decided to exploit structural
characteristics that are commonly found in variability
models. In all analyzed models, we can identify child-
parent relationships (hierarchy constraints) as well as inter-
feature constraints (cross-tree constraints). This way, we
count individual constraints as the developer modeled

them, which is intuitive to interpret and allows us to
investigate the different types of model constraints. We
only account for binary constraints as they are most
frequent, whereas accounting for n-ary constraints is
an inherently hard combinatorial problem. Technically,
we perform the inverse comparison to that described
above for accuracy: we compare whether each individual
problem-space constraint ⌫j holds in the conjunction of all
extracted solution-space constraints �analysis in each code
analysis category (Formulas 1–3) as well as the overall
code formulas (Formulas 4–6), i.e., whether �analysis ) ⌫i
is a tautology.

Note that using propositional logic for comparison
comes with its own set of problems. For example, com-
paring two constraints or formulas which have a different
set of features or comparing disjunctions may lead to
misleading results. We provide a detailed discussion of
these cases in Appendix B. Additionally, checking if
a constraint holds in three single formulas separately
may provide a different result than checking if the
constraint holds in the conjunction of the three formulas
(as will be seen in the Linux kernel recoverability results).
While finding the proper comparison mechanism is an
open problem, our comparison technique allows us to
understand configuration constraints better, despite its
drawbacks. A key factor in selecting this comparison
technique is that we can currently manually verify, track,
and understand the logic behind the variability-model
constraints, which also allows us to ask developers about
these constraints.

5.2 Objective 1: Accuracy and Scalability
We expect that all constraints extracted according to
Rule 1 hold in the problem-space (variability model)
formula, as these prevent any failure in building a
system. Constraints that do not hold either indicate a
false positive due to an inaccuracy of our implementation
or an error in the variability model or implementation;
we investigate these cases separately. Such constraint
checks have been the standard approach in previous
work on finding bugs in configurable systems [19],
[28], [57], where inconsistencies between the model
and implementation are identified as errors. In contrast,
Rule 2 prevents meaningless configurations that lead to
duplicate systems. Thus, we expect a large number of
corresponding constraints, but not all, to occur in the
variability model.

Table 2 shows the number of unique constraints
extracted from each subject system in each analysis
step, and the percentage of those constraints found in
the existing variability model. On average across all
systems, constraints extracted with Rule 1 and Rule 2 are
93 % and 77 % accurate, respectively (geometric mean of
highlighted values in Table 2).

Both results show that we achieve a very high accuracy
across all four systems. Rule 1 is a reliable source
of constraints where our tooling produces only few
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TABLE 2: Constraints extracted with each rule per system, and percentage holding in the variability model (VM)1

Code Analysis uClibc BusyBox eCos Linux

# extracted % found in VM # extracted % found in VM # extracted % found in VM # extracted % found in VM

Rule 1
Preprocessor Constr. 158 100 % 3 100 % 162 81 % 12,780 81 %
Parser Constr. 59 100 % 23 100 % 133 91 % 8,443 100 %
Type Checking Constr. 947 97 % 54 100 % 139 82 % 256,510 97 %
Linker Constr. 312 63 % 38 100 % 7 100 % 19,654 90 %

Total 1,330 90 % 118 100 % 441 85 % 284,914 96 %

Rule 2
Feature effect Constr. 57 74 % 359 93 % 263 62 % 2,961 95 %
Feature effect - Build Constr. 26 81 % 62 0 % n/a n/a 2,552 97 %

Total 83 76 % 421 79 % 263 62 % 5,513 96 %
1 Geometric mean of highlighted percentages is used to compute overall accuracy of Rules 1 and 2 (93 % and 77 % respectively).

false positives (extracted constraints that do not hold
in the model). Interestingly, a 77 % accuracy rate for
Rule 2 suggests that variability models in fact prevent
meaningless configurations to a high degree.

Table 3 shows execution times of our tools. Significant
time is taken to parse files, which often explode after
expanding all macros and #INCLUDE preprocessor direc-
tives. Our results show that our analysis scales reasonably
where a system as large as Linux can be analyzed in
parallel within twelve hours on our hardware.

5.2.1 Accuracy Discussion
Our approach is highly accurate given the complexity of
our real-world subjects. While further increasing accuracy
is conceptually possible: improving our prototypes into
mature tools would require significant, industrial-scale
engineering effort, beyond the scope of a research project.

Regarding false positives, we identify the following
reasons. First, the variability model and the implementa-
tion have bugs. In fact, we earlier found several errors in
BusyBox and reported them to the developers [29]. We
also found one and reported it in uClibc. Second, all steps
involved in our analysis are nontrivial. For example, we
reimplemented large parts of a type system for GNU C
and reverse-engineered details of the Kconfig and CDL
languages, as well as the KBUILD build system. Little
inaccuracies or incorrect abstractions are possible. After
investigating false positives in uClibc linker constraints,
we found that many of these occur due to incorrectly
(manually) extracted file presence conditions. In general,
intricate details in Makefiles, such as shell calls [11],
complicate their analysis [53]. Third, our subjects imple-
ment their own mechanisms for providing and generating
header files at build-time, according to the configuration.
We implemented emulations of these project-specific
mechanisms to statically mimic their behavior, but such
emulations are likely incomplete. We plan to investigate
using symbolic execution of build systems [53] in order to
accurately identify which header files need to be included
under different configurations.

5.2.2 Scalability Discussion
Our evaluation shows that our approach scales, in
particular to systems sharing the size and complexity

TABLE 3: Duration, in seconds unless otherwise noted,
of each analysis step. Average time per file and standard
deviation shown for analysis using TypeChef. Global
analysis time shown for post-processing using FARCE

uClibc BusyBox eCos Linux

File PC Extraction manual 7 N/A 20
Ty

pe
C

he
f Lexing 7 ± 3 9 ± 1 10 ± 6 25 ± 12

Parsing 17 ± 7 20 ± 3 72 ± 1.6 108 ± 1.9
Type checking 4 ± 3 5 ± 1 3 ± 5 41 ± 14
Symbol Table creation 0.1 ± 0.1 0 ± 0.03 3 ± 20 2 ± 2
Sum for all files (Sequential) 13hr 5hr 7hr 376hr

FA
R

C
E

Feature effect - Build Constr. 3 3 N/A 24
Feature effect Constr. 20 8 1200 1.7hr
Preprocessor Constr. 0.7 0.7 8 1hr
Parsing Constr. 16 4 8 39min
Type Checking Constr. 15 6 5 1.3hr
Linker Constr. 120 60 840 5hr

Total FARCE Time 3min 1.4min 34min 10hr

of the Linux kernel. However, we face many scalability
issues when combining complex constraint expressions
into one formula, mainly in Linux and eCos. Feature-
effect constraints are particularly problematic due to the
unique existential quantification (see Section 3.2.3), which
causes an explosion in the number of disjunctions in many
expressions, thus adding complexity to the SAT solver.
To overcome this, we omit expressions including more
than ten features when aggregating the feature effect
formula. This resulted in using only 17 % and 51 % of the
feature-effect constraints in Linux and eCos, respectively.
The threshold was chosen due to the intuition that larger
constraints are too complex and likely not modeled by
developers.

We faced similar problems in deriving other formulas,
such as the type formula in Linux, but mainly due to
the huge number of constraints and not their individual
complexity. This required several workarounds and led
to high memory consumption in the conversion of
the formula into conjunctive normal form, as required
by the SAT solver. Thus, we conclude that extracting
constraints according to our rules scales, but can require
workarounds or filtering expressions to deal with the
explosion of constraint formulas. We refer to our online
appendix [4] for more details.
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TABLE 4: Number (and percentage) of variability-model
hierarchy constraints recovered from each code analysis1

uClibc BusyBox eCos Linux

# of VM Hierarchy Constraints 54 366 588 4,999

Count (%) Recovered from code

Rule 1
Preprocessor Constr. (�preprocessor) 0 (0 %) 0 (0 %) 0 (0 %) 1 (0 %)
Parser Constr. (�parser) 0 (0 %) 0 (0 %) 3 (1 %) 1 (0 %)
Type Checking Constr. (�type) 0 (0 %) 1 (0 %) 0 (0 %) 0 (0 %)
Linker Constr. (�linker) 0 (0 %) 1 (0 %) 0 (0 %) 1 (0 %)

Rule 1 (�rule1) 1 (2 %) 2 (1 %) 4 (1 %) 306 (6 %)

Rule 2
Feature effect Constr. 8 (15 %) 251 (69 %) 48 (8 %) 325 (6 %)
Feature effect - Build Constr. 4 (7 %) 0 (0 %) - 1,337 (27 %)

Rule 2 (�rule2) 9 (17 %) 251 (69 %) 48 (8 %) 1,663 (33 %)

Full Code Constraints (�code) 14 (26 %) 265 (72 %) 53 (9 %) 2,569 (51 %)
1 Highlighted numbers are those used in the text for easier referencing.

5.3 O2: Recoverability
We now investigate how many variability-model con-
straints can be automatically extracted from the code. In
Tables 4 and 5, we show how many of the variability
models’ hierarchy and cross-tree constraints, respectively,
can be recovered automatically from code. We show
the number (and percentage) of constraints recovered
by each source (i.e., parsing errors, type errors, feature
effect, etc.) as well as the number recovered overall
by each rule. Recall that the formula of each rule is
the conjunction of the individual formulas related to
that rule (see Section 3.2.4). We also show the number
and percentage recovered by the overall code formula
(�code). Since Tables 4 and 5 split the hierarchy and cross-
tree constraints, we provide a summary of the overall
aggregated recoverability results in Table 6. In all three
tables, we highlight the values mentioned in the text for
easier referencing.

As shown in Tables 4 and 5, combining the extracted
constraints from all sources used leads to recovering
more variability-model constraints. This suggests that
the constraints enforced in the variability model are
global in the sense that they stem from an interaction
among different parts of the system: for example, a
combination of preventing a type error and preventing
meaningless selections. Note that the same constraint
may be recovered via multiple sources. Therefore, the
overall code formulas in each table show the total
number (and percentage) of unique variability-model
constraints recovered from analyzing the code. Overall,
across the four systems, we recover 31 % of hierarchy
constraints, and 23 % of cross-tree constraints. Our overall
recoverability across the four systems for all types of
constraints using both rules (as shown in Table 6) is 28 %.

To compare the two rules we use to extract solution-
space constraints, we show the overlap between the total
number of recovered variability-model constraints (both
hierarchy and cross-tree) aggregated across both rules
in the Venn diagrams in Figure 4. These illustrate that
in all systems, a higher percentage of the variability-
model constraints reflects feature-effect constraints in the
code (Rule 1) and that minimum overlap occurs between
constraints recovered by both rules.

TABLE 5: Number (and percentage) of variability-model
cross-tree constraints recovered from each code analysis

uClibc BusyBox eCos Linux

# of VM Cross-tree Constraints 118 265 315 7,759

Count (%) Recovered from code

Rule 1
Preprocessor Constr. (�preprocessor) 2 (2 %) 1 (0 %) 5 (2 %) 6 (0 %)
Parser Constr. (�parser) 0 (0 %) 0 (0 %) 9 (3 %) 2 (0 %)
Type Checking Constr. (�type) 9 (8 %) 15 (6 %) 1 (0 %) 3 (0 %)
Linker Constr. (�linker) 11 (9 %) 21 (8 %) 1 (0 %) 19 (0 %)

Rule 1 (�rule1) 17 (14 %) 39 (15 %) 26 (8 %) 1,522 (17 %)

Rule 2
Feature effect Constr. (�feffect) 7 (6 %) 14 (5 %) 2 (1 %) 58 (1 %)
Feature effect - Build Constr. (�feffect_build) 4 (3 %) 0 (0 %) - 316 (4 %)

Rule 2 (�rule2) 8 (7 %) 14 (5 %) 2 (1 %) 374 (6 %)

Full Code Constraints (�code) 25 (21%) 57 (22 %) 28 (9 %) 4,461 (62 %)

5.3.1 Recoverability Discussion
We can see a pattern in terms of where variability-model
hierarchy and cross-tree constraints are reflected in the
code. Table 4 shows that a large percentage of hierarchy
constraints can be automatically extracted. Specifically
as shown in Table 6, 31 % of the hierarchy constraints
can be automatically extracted. This suggests that the
structure of the variability model (hierarchy constraints)
often mirrors the structure of the code. Rule 2 alone can
extract an average 24 % of the hierarchy constraints (see
Table 6). An interesting case is Linux where already 27 %
of the hierarchy constraints are mirrored in the nested
directory structure in the build system (i.e., file presence
conditions) as shown in Table 4. We conjecture that this
results from the highly nested code structure, where
most individual directories and files are controlled by a
hierarchy of Makefiles, almost mimicking the variability
model hierarchy [11], [37].

On the other hand, although harder to recover, Table 5
suggests that cross-tree constraints seem to be scattered
across different places in the code (e.g., linker and type
information), and seem more related to preventing build
errors than hierarchy constraints are. Interestingly, Fig-
ure 4 shows that there is no overlap (with the exception
of four constraint in uClibc and Linux) between the two
rules we use to recover constraints. This aligns with the
different reasoning behind them: one is based on avoiding
build errors while the other ensures that product variants are
different. The fact that our static analysis of the code could
only recover 28 % of the variability-model constraints
suggests that many of the remaining constraints require
different types of analysis or stem from sources other
than the implementation. We look at this issue in more
details in our third objective in the next section.

6 CONSTRAINT CLASSIFICATION
To classify the different types of configuration constraints
in order to address Objective 3, we aggregate and cross-
validate data from four types of analyses that act as
different data sources. First, we elicit developer feedback
in the form of phone interviews and online questionnaires
and use grounded theory [17] to analyze this data. Second,
we use the recoverability results from our automated
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TABLE 6: Summary of overall recoverability results1

uClibc BusyBox eCos Linux Overall
(Geom. Mean)

Rule 1
Hierarchy 1 (2 %) 2 (1 %) 4 (1 %) 306 (6 %) 2 %
Cross-tree 17 (14 %) 39 (15 %) 26 (8 %) 1,522 (17 %) 13 %
All constraints 18 (10 %) 41 (6 %) 30 (3 %) 1,828 (14 %) 7 %

Rule 2
Hierarchy 9 (17 %) 251 (69 %) 48 (8 %) 1,663 (33 %) 24 %
Cross-tree 8 (7 %) 14 (5 %) 2 (1 %) 374 (6 %) 4 %
All constraints 17 (10 %) 265 (42 %) 50 (6 %) 2,037 (16 %) 14 %

Full Code (Rules 1 & 2 conjoined)
Hierarchy 14 (26 %) 265 (72 %) 53 (9 %) 2,569 (51 %) 31 %
Cross-tree 25 (21 %) 57 (22 %) 28 (9 %) 4,461 (62 %) 23 %
All constraints 39 (23 %) 322 (51 %) 81 (9 %) 7030 (55 %) 28 %

1 Highlighted numbers are those used in the text for easier referencing.

analysis. Third, we conduct a manual analysis of a sample
of the non-recovered results to understand why these
constraints are enforced. Fourth, we perform additional
automated analysis to count certain types of constraints
which were discovered using one or more of the previous
three analyses.

6.1 Setup and Preliminary Results
We now describe the setup for the four types of analyses
we use to understand and classify constraints. We also
show the raw results where applicable. The raw results
from the four types of analyses are later aggregated into
classification categories in Section 6.1.5.

6.1.1 Developer Interviews
We elicit feedback about configuration constraints from
27 developers across the four systems. We describe how
we contact developers, gather the data, and analyze it
below.

Developer Recruitment. For each of the four subject
systems, we query each system’s respective source control
repository to identify a list of developers who have made
changes to the configuration files encoding the variability
models. We then contact the identified developers via
email, and give them the choice to participate through a
phone interview or a questionnaire. This is done to cater
for different developer preferences and availability. A
total of 22 developers answered our questionnaires and
we conducted phone interviews with 5 developers. Ta-
ble 7 shows the number of developers per system who
participated in our study through both questionnaires
and phone interviews.

Questionnaire/Interview Structure. Online question-
naires had a specific set of open-ended questions for
the developers to answer without our intervention. For
each system, we additionally provided three to four
examples of constraints that we could not recover and
asked developers to explain why such dependencies
are enforced. Interviews, on the other hand, were semi-
structured [45] and lasted an average of 34 minutes. While
we had the same list of questions and examples from the
questionnaire in mind during the phone interviews, we
allowed the conversation to steer away from these fixed
questions depending on the developer’s responses. Thus,

(a) uClibc (b) BusyBox (c) eCos

(d) Linux

Fig. 4: Overlap between Specifications 1 and 2 in recov-
ering variability-model constraints. An overlap means
that the same model constraint can be recovered by both
rules.

TABLE 7: Number of developers interviewed through
questionnaires and phone conversations

System Questionnaires Phone Total
Interviews

uClibc 2 1 3
BusyBox 1 2 3
eCos 1 0 1
Linux 18 2 20

Total 22 5 27

each interview was shaped by the developer’s responses
and their willingness to share information. Questions in
both the interviews and questionnaires revolved around
the following themes:

• When is a feature added to the variability model?
• When is a dependency enforced?
• How can we extract configuration constraints?

Answers from all three themes help us understand
when dependencies are enforced and how they can be
extracted. For the third question, we ask developers about
our two extraction rules. This included their view on
valid versus invalid configurations as well as nesting of
#IFDEFs in code.

Data Analysis. To analyze the data we collected from
the 27 developer responses, we first transcribe all phone
interviews. Since our study is of exploratory nature, we
use grounded theory [17] to analyze the data from both
interviews and questionnaires where we use open-coding
to identify key sources of dependencies. For the interview
data, participants are coded for anonymity. We give each
developer a code showing the system (UC for uClibc, BB
for BusyBox, EC for eCos, and LI for Linux) followed by
a number.
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TABLE 8: Manual analysis of non-recovered constraints. We could explain 58 % of the non-recovered constraints
through four cases, but could not determine the rationale for the remaining constraints1

Case Description Number of Constraints % Adjusted to Constraint Population

1. Additional analysis required Can be recovered using more expensive
analysis

30 16 %

1.1 Data-flow analysis or testing 16 9 %
1.2 More specific analysis 14 8 %

2. More relaxed code constraints Extraction relates two features but is less
strict than the variability model

27 15%

3. Domain knowledge At least one of the features is not used in
the code & relation can only be identified
through expert knowledge

40 22 %

3.1 Configurator-related 27 15 %
3.2 Platform or hardware knowledge 13 7 %

4. Limitation in extraction We do not support non-boolean compar-
isons and C++ code

5 2 %

5. Unknown We could not determine the rationale
behind the enforced constraint

42 23 %

1 Highlighted numbers are those used in the text for easier referencing.

6.1.2 Automated Classification

To facilitate parts of the investigation, we use the recov-
erability results from Section 5.3 to automatically classify
a large number of constraints as technical and statically
discoverable. Specifically, our analysis shows that 28 %
of the constraints are code dependencies which can be
automatically extracted (see Table 6).

6.1.3 Manual Analysis

To understand what other categories of constraints exist,
we randomly sample 144 non-recovered constraints (18
hierarchy and 18 cross-tree constraints from each subject
system). We then divide these constraints among the
authors of the paper for manual investigation. The goal
is for each author to try to identify the reason behind
enforcing these non-recovered constraints by manually
looking at the implementation as well as reading the
documentation of the features involved. In the process,
we also try to understand why these constraints could
not be recovered using our automated analysis. Each
author records the findings for each of their assigned set
of constraints. At the end of the process, one author went
through all the recorded reasons in order to categorize
them. Thus, 75 % of the studied constraints are cross-
validated by two authors. In Table 8, we show the raw
data from this analysis, where we summarize the five
cases that explain the analyzed sample of non-recovered
constraints. In the last column, we show the percentages
generalized to the general constraint population 2, which
we use in the results below.

2. To determine the generalized percentages, we have to also consider
that we have already automatically recovered 28 % of the existing
configuration constraints. Thus, there is a remainder of 72 % of
non-recovered constraints from which we obtain our sample. Thus,
getting the generalized percentage of constraints representing domain
knowledge in Table 8 can be found as follows: (40/144) ⇤ 0.72 = 20%.
The same can be applied for the other cases.

6.1.4 Additional Automated Analysis
Our interviews and manual analysis showed that there
are certain patterns of constraints such as those containing
feature(s) not used in the code or those containing
features related to hardware or platform restrictions.
We automatically count the first case by checking all
variability-model constraints to see how many constraints
have such features. We find that 21 % of constraints
across the four systems have at least one feature not
used in the code. For the second case, we count the
constraints in BusyBox which contain the hardware
feature PLATFORM_LINUX which we came across in the
manual analysis and which was also discussed during
the interviews. We find that 110 out of the 366 cross-tree
constraints in BusyBox contain this feature.

6.1.5 Integrating Our Results
Our results from the four types of analyses above suggest
that there are four cases for enforcing configuration
constraints: (1) enforcing low-level code dependencies, (2)
ensuring correct run-time behavior, (3) improving the user’s
configuration experience, and (4) avoiding corner cases. In
the next four subsections, we describe each of the four
cases along with relevant examples and supporting find-
ings. Our aim is to understand when dependencies are
enforced and if such dependencies can be automatically
extracted. Thus, for each case, we provide examples,
describe how developers think such dependencies can be
identified, and deduce what implications this might have
on automatic extraction tools. We summarize how the
classification categories are supported by the different
data sources in Table 9.

6.2 Enforcing low-level code dependencies
Large configurable systems are designed to be modular

such that there is a procedure, file, or component that is
responsible for each functionality. Due to such modular
design, it is common that one feature may need to use
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TABLE 9: Summary of the supporting data sources for each category of configuration constraints.

Developer Interviews Automated Recovery Results Manual Analysis Additional Automated Analysis

Enforcing Low-level Code Dependencies X X X
Ensuring Correct Run-time Behavior X X X
Improving the User’s Configuration Experience X X X
Avoiding Corner Cases X

certain functionalities offered by another feature. This
can be in the form of low-level code dependencies such
as using symbols defined in a different feature. When
such relationships exist, dependencies between the related
features have to be enforced in the variability model to
allow the system to build successfully, as pointed out by
many of the interviewed developers. For example, one
of the uClibc developers explains it as follows:

“Kconfig dependencies usually express requirements
[related to] internal libraries inside the project
[as well as] requirements to avoid build failures
because of functionality [needed from other modules].”
(UC_1)

6.2.1 Examples
When a module in the system relies on the definition
of certain symbols from a different module, such depen-
dency is marked in the variability model. We provided
an example of such a low-level dependency between
features X and Y in Listing 1a in Section 2.2.1. A real
example from BusyBox is feature WHO which depends
on feature FEATURE_UTMP. The WHO utility displays the
current logged-in user. In order to display that user, the
WHO applet needs access to the /var/run/utmp file which
keeps track of the logged in users. This file is controlled
by FEATURE_UTMP. On a low level, WHO uses function
getutent to identify the current logged in user which is
only defined if FEATURE_UTMP is selected.

6.2.2 Identification
We find that low-level dependencies represent at least 45%
of configuration constraints as shown by our recoverabil-
ity analysis and manual analysis results. This is based on
the 28 % recovered by our analysis, 9 % related to data-
flow (see Table 8), and 8 % related to additional code
analysis (see Table 8). We believe that 45 % represents a
lower bound since our manual analysis may have missed
specific dependencies. Our interview data also suggests
that low-level dependencies are the most common reason
behind enforcing configuration constraints.

We now discuss specific code analysis techniques which
can identify the various types of low-level dependencies
we found in our data.

Build and linker analysis: Our recoverability results
show that 28 % of the constraints can be extracted using
our TypeChef and FARCE infrastructures. Rules 1 and 2
rely on ensuring that the system builds and links correctly
(i.e., all low-level dependencies are respected) and that
the selection of a feature changes something in the code.
This is confirmed by the developers we interviewed, who

explained that low-level code dependencies can be found
by analyzing the source code files as well as the build
files. They mainly suggest studying def/use chains of
symbols and looking into linker failures to determine
missing symbols signifying dependencies. Most of them
suggested that imitating the linker and the C preprocessor
would be the best way to determine such dependencies.
A Linux developer summarizes the best way to identify
low-level code dependencies as follows, confirming our
extraction methodology:

“[I would] identify interfaces (functions, variables,
macros) protected by #ifdefs, and identify translation
units that use the protected interfaces and whether
the use is also protected by other #ifdefs. [I would
also] look into the build files. [However,] this would
only identify build-time dependencies.” (LI_7)

Data-flow analysis: During the interviews, one
developer pointed out that dependencies may result from
code that implicitly depends on initialization or value
updates that are done somewhere else. Detecting such
cases requires data-flow analysis. This is also confirmed
through our manual analysis where we found that 9%
of constraints might be recovered through data-flow
analysis. While our extraction infrastructure does not
yet support data-flow analysis, there is existing research
that can be used as a basis to create a variability-aware
data-flow analysis which can scale to large systems [15],
[16], [32].

Additional analysis: Our manual analysis shows
that 8% of configuration constraints can be recovered
through more specific analysis. This includes more ad-
vanced build system analysis than what we currently
support or system-specific analysis such as the use of
applets in BusyBox or the kernel module system in the
Linux kernel.

6.2.3 Implications for Extraction Tools
The above discussion shows that dependencies ex-
tractable from the code and build files (with varying
degree of cost) can account for a large portion of
configuration constraints. This is promising for automatic
extraction tools. However, there are still some challenges
preventing a complete extraction which we show with the
following two cases we learn from developer interviews.

Deferring problems to runtime: Developers explain
that they often use static inline function stubs to prevent
build-time errors from occurring as shown in Figure 5.
In this case, function pci_register_driver in pci.h (Figure 5a)
is defined if feature PCI is selected and is defined as a
static inline function returning zero if PCI is not selected.
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0 #ifdef CONFIG_PCI
1 int pci_register_driver(struct pci_driver ⇤drv);
2 #else
3 /⇤
4 ⇤ If the system does not have PCI, clearly these return errors.
5 ⇤ Define these as simple inline functions to avoid hair in drivers.
6 ⇤/
7 static inline int pci_register_driver(struct pci_driver ⇤drv)
8 {
9 return 0;

10 }
11 #endif

(a) pci.h

0 //File PC = SCSI_QLA_ISCSI && SCSI
1
2 #include <pci.h>
3
4 int qla4xxx_module_init(void){
5 int ret;
6 ...
7 ret = pci_register_driver(&qla4xxx_pci_driver);
8 if (ret)
9 goto unregister_transport;

10 ...
11 return 0;
12
13 unregister_transport:
14 iscsi_unregister_transport(&qla4xxx_iscsi_transport);
15 }

(b) ql4_os.c

Fig. 5: Static inline function definitions may prevent tools from detecting low-level code dependencies.

The function is then used in ql4_os.c (Figure 5b), which
is only compiled if features SCSI_QLA_ISCSI and SCSI are
selected. A developer looking at this code can understand
that there is a relationship between SCSI_QLA_ISCSI and
PCI, since function pci_register_driver registers this SCSI
driver only if PCI is selected. In the case when PCI is
not selected, the function will be defined as the empty
stub returning zero, which would result in the driver not
being registered. However, a regular compiler, or a static
analysis infrastructure such as ours, would not detect
this relationship, since the static inline function prevents
any type errors from occurring. As one uClibc developer
points out:

“A lot of projects like the Linux kernel will provide
static inline stubs which replace the actual imple-
mentation when a specific Kconfig symbol is turned
on/off, specifically to avoid build failures.” (UC_1)

This suggests that developers may intentionally push
handling meaningless or incorrect behavior to runtime
rather than handling such problems at build-time. Us-
ing static inline functions to accomplish such behavior
is actually part of the recommended practices in the
Linux kernel guidelines.3 Detecting such situations would
require project-specific heuristics which are hard to
generalize (and automate).

Mixing run-time and build-time behavior: Several
developers also mention the tendency to move to using
C-based if checks rather than preprocessor-based #IFDEF
checks, which represents a second challenge for automatic
extraction tools. With if-based checks, code elimination is
left to the compiler where a new macro that is defined to
1 is created if the feature is selected. If the feature is not
selected, this new macro is defined to 0 (triggering dead-
code elimination). We show such an example in Figure 6,
where the same conditional compilation is achieved with
the C preprocessor or through a regular C if check,
assuming dead-code elimination in the compiler. This
achieves a similar effect to the C preprocessor, but

3. http://www.kernel.org/doc/Documentation/SubmittingPatches

while avoiding syntax error problems (often appearing
in certain configurations only) which may be caused by
#IFDEF checks. On the contrary, if there is a syntax error in
the if check, the build will break on all configurations and
not just a specific one, making it easier to debug (BB_3).
This involvement of run-time behavior again complicates
dependency extraction for automated tools, since other
runtime checks which cannot be evaluated at build-time
can be mixed with the feature check in the if condition [33],
[59].

6.3 Ensuring Correct Run-time Behavior
Apart from enforcing low-level dependencies that are
found in the system’s implementation, we find that
dependencies are also enforced to ensure correct run-
time behavior as indicated by all four data sources. That
is, the system may use external libraries or platform func-
tionalities that are only known at runtime. Additionally,
this category of constraints prevents functionalities which
will not be beneficial on certain platforms from being
selected.

6.3.1 Examples
As an example of a runtime dependency enforced by
configuration constraints, any feature in BusyBox which
relies on the proc file system would only work on Linux
environments. Therefore, such a feature would always
depend on the PLATFORM_LINUX feature. As a developer
explains, such features might compile normally without
the PLATFORM_LINUX selected, but then if they try to open
files in proc, nothing will happen since the proc file system
is not available on non-Linux platforms.

A similar example from the Linux kernel found during
our manual analysis is SERIO_CT82C710! X86_64. The first
feature controls the port connection on that particular
chip, but only works with an X86_64 architecture. We
can also tell that such platform restrictions are common
from our manual analysis and our additional automated
analysis. From our manual analysis, we find that 7% of
constraints have at least one feature that is not used in the
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0 static void putprompt (const char ⇤s)
1 {
2 #ifdef CONFIG_ASH_EXPAND_PRMT
3 free((char⇤)cmdedit_prompt);
4 cmdedit_prompt = ckstrdup(s);
5 return;
6 #endif
7 cmdedit_prompt = s;
8 }

(a) Preprocessor-based checks

0 static void putprompt (const char ⇤s)
1 {
2 if (ENABLE_ASH_EXPAND_PRMT) {
3 free((char⇤)cmdedit_prompt);
4 cmdedit_prompt = ckstrdup(s);
5 return;
6 }
7 cmdedit_prompt = s;
8 }

(b) C-based checks

Fig. 6: Relying on the C compiler (b) versus relying on the C preprocessor (a) for conditional compilation.

code and is related to some platform or hardware restric-
tion. In the specific example of BusyBox, our additional
automated analysis shows that 110 out of 366 cross-tree
constraints involve the feature PLATFORM_LINUX indicat-
ing that such hardware restrictions are very common.

A different yet similar example provided by developers
is including code that uses a PIE executable (Position
Independent Executable) on a platform that cannot benefit
from it, increasing the binary size by 20% for no purpose.
Such an example shows that the objective behind runtime
dependencies is not only to prevent a run-time error from
occurring, but also to prevent functionalities which will
not be beneficial on a specific platform.

6.3.2 Identification
Run-time dependencies are very common. We find that
run-time dependencies are usually identified through
domain knowledge or testing.

Domain Knowledge: Our interviews show that
often developers simply rely on their domain knowledge
to identify run-time dependencies. Different developers
across the subject systems provide similar comments
about how identifying many of these dependencies
basically ends up coming down to experience. This
experience is gained from working with several hardware
boards and knowledge of previous, similar problems
which might have occurred. This aligns with our manual
analysis findings where we could not explain 29 % of
the constraints we manually analyzed in our sample4

or found constraints where the relationship can only be
determined through domain knowledge.

Testing: During our interviews, we find that devel-
opers do not always know of all such dependencies. Some
of these run-time dependencies are only found through
testing. As explained to us by several developers, what
happens in practice is a trial and error process. When
the system is being configured for a new board, for
example, developers select the configuration they believe
should work (based on their expertise). They then test
this configuration and correct any problems which may
arise. Simply put, “you configure it until it works” (LI_19).
However, since there are many different hardware devices
to test for, some of the dependencies are not known until
a user reports some problem on a specific board, for

4. From Table 8: 42/144 = 29 %

example. Thus, additional configuration constraints may
be identified at a later stage through user testing. The
following two quotes illustrate this:

“In my experience, there is also a great deal of
empirical build testing which implied adding a
dependency. Since [the build system] only takes
care of [the] build time aspect of a specific software,
runtime dependencies are sorted out differently.”
(UC_1)

“You catch everything with your knowledge, and
the remainder comes from user testing (which then
expands your knowledge, obviously).” (BB_2)

This aligns with findings from configuration testing in
other domains (e.g., [21]).

6.3.3 Implications for Extraction Tools
Since identifying run-time dependencies stems from
either testing or domain knowledge, this seems like a
limitation for automatic extraction tools. Static analysis
of the code would not reveal these dependencies. An
option would be to perform some testing on each, or
a representative sample, of the supported platforms to
see which configurations work or fail [39]. However, this
is a very costly and time-consuming process due to its
reliance on the availability of hardware components. That
said, there may also be ways to find such dependencies
from the code as we show below.

Relying on Feature Effect: While many of the
features representing hardware components or platform
support may not be used in the code, some of them
are. For example, checks for PCI or 64 bit support are
sometimes used in the code in the form of #IFDEF
checks or in the form of file presence conditions. In
this case, our feature effect heuristic reflected in Rule
2 may be used to recover such dependencies. As shown
in our empirical, recoverability results, Rule 2 alone
can already extract 24 % of the hierarchy constraints.
A quick look at the hierarchy constraints suggests that
several of them are related to hardware features, such
as PCI or NET_ETHERNET. However, this can only be
used as a heuristic and will not be able to identify all
such constraints, as some developers may not add such
checks in the code and will rely on the variability model
enforcing the right feature combinations. One BusyBox
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developer elaborates about this when explaining why a
dependency in the variability model might be more strict
than its corresponding check in the code:

“You do not need to test for things that are already
covered implicitly by something else elsewhere. You
basically only need tests that prevent something you
do not want. If the thing you do not want cannot
happen anyways, you do not need to test for [it].”
(BB_3)

Apart from the above problem, the feature effect heuris-
tic also cannot differentiate between feature dependencies
and feature interactions. We provide more details about
this problem in Appendix A.

To overcome such challenges, relying on experts’ do-
main knowledge might be the best alternative depending
on the availability of such experts. After automatically
detecting build-time dependencies, and feature effect
dependencies, the information can be presented to such
experts where they can add the dependencies related to
run-time behavior. This is of course a manual process,
but it might be the most effective method for identifying
such dependencies when starting with partial knowledge.
This is also supported by the fact that our additional
automated analysis found that 21% of the existing
model constraints have at least one feature not used in
the implementation, which means that such constraints
cannot be automatically extracted.

6.4 Improving the User’s Configuration Experience
In all the systems we analyzed, the variability model is
used as a backend to a configurator that guides the user
during the configuration process. Such a configurator
contains menus and sub-menus, as well as other group-
ings, which facilitate the configuration process such that
the user is not overwhelmed with all features at once.
According to developers, as well as our manual analysis,
some dependencies exist in the variability model only to
support such an organization.

We believe that such dependencies are common. Our
manual analysis shows that 15 % of constraints are related
to organizing things in the configurator. Our additional
automated analysis shows that 21 % of configuration
constraints contain at least one feature not used in the
code. However, we cannot automatically determine if
such feature(s) are related to the configurator or not. They
might instead represent hardware features as discussed
in the previous section.

6.4.1 Examples
In Kconfig-based systems, menu and menuconfig items are
mainly used to create menus and groupings, even though
they could still be used in the code. BusyBox developer
BB_3 tells us that menu symbols or grouping symbols are
used to avoid overwhelming the user with complexity.
For example, you cannot select specific network cards
in the configurator unless the NETWORKING feature is

switched on. Thus, in some cases, a hierarchy constraint
may exist for presentation purposes in the configurator
rather than because of any technical dependencies.

A similar example is that of the Linux kernel hierarchy
constraint IPC_NS ! NAMESPACES, which we could not
recover. In this example, NAMESPACES is not used in the
code at all even though it is a regular feature (not a
menu or menuconfig). From the developers, we learn
that NAMESPACES is just used in Kconfig for organization
purposes, such that all namespace-related features can be
disabled/enabled with one click rather than individually
choosing the features. It is interesting to note that in
subsequent releases of the Linux kernel, NAMESPACES has
been changed into a menuconfig item instead of a config
item, which makes its organization role in Kconfig more
obvious.

A similar example is the BusyBox feature DESKTOP. A
dependency on DESKTOP is added to features which only
work on desktop environments. Thus, users configuring
a non-desktop environment would not even see these
features, preventing clutter and confusion with non-
relevant features during configuration.

6.4.2 Identification

It seems that identifying which features need to be
grouped together and how features should appear in
the configurator is mainly related to common sense and
domain knowledge. Developers know which features are
related and, thus, group them together in the same menu.
We come up with the same conclusion from our manual
analysis as well.

6.4.3 Implications for Extraction Tools

Since configurator-related dependencies are not necessar-
ily reflected in the code, there is no way for automatic
detection tools to extract them. However, using certain
heuristics may work depending on the project. For
example, if the list of all features is available, a name-
based heuristic similar to that used by She et al. [48] can
be used to identify related features which may appear in
the same menu. For example, CONFIG_NET_KEY may be
nested under a CONFIG_NET menu because their names
are similar.

6.5 Avoiding Corner Cases

Our interview data reveals that developers may enforce
dependencies to prevent reasonable corner cases that
are not supported yet. Only a couple of developers
mentioned this so we believe it is not as common as
the previous three cases. As a Linux developer puts it:

“Programmers are not interested in all corner cases,
so support for these configurations may be papered
over using dependencies.” (LI_11)
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6.5.1 Examples
One BusyBox developer (BB_3), who is also familiar with
the Linux kernel, points out that there was a configuration
option BROKEN where unsupported functionalities would
depend on it to indicate that they are not fully supported.

Another developer provides a more specific example
from the Linux kernel where a crash occurred because
of the futex5 code on the m68k architecture. Rather than
generalizing the futex code to work properly on all
architectures, the code was changed such that the check
causing the crash can be skipped depending on the value
of feature HAVE_FUTEX_CMPXCHG. On any architecture
that suffers from this runtime crash, a dependency
from the feature representing that architecture to the
FUTEX_CMPXCHG feature is added to prevent the crash.
As the developer explains,

“If the various architectures represent corner-cases,
the Kconfig solution avoids the need to generalize
the futex code to cope with them all.” (LI_11)

6.5.2 Identification
Developers are familiar with the system and its domain
and can determine which cases should be supported
and which cases may be very rare such that they can be
temporarily or permanently ignored.

6.5.3 Implications for Extraction Tools
Knowledge of which configurations are prevented due
to avoiding corner cases is hard to automatically detect,
unless developers explicitly mark such corner cases with
#ERROR directives or explicitly document them otherwise.
In this case, these dependencies can be identified with
extraction tools such as ours. Otherwise, automatic
extraction tools (even if performing runtime analysis)
cannot identify such cases. We believe documenting
dependencies (when applicable) with #ERROR directives
is a good practice since it makes it easier to ensure that
they are enforced in the variability model. Using #ERROR
directives also makes it easier to understand the rationale
behind an enforced constraint as well as clearer mapping
from the variability model to where the constraint is
enforced in the code.

6.6 Constraint Classification Discussion
Our recoverability results from Section 5.3 show that
28 % of existing configuration constraints are low-level
code dependencies, statically discoverable from the code.
Based on data from our other data sources, we believe
that low-level implementation dependencies represent
at least 45 % of configuration constraints, which is very
promising to automated tools.

On the other hand, the three other categories of
configuration constraints we found show that automated
analysis is not sufficient to extract a complete variability

5. Short for “fast user-space mutex”, which is a Linux kernel system
call that programmers can use to implement basic locking

model. We presented heuristics that may be used in
conjunction with developer input. Such heuristics suggest
that some of developers’ domain knowledge may still be
found in the implementation. However, since identifying
many of the problem-space constraints relies on domain
knowledge from developers, this emphasizes the need for
explicit variability models to document such knowledge.

7 THREATS TO VALIDITY

7.1 Internal validity

Tool accuracy. Our analysis extracts solution-space con-
straints by statically finding configurations that produce
build-time errors. Conceptually, our tools are sound and
complete with regard to the underlying analyses (i.e., they
should produce the same results achievable with a brute-
force approach, compiling all configurations separately).
Practically however, instead of well-designed academic
prototypes, we deal with complex real-world artifacts
written in several different, decades-old languages. Our
tools support most language features, but do not cover all
corner cases (e.g., some GNU C extensions, some unusual
build-system patterns), leading to minor inaccuracies,
which can have rippling effects on other constraints. We
manually sample extracted constraints to confirm that
inaccuracies reflect only a few corner cases that can be
solved with additional engineering effort (which however
exceeds the scope/resources of a research prototype).
We argue that the achieved accuracy, while not perfect,
is sufficient to demonstrate feasibility and support our
quantitative analysis.

Completeness. Our static analysis techniques currently
exploit all possible sources of constraints addressing
build-time errors. We are not aware of other classes of
build-time errors checked by the gcc/clang infrastructure.
We could also check for warnings/lint errors, but those
are often ignored and would lead to many false positives.
Other extensions could include looking for annotations or
comments inside the code, which may provide variability
information. However, even in the best case, this is a
semi-automatic process. Furthermore, dynamic analysis
techniques, test cases or more expensive static techniques,
such as data-flow analysis, may also extract additional
information, as we discussed. Finding a cost-effective
way of performing such analyses needs investigation.

Scalability. The percentage of recovered variability-
model constraints in Linux and eCos may effectively
be higher, since we limit the number of constraints we
use in the comparison due to scalability issues. Therefore,
we can safely use the reported numbers as the worst-case
performance of our tools in these settings. Additionally,
we cannot analyze non-C codebases, which also decreases
our ability to recover technical constraints in systems such
as eCos, where 13% of the codebase comprises C++ and
assembler code, which we excluded.

Classification. Our classification categories are based on
our interpretation and grouping of the data, but since
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we rely on several data sources, we benefit from cross-
validation of findings. However, there may be additional
categories which have not been revealed from our data
sources.

7.2 Construct validity
Different transformations or interpretations of the vari-
ability model may lead to different comparison results
than the ones achieved (e.g., additionally looking at
ternary relationships). Properly comparing constraints is
a difficult problem. We believe the comparison methods
we choose provide meaningful results that can also be
qualitatively analyzed. Additionally, this strategy allowed
us to use the same interpretation of constraints in all
subject systems. More details about the comparison
problem can be found in Appendix B.

7.3 External validity.
Developer feedback. In our qualitative study, we managed
to get the feedback of only one eCos developer due to the
poor response rate. However, due to the similar nature
of eCos to the other systems (apart from using a different
configuration language), we believe that comments from
the developers of the other systems would still apply to
it. This is especially true since the comments from the
eCos developer we interviewed aligned well with many
of our findings from the other developers.

Number and nature of systems. Due to the significant
engineering effort for our extraction infrastructure, we
limit our study to Boolean features and to one language:
C code with preprocessor-based variability. We apply
our analysis to four different systems that include the
largest publicly available systems with explicit variability
models. Although our systems vary in size and cover
two different notations of variability models, all systems
are open source, developed in C, and from the systems
domain. Thus, our results may not generalize beyond
that setting.

8 RELATED WORK
This work builds upon, but significantly extends our
prior work. We reuse the existing TypeChef analysis
infrastructure for analyzing #ifdef-based variability in C
code with build-time variability [28], [29], [32]. However,
we use it for a different purpose and extract constraints
from various intermediate results in a novel way, in-
cluding an entirely novel approach to extract constraints
from a feature-effect heuristic. Furthermore, we double
the number of subject systems in contrast to prior
work (before the conference version of this paper). The
work is complementary to our prior reverse-engineering
approach for feature models [48] (an academic variability
modeling notation [26]), where we showed how to get
from constraints to a feature model suitable for end users
and tools. Now, we focus on deriving constraints in the
first place which also involves understanding where these

constraints come from. This paper is an extended version
of a previous conference publication [35]. We extended the
comparisons to include a global code formula aggregated
from all extracted constraints from different sources to ac-
count for interactions between constraints from different
analyses, which better represents the recoverability results
in Section 5.3. Doing this increases the recoverability of
existing variability-model constraints from 19 % in the
previous conference publication [35] to 28 % in this paper.
We significantly extended our analysis of different con-
straints in practice, adding a qualitative study (interviews
and surveys), several additional automated analyses,
and a new analysis triangulating all those results into
the categories presented in Section 6. These additional
analyses enable our discussion of when configuration
constraints are enforced in practice.

Techniques to extract features and their constraints
have been developed before, mainly to support the
re-engineering, maintenance, and evolution of highly-
configurable systems. From a process and business
perspective, researchers have developed approaches to re-
engineer existing systems into an integrated configurable
system [7], [14], [49], [52]. These approaches include
strategies to make decisions: when to mine, which assets
to mine, and whom to involve. Others have developed re-
engineering approaches by analyzing non-code artifacts,
such as product comparisons [20], [23]. In contrast to
techniques using non-code and domain information,
we extract technical constraints from code with #IFDEF
variability.

From a technical perspective, previous work has also
attempted to extract constraints from code with #IFDEF
variability [30], [48], [54]. Most attempts focus on the
preprocessor code exclusively [30], [54], looking for pat-
terns in preprocessor use, but do not parse or even type
check the underlying C code. That is, they are (at most)
roughly equivalent to our partial-preprocessor stage. Prior
attempts to parse unpreprocessed code typically relied on
heuristics (unsound) [40] or could only process specific
usage patterns (incomplete) [6]. For instance, our previous
work [48] used an inexact parser to approximate parts
of our Rules 1 and 2. Our new infrastructure is sound
and complete [28], allowing accurate subsequent syntax,
type, and linker analyses.

Complementary to analyzing build-time #IFDEF vari-
ability, some researchers have focused on load-time
variations through program parameters. Rabkin and Katz
design an approach to identify load-time options from
Java code, but not constraints among them [43]. Similarly,
Lillack et al. [33] track the use of load-time configuration
options through static taint analysis to identify the code
parts they influence, but do not track the dependencies
between such options. Reisner et al. [44] use symbolic
execution to identify interactions and constraints among
configuration parameters by symbolically executing a
system’s test cases. Such dynamic analysis can identify ad-
ditional constraints as discussed in Section 6.2.2. However,
scalability of symbolic execution is limited to medium size
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systems (up to 14K lines of code with up to 30 options in
[44]), whereas our build-time analysis scales to systems as
the Linux kernel. We also avoid using techniques such as
data-flow analysis [15], [16], [32] due to scalability issues.
In future work, although challenging to scale, we plan
to investigate additional analysis approaches that track
load-time and runtime variability (e.g., from command-
line parameters). Data-flow analysis, symbolic execution,
and testing tailored to variability [15], [32], [38], [44] are
interesting starting points.

Finally, researchers have investigated the maintenance
and evolution of highly configurable systems. There
has been a lot of research directed at studying and
ensuring the consistency of the problem and solution
spaces [57]. However, most of this work has analyzed
features in isolation, either in the problem space [13],
[42], [47], [58] or in the solution space [31], [51] to identify
modeling practices and feature usage. Some work has
also looked at both sides to study co-evolution [34], [41]
or to detect bugs due to inconsistencies between models
and code [28], [29], [36], [54], [55]. While our results
can enhance these consistency checking mechanisms,
our goal is to clarify where constraints arise from and
to demonstrate to what extent we can extract model
constraints from the code.

9 CONCLUSION

As large configurable systems become more common,
variability models will become more essential to effec-
tively manage and maintain such systems. Identifying
configuration constraints is directly related to creating
such variability models. However, there has not been
enough work about how developers identify configura-
tion constraints in practice and what knowledge do such
constraints reflect. Additionally, there are no automated
techniques to accurately identify configuration constraints
in large-scale systems.

We address both problems by engineering static analy-
ses to extract configuration constraints and by performing
a large-scale study of constraints in four real-world
systems. The objectives of this study are to (1) evaluate
accuracy and scalability, (2) evaluate recoverability, and (3)
classify constraints.

Our results show that manually extracting technical
constraints is very hard for non-experts of the systems,
even when they are experienced developers. We expe-
rienced this first-hand, giving a strong motivation for
automating the task. With respect to Objective 1, we
show that automatically extracting accurate configuration
constraints from large codebases is feasible to a large
degree and that our analyses scale. We can recover
constraints that in almost all (93 %) cases assure a
correct build process. Additionally, our new feature
effect heuristic is surprisingly effective (77 % accurate).
With respect to Objective 2, we find that variability models
contain much more information than we can recover from
code. Although our scalable static analysis can recover

more than a quarter (28 %) of the model constraints,
additional analyses and external information may be
needed. With respect to Objective 3, our qualitative study
involving 27 developers and manual analysis identifies
four cases where configuration constraints are enforced
in the variability model:

• Enforcing low-level code dependencies to ensure that
the system builds correctly. Build and linker anal-
ysis as well as data-flow analysis can extract such
dependencies.

• Ensuring correct run-time behavior such that the sys-
tem runs correctly and only contains functionality
that would actually work at run-time. This usu-
ally involves platform dependencies where some
functionalities only work on certain hardware. Such
dependencies are usually identified from domain
knowledge as well as testing (including user-testing).

• Improving the user’s configuration experience through
feature groupings and better constraint propagation
in the configurator. Identifying which features are
related usually depends on domain knowledge.

• Avoiding corner cases such that combinations of
features leading to known, unsupported behavior
are avoided. These can be identified through system
expertise and domain knowledge as well as cases
where this is explicitly marked by #ERROR directives.

Apart from the first case, we find that identifying the
other cases creates obstacles for automated analysis tools
since these are often known through expert knowledge
or through user testing. We believe that using automated
extraction tools such as ours in addition to eliciting
domain knowledge and feedback from expert developers
may be the best way to create complete variability
models.
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A. Wąsowski. A study of non-Boolean constraints in variability
models of an embedded operating system. In Proceedings of the
International Software Product Line Conference (SPLC), pages 2:1–2:8.
ACM Press, 2011.

[43] A. Rabkin and R. Katz. Static extraction of program configuration
options. In Proceedings of the International Conference Software
Engineering (ICSE), pages 131–140. ACM Press, 2011.

[44] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter. Using
symbolic evaluation to understand behavior in configurable
software systems. In Proceedings of the International Conference
Software Engineering (ICSE), pages 445–454. ACM Press, 2010.
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APPENDIX A
FEATURE DEPENDENCIES VERSUS FEATURE
INTERACTIONS
When discussing our feature effect heuristic during
the interviews, developers raise the problem of feature
interactions. Developers indicate that #IFDEF A being
nested in #IFDEF B may not necessarily mean that feature
A depends on feature B (as implicitly assumed by Rule
2). It may be the case that A and B are independent
but some special handling must be done if they are
both selected. A specific example would be checking
for PCI support in a particular board file. The board
can be used without PCI, but if PCI is enabled, then it
has to be initialized to be usable (interviewee LI_D1). In
this case, #ifdef PCI would be nested within #ifdef BOARD.
Assuming PCI does not appear anywhere else in the code,
our Rule 2 would extract the constraint PCI ! BOARD.
However, as the developer explains in her quote, PCI

is an independent feature. It can be selected with or
without the board, but if PCI is selected with this board,
some special handling must occur. Thus, it seems that the
nesting of #IFDEFs may reflect both feature dependencies
(given the high recoverability we found) and feature
interactions. Automatically differentiating between these
two cases would be difficult. This might also explain the
lower accuracy associated with Rule 2.

APPENDIX B
THE COMPARISON PROBLEM
Based on our findings from interviewing developers
in Section 6, it seems that Rule 1 should recover many
of the existing variability-model constraints since many
of these dependencies are related to low-level code
dependencies. However, our quantitative results show
that although Rule 1 is highly accurate, it only recovers
a few of the variability-model constraints. For example,
the type analysis in Linux extracts over a quarter million
constraints which are 97% accurate (Table 2), and yet
only recovers 3 cross-tree constraints in Table 5. Case 2
of our manual analysis (see Table 8) suggests that we
might be extracting more relaxed constraints using our
analysis leading to this discrepancy. To understand this
more, we investigate the constraints extracted by Rule 1
and find that this discrepancy happens, to some degree,
because of shortcomings of using propositional logic to
compare the problem and solution spaces.

In the following subsections, we first present two
situations which illustrate how the above discrepancy can
happen: (1) having missing information and (2) extracting
more relaxed constraints from the code. We then follow
this with a more general discussion about the comparison
problem.

B.1 Missing Information
For the first situation, we find that in some cases, a
code constraint holds in the variability model, but does

not contain all the related features found in the model.
We now discuss such an example from BusyBox. The
following is a constraint we extract from a preprocessor
error in the code.

LAST_SMALL ! UTMP (1)

The following are the related constraints in the vari-
ability model.

LAST_SMALL ! LAST (2)
LAST ! WTMP (3)
WTMP ! UTMP (4)

(5)

Based on these three constraints, the following
variability-model constraint can be deduced through
transitive closure.

LAST_SMALL ! UTMP (6)

Given these constraints, the extracted preprocessor
constraint LAST_SMALL ! UTMP holds in the model
by transitive closure as shown in Equation 6. There-
fore, although there is no direct dependency between
LAST_SMALL and UTMP in the model, an indirect one is
created when all the constraints are combined together.
This explains how the preprocessor constraint holds in
the variability model.

On the other hand, if we come to compare the three
direct variability-model constraints in Equations 2–4 to
the extracted code constraints (the preprocessor constraint
in Equation 1 in this case), we find that none of them
can be recovered by the extracted code constraint. This is
because features LAST and WTMP do not appear as part of
the constraints extracted from the code. Thus, in this case,
the extracted code constraint is accurate, but does not help
in recovering any of the manually-modeled variability-
model constraints because it has missing information
about the remaining related features.

B.2 More Relaxed Constraints
The second situation we find where an extracted code
constraint holds in the model, but does not recover
any model constraints happens when the extracted code
constraint is more relaxed than that enforced in the model.
We now discuss such an example. The following is a
constraint we extract from our analysis of parsing errors
in BusyBox:

ADDUSER_LONG_OPTIONS !
GETOPT_LONG _ LONG_OPTS _ ¬ADDUSER (7)

The related variability-model constraint is as follows:
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ADDUSER_LONG_OPTIONS ! ADDUSER ^ LONG_OPTS
(8)

In this case, the disjunction in the extracted parser
constraint makes it more relaxed such that if any
of the clauses of the disjunction are true, the whole
constraint would hold in the variability model. In
this example, we see in Equation 8 that in order for
ADDUSER_LONG_OPTIONS to be selected in the variability
model, LONG_OPTS must also be selected. This means
that one clause from the disjunction in the extracted
code constraint will always hold causing the whole
implication to always hold in the variability model. This
is although other clauses of the disjunction such as
depending on ¬ADDUSER do not necessarily make sense.
However, the variability model still guarantees that the
parser constraint will always hold (i.e., the parser error
will never occur).

We can see that the extracted code constraint holds
in the model. However, the opposite is not true. Al-
though the parser constraint allows for both ADDUSER

and LONG_OPTS to be simultaneously selected with
ADDUSER_LONG_OPTIONS, it does not enforce it to always

hold.

B.3 Discussion
The above examples explain why the extracted code
constraints may be accurate, but not help in recovering
many existing variability-model constraints from our
subject systems. They help us understand the problems
and limitations of using propositional logic for comparing
two formulas or two sets of Boolean constraints.

The first example in Section B.1 illustrates two of
these problems. First, the variability model has full
knowledge of all configuration features. On the other
hand, the extracted code constraints only involve a subset
of these features. This can be because the features are
not used in the implementation to begin with (e.g.,
configurator-related) or because they are simply not
involved in preventing any build-time error. One way
around this is to remove all variability-model constraints
containing features not used in the implementation from
the comparison. We tried this and found that our total
recoverability would improve from % to 34 %. However,
one of our goals is to understand how much of a
variability model can be automatically reverse engineered
which is why we use all the variability-model constraints.
Keeping track of these constraints is still important to
understand all types of constraints, but removing them
from the comparison may allow more practical results.
The second problem portrayed here is which set of
constraints to use for comparison. If we had also used
the edges of an implication graph for comparison, we
would have additionally been checking if the derived
variability-model constraint LAST_SMALL ! UTMP, shown
in Equation 6, holds in the code. In this case, we would

have been comparing four variability-model constraints
instead of three and would have been able to recover one
of them. The second example in Section B.2 shows that
disjunctions can skew our interpretation of a comparison.

Unfortunately, though, propositional logic seems to
be the best available alternative for comparison. We
considered other possibilities such as model counting
(counting the number of configurations allowed by the
variability model and those allowed by the extracted
code formula). However, such numbers tell us little about
the extracted dependencies and can be very misleading.
Another option would be to construct feature models
from the extracted code constraints and the existing
variability-model constraints, and then to compare both
feature models. However, constructing a variability model
from constraints is already a challenging task [?], which
may also require additional developer input.

While finding the proper comparison mechanism
seems to still be an open problem, we believe that the
comparison technique we use allows us to understand
configuration constraints better, despite its drawbacks.
Our main reason for the choice is that we can currently
manually verify, track, and understand the logic behind
the variability-model constraints, which also allows us
to ask developers about these constraints.
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