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Abstrat. We present Clafer, a meta-modeling language with �rst-lass
support for feature modeling. We designed Clafer as a onise notation
for meta-models, feature models, mixtures of meta- and feature mod-
els (suh as omponents with options), and models that ouple feature
models and meta-models via onstraints (suh as mapping feature on-
�gurations to omponent on�gurations or model templates). Clafer also
allows arranging models into multiple speialization and extension layers
via onstraints and inheritane. We identify four key mehanisms allow-
ing a meta-modeling language to express feature models onisely and
show that Clafer meets its design objetives using a sample produt line.
We evaluated Clafer and how it lends itself to analysis on sample feature
models, meta-models, and model templates of an E-Commere platform.

1 Introdution

Both feature and meta-modeling have been used in software produt line en-

gineering to model variability. Feature models are tree-like menus of mostly

Boolean�but sometimes also integer and string�on�guration options, aug-

mented with ross-tree onstraints [22℄. These models are typially used to show

the variation of user-relevant harateristis of produts within a produt line.

In ontrast, meta-models, as supported by the Meta Objet Faility (MOF) [28℄,

represent onepts of�possibly domain-spei��modeling languages, used to

represent more detailed aspets suh as behavioral or arhitetural spei�ation.

For example, meta-models are often used to represent the omponents and on-

netors of produt line arhitetures and the valid ways to onnet them. The

nature of variability expressed by eah type of models is di�erent: feature models

apture simple seletions from prede�ned (mostly Boolean) hoies within a �xed

(tree) struture; and meta-models support making new strutures by reating

multiple instanes of lasses and onneting them via objet referenes.

Over the last eight years, the distintion between feature models and meta-

models (represented as lass models) has been blurred somewhat in the literature

due to 1) feature modeling extensions, suh as ardinality-based feature model-

ing [15, 4℄, or 2) attempts to express feature models as lass models in Uni�ed

Modeling Language (UML) [11, 16℄; note that MOF is essentially the lass mod-

eling subset of UML. A key driver behind these developments has been the



desire to express omponents and on�guration options in a single notation [14℄.

Cardinality-based feature modeling ahieves this by extending feature models

with multiple instantiation and referenes. Class modeling, whih natively sup-

ports multiple instantiation and referenes, enables feature modeling by a styl-

ized use of omposition and the pro�ling mehanisms of MOF or UML.

Both developments have notable drawbaks, however. An important advan-

tage of feature modeling as originally de�ned by Kang et al. [22℄ is its simpliity;

several respondents to a reent survey on�rmed this view [23℄. Extending feature

modeling with multiple instantiation and referenes diminishes this advantage

by introduing additional omplexity. Further, models that ontain signi�ant

amounts of multiply-instantiatable features and referenes an be hardly alled

feature models in the original sense; they are more of lass models. On the other

hand, whereas the model parts requiring multiple instantiation and referenes

are naturally expressed as lass models, the parts that have feature-modeling na-

ture annot be expressed elegantly in lass models, but only lumsily simulated

using omposition hierarhy and ertain modeling patterns.

We present Clafer (lass, feature, referene), a meta-modeling language with

�rst-lass support for feature modeling. The language was designed to natu-

rally express meta-models, feature models, mixtures of meta- and feature mod-

els (suh as omponents with options), and models that ouple feature models

with meta-models and their instanes via onstraints (suh as mapping feature

on�gurations to omponent on�gurations or to model templates [13℄). Clafer

also allows arranging models into multiple speialization and extension layers

via onstraints and inheritane, whih we illustrate using a sample produt line.

We developed a translator from Clafer to Alloy [19℄, a lass modeling lan-

guage with a modern onstraint notation. The translator gives Clafer preise

translational semantis and enables model analyses using Alloy Analyzer. Dif-

ferent strategies are applied for distint model lasses. They all preserve meaning

of the models, but speed up analysis by exploiting the Alloy onstrutions.

We evaluate Clafer analytially and experimentally. The analyti evaluation

argues that Clafer meets its design objetives. It identi�es four key mehanisms

allowing a meta-modeling language to express feature models onisely. The ex-

perimental evaluation shows that a wide range of realisti feature models, meta-

models, and model templates an be expressed in Clafer and that useful analyses

an be run on them within seonds. Many useful analyses suh as onsisteny

heks, element liveness, on�guration ompletion, and reasoning on model edits

an be redued to instane �nding by ombinatorial solvers [7, 9, 12℄; thus, we use

instane �nding and element liveness as representatives of suh analyses.

The paper is organized as follows. We introdue our running example in

Set. 2. We disuss the hallenges of representing the example using either only

lass modeling or only feature modeling and de�ne a set of design objetives for

Clafer in Set. 3. We then present Clafer in Set. 4 and demonstrate that it sat-

is�es these objetives. We evaluate the language analytially and experimentally

in Set. 5. We onlude in Set. 7, after having ompared Clafer with related

work in Set. 6.
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Fig. 1. Telematis produt line

2 Running Example: A Telematis Produt Line

Vehile telematis systems integrate multiple teleommuniation and informa-

tion proessing funtions in an automobile, suh as navigation, driving assistane,

emergeny and warning systems, hands-free phone, and entertainment funtions,

and present them to the driver and passengers via multimedia displays. Figure 1

presents a variability model of a sample telematis produt line, whih we will

use as a running example. The features o�ered are summarized in the problem-

spae feature model (Fig. 1a). A onrete telematis system an support either

a single or two hannels; two hannels a�ord independent programming for the

driver and the passengers. The hoie is represented as the xor-group channel,

marked by the arh between edges. By default, eah hannel has one assoiated

display; however, we an add one extra display per hannel, as indiated by

the optional feature extraDisplay. Finally, we an hoose large or small displays

(displaySize).

Figure 1b shows a meta-model of omponents making up a telematis system.

There are two types of omponents: ECUs (eletroni ontrol units) and displays.

Eah display has exatly one ECU as its server. All omponents have a version.

Components themselves may have options, like the display size or cache

(Fig. 1). We an also speify the ahe size and deide whether it is fixed or

an be updated dynamially. Thus, the solution spae model onsists of a lass

model of omponent types and a feature model of omponent options.

Finally, the variability model maps the problem-spae feature on�gurations

to the solution-spae omponent and option on�gurations. A big arrow in Fig. 1

represents this mapping; we will speify it ompletely and preisely in Set. 4.3.

3 Feature vs. Meta-Modeling

The solution spae in Fig. 1 ontains a meta- and a feature model. To apture

our intention, the models are onneted via UML omposition. Sine the preise

semantis of suh notational mixture are not lear, this onnetion should be

understood only informally for now.
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We have at least two hoies to represent omponents and options in a single

notation. The �rst is to show the entire solution spae model using ardinality-

based feature modeling [15℄. Figure 2a shows the omponent part of the model

(the subfeatures of options are elided). The model introdues a syntheti root

feature; display and ECU an be multiply instantiated; and display has server sub-

feature representing a referene to instanes of ECU. Versions ould be added to

both display and ECU to math the meta-model in Fig. 1b or we ould extend the

notation with inheritane. The latter would bring the ardinality-based feature

modeling notation very lose to meta-modeling based on lass modeling, posing

the question whether lass modeling should not be used for the entire solution

spae model instead.

We explore the lass modeling alternative in Fig. 2b. The �gure shows only

the options model, as the omponent model remains unhanged (as in Fig. 1b).

Subfeature relationships are represented as UML omposition and feature ardi-

nalities orrespond to omposition ardinalities at the part end. The xor-group

is represented by inheritane and ahe size and fixed as attributes of cache.

Representing a feature model as a UML lass model worked reasonably well

for our small example; however, it does have several drawbaks. First, the feature

model showed fixed as a property of size by nesting; this intention is lost in the

lass model. A solution would be to reate a separate lass size, ontaining the

size value and a lass fixed; thus, adding a subfeature to a feature represented

as a lass attribute requires refatoring. The name of the new lass size would

lash with the lass size representing the display size; thus, we would have to

rename one of them, or use nested lasses, whih further ompliates the model.

Moreover, onverting an xor-group to an or-group in feature modeling is simple:

the empty arh needs to be replaed by a �lled one. For example, displaySize

(Fig. 1a) ould be onverted to an or-group in a future version of the produt

line to allow systems with both large and small displays simultaneously. Suh

hange is triky in UML lass models: we would have to either allow one to

two objets of type displaySize and write an OCL onstraint forbidding two

objets of the same subtype (small or large) or use overlapping inheritane (i.e.,

multiple lassi�ation). Thus, the representation of feature models in UML inurs

additional omplexity.

The examples in Fig. 2 lead us to the following two onlusions:



(1) �Cardinality-based feature modeling� is a misnomer. It enompasses multiple

instantiation and referenes, mehanisms harateristi of lass modeling, and

ould even be extended further towards lass modeling, e.g., with inheritane;

however, the result an hardly be alled `feature modeling', as it learly goes

beyond the original sope of feature modeling [22℄.

(2) Existing lass modeling notations suh as UML and Alloy do not o�er �rst-

lass support for feature modeling. Feature models an still be represented in

these languages; however, the result arries undesirable notational omplexity.

The solution to these two issues is to design a (lass-based) meta-modeling

language with �rst-lass support for feature modeling. We postulate that suh a

language should satisfy the following design goals:

1. Provide a onise notation for feature modeling

2. Provide a onise notation for meta-modeling

3. Allow mixing feature models and meta-models

4. Use minimal number of onepts and have uniform semantis

The last goal expresses our desire that the new language should unify the on-

epts of feature and lass modeling as muh as possible, both syntatially and

semantially. In other words, we do not want a hybrid language.

4 Clafer: Meta-Modeling with First-Class Support for

Feature Modeling

We explain the meaning of Clafer models by relating them to their orresponding

UML lass models.3 Figure 3 shows the display options feature model in Clafer

(a) and the the orresponding UML model (). Figure 4 shows the omponent

meta-model in Clafer; Fig. 1b has the orresponding UML model.

A Clafer model is a set of type de�nitions, features, and onstraints. A type

an be understood as a lass or feature type; the distintion is immaterial. Fig-

ure 3a ontains options as single top-level type de�nition. The de�nition ontains

a hierarhy of features (lines 2-8) and a onstraint (lines 10-11); the enlosing

type provides a separate name spae for this ontent. The abstract modi�er

prohibits reating an instane of the type, unless extended by a onrete type.

A type de�nition an ontain one or more features; the type options has

two (diret) features: size (line 2) and cache (line 6). Features are slots that

an ontain one or more instanes or referenes to instanes. Mathematially,

features are binary relations. They orrespond to attributes or role names of

assoiation or omposition relationships in UML. For example, in Fig. 4, the

feature version (line 2) orresponds to the attribute of the lass comp in Fig. 1b;

and the feature server (line 6) orresponds to the assoiation role name next

to the lass ECU in Fig. 1b. Features delared using the arrow notation and

having no subfeatures, like in server -> ECU, are referene features, i.e., they

hold referenes to instanes. Note that we model integral features, like version

3 For more preise doumentation inluding meta-models see gsd.uwaterloo.ca/sle2010
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abstract <0-*> options {1

<1-1> size 1..1 {2
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<0-*> large 0..1 {}4

}5

<0-*> cache 0..1 {6

<0-*> size -> int 1..1 {7

<0-*> fixed 0..1 {}8

}9

}10

[ some this.size.small &&11

some this.cache =>12

some this.cache.size.fixed ]13

}14
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Fig. 3. Feature model in Clafer and orresponding UML lass model

(line 2) in Fig. 4, as referenes. Clafer has only one objet representing a given

number, whih speeds up automated analyses.

Features that do not have their type delared using the arrow notation, suh

as size (line 2) and cache in Fig. 3a, or have subfeatures, suh as size (line 7)

in Fig. 3a, are ontainment features, i.e., features that ontain instanes. An

instane an be ontained by only one feature, and no yles in instane on-

tainment are allowed. These features orrespond to role names at the part end

of omposition relationships in UML. For example, the feature cache in Fig. 3a

orresponds to the role name cache next to the lass cache in Fig. 3. By a UML

onvention, the role name at the assoiation or omposition end touhing a lass

is, if not spei�ed, same as the lass name.

A ontainment feature de�nition reates a feature and, impliitly, a new

onrete type, both loated in the same name spae. For example, the feature

de�nition cache (line 6) in Fig. 3a de�nes both the feature cache, orresponding

to the role name in Fig. 3, and, impliitly, the type cache, orresponding to the

lass cache in Fig. 3. The new type is nested in the type options; in UML this

nesting means that the lass cache is an inner lass of the lass options, i.e., its

full name is options::cache. Figure 3 shows UML lass nesting relations in light

olor. Class nesting permits two lasses named size in a single model, beause

eah enlosing lass de�nes an independent name sope.

abstract comp1

version -> int2

3

abstract ECU extends comp4

abstract display extends comp5

server -> ECU6

‘options7

[ version >= server.version ]8

9

Fig. 4. Class model in Clafer



The feature size (line 7) in Fig. 3a is a ontainment feature of general form:

the impliitly de�ned type is a struture ontaining a referene, here to int, and

a subfeature, fixed. This type orresponds to the lass cache::size in Fig. 2b.

Features have feature ardinalities, whih onstrain the number of instanes

or referenes that a given feature an ontain. Cardinality of a feature is spei�ed

by an interval m..n, where m ∈ N, n ∈ N ∪ {∗},m ≤ n. Feature ardinality

spei�ation follows the feature name or its referene type, if any.

Coniseness is an important goal for Clafer; therefore, we provide syntati

sugar for ommon onstrutions. Figures 3a and 3b show the same Clafer model;

the �rst one is written in onise notation, while the seond one is ompletely

desugared ode with resolved names in onstraints.

Clafer provides syntati sugar similar to syntax of regular expressions: ? or

lone (optional) denote 0..1; * or any denote 0..∗; and + or some denote 1..∗. For
example, cache (line 6) in Fig. 3 is an optional feature. No feature ardinality

spei�ed denotes 1..1 (mandatory) by default, modulo four exeptions explained

shortly. For example, size (line 7) in Fig. 3a is mandatory.

Features and types have group ardinalities, whih onstrain the number of

hild instanes, i.e., the instanes ontained by subfeatures. Group ardinality

is spei�ed by an interval 〈m�n〉, with the same restritions on m and n as

for feature ardinalities, or by a keyword: xor denotes 〈1� 1〉; or denotes 〈1� ∗〉;
opt denotes 〈0� ∗〉; and mux denotes 〈0� 1〉; further, eah of the three keywords

makes subfeatures optional by default. If any, a group ardinality spei�ation

preedes a feature or type name. For example, xor on size (line 2) in Fig. 3a states

that only one hild instane of either small or large is allowed. Beause the two

subfeatures small and large have no expliit ardinality attahed to them, they

are both optional (f. Fig. 3b). No expliit group ardinality stands for 〈0� ∗〉,
exept when it is inherited as illustrated later.

Constraints are a signi�ant aspet of Clafer. They an express dependenies

among features or restrit string or integer values. Constraints are always sur-

rounded by square brakets and are a onjuntion of �rst-order logi expressions.

We modeled onstraints after Alloy; the Alloy onstraint notation is elegant,

onise, and expressive enough to restrit both feature and lass models. Logial

expressions are omposed of terms and logial operators. Terms either relate val-

ues (integers, strings) or are navigational expressions. The value of navigational

expression is always a relation, therefore eah expression must be preeded by

a quanti�er, suh as no, one, lone or some. However, lak of expliit quanti�er

(Fig. 3a) stands for some (Fig. 3b), signifying that the relation annot be empty.

Eah feature in Clafer introdues a loal namespae, whih is rather di�erent

from namespaes in popular programming languages. Name resolution is impor-

tant in two ases: 1) resolving type names used in feature and type de�nitions

and 2) resolving feature names used in onstraints. In both ases, names are path

expressions, used for navigation like in OCL or Alloy, where the dot operator

joins two relations. A name is resolved in a ontext of a feature in up to four

steps. First, it is heked to be a speial name like this. Seondly, the name is

looked up in subfeatures in breadth-�rst searh manner. If it is still not found,



the algorithm searhes in the top-level de�nition that ontains the feature in

its hierarhy. Otherwise, it searhes in other top-level de�nitions. If the name

annot be resolved or is ambiguous within a single step, an error is reported.

Clafer supports single inheritane. In Fig. 4, the type ECU inherits features

and group ardinality of its supertype. The type display extends comp by adding

two features and a onstraint. The referene feature server points to an existing

ECU instane. The meaning of ‘options notation is explained in Set. 4.1.

The onstraint de�ned in the ontext of display states that display's version

annot be lower than server's version. To dereferene the server feature, we use

dot, whih then returns version.

4.1 Mixing via Quotes and Referenes

Mixing lass and feature models in Clafer is ahieved via quotation (see line

7 in Fig. 4) or referenes. Syntatially, quotation is just a name of abstrat

type preeded by left quote (‘), whih in the example is expanded as options

extends options. The �rst name indiates a new feature, and the seond refers

to the abstrat type. Semantially, this notation reates a ontainment feature

options with a new onrete type display.options, whih extends the top-level

abstrat type options from Fig. 3a. The onrete type inherits group ardinality

and features of its supertype. By using quotation only the quoted type is shared,

but no instanes. Referenes, on the other hand, are used for sharing instanes.

The following example highlights the di�erene:

abstract options

-- content as in options in Fig. 3a

displayOwningOptions *

‘options -- shorthand for options extends options

options

displayOwningOptions

options

1

In the above snippet, eah instane of displayOwningOptions will have its own

instane of type options, as depited in the orresponding UML diagram. Other

types ould also quote options to reuse it. Note that Clafer assumes the existene

of an impliit root objet ; thus, a feature de�nition, suh as displayOwningOptions

above, de�nes both a subfeature of the root objet and a new top-level onrete

type.

Now onsider the following ode with orresponding UML diagram:

options *

-- content as in options in Fig. 3a

displaySharingOptions *

sharedOptions -> options displaySharingOptions

options

1

*

sharedOptions

Eah instane of displaySharingOptions has a referene named sharedOptions

pointing to an instane of options. Although there an be many referenes, they

might all point to the same instane living somewhere outside displaySharingOp-

tions.



abstract plaECU extends ECU1

‘display 1..22

[ ~cache3

server = parent ]4

ECU1 extends plaECU5

ECU2 extends plaECU ?6

master -> ECU17

master

ECU2ECU1

display2
small
large

display1
small
large

display2
small
large

display1
small
large

Legend:
radio button

(alternative)

check box

(optional)

a) Clafer model b) A possible graphial rendering

Fig. 5. Arhitetural template

4.2 Speializing via Inheritane and Constraints

Let us go bak to our telematis produt line example. The arhitetural meta-

model as presented in Fig. 4 is very generi: the meta-model desribes in�nitely

many di�erent produts, eah orresponding to its partiular instane. We would

like to speialize and extend the meta-model to reate a partiular template.

A template makes most of the arhitetural struture �xed, but leaves some

points of variability. In previous work, we introdued feature-based model tem-

plates (FBMT in short) as models (instanes of meta-models) with optional

elements annotated with Boolean expressions over features known as presene

onditions [13℄. Below, we show how suh templates an be expressed in Clafer.

Figure 5a shows suh a template for our example. We ahieve speialization

via inheritane and onstraints. In partiular, we represent instanes of meta-

model lasses as singleton lasses. In our example, a onrete produt must

have at least one ECU and thus we reate ECU1 to represent the mandatory

instane. Then, optional instanes are represented using lasses with ardinality

0..1. Our produt line an optionally have another ECU, represented by ECU2.

Similarly, eah ECU has either one display or two displays, but none of the

displays has cache. Besides, we need to onstrain the server referene in eah

display in plaECU, so that it points to its assoiated ECU. The onstraint in line

3 in Fig. 5a is nested under display. The referene parent points to the urrent

instane of plaECU, whih is either ECU1 or ECU2. Also, ECU2 extends the base

type with master, pointing to ECU1 as the main ontrol unit.

Figure 5b visualizes the template in a domain-spei� notation, showing both

the �xed parts, e.g., mandatory ECU1 and display1, and the variable parts, e.g.,

alternative display sizes (radio buttons) and optional ECU2 and display2 (hek-

boxes). Note that model templates suh as UML models annotated with presene

onditions (e.g., [13℄) an be translated into Clafer automatially by 1) repre-

senting eah model element e by a lass with ardinality 0..1 that extends the

element's meta-lass and 2) a onstraint of the form p &&  <=> e, with p being

e's parent and  being e's presene ondition. In our example, we keep these

onstraints separate from the template (see Set. 4.3). Further, in ontrast to



telematicsSystem1

xor channel2

single3

dual4

extraDisplay?5

xor displaySize6

small7

large8

[ dual <=> ECU29

extraDisplay <=> #ECU1.display = 210

extraDisplay <=>11

(ECU2 <=> #ECU2.display = 2)12

small <=> ~plaECU.display.options.size.large13

large <=> ~plaECU.display.options.size.small14

]15

Fig. 6. Feature model with mapping onstraints

-- concrete product1

[ dual && extraDisplay && telematicsSystem.size.large && comp.version == 1 ]2

Fig. 7. Constraint speifying a single produt

annotating models with presene onditions, we an use sublassing and on-

straints to speialize and extend the meta-model in multiple layers.

4.3 Coupling via Constraints

Having de�ned the arhitetural template, we are ready to expose the remaining

variability points as a produt-line feature model. Figure 6 shows this model (f.

Fig. 1a) along with a set of onstraints oupling its features to the variability

points of the template. Note that the template allowed the number of displays

(ECU1.display and ECU2.display) and the size of every display to vary indepen-

dently; however, we further restrit the variability in the feature model, requiring

either all present ECUs to have two displays or all to have no extra display and

either all present displays to be small or all to be large. Also note that we opted

to explain the meaning of eah feature in terms of the model elements to be

seleted rather than de�ning the presene ondition of eah element in terms of

the features. Both approahes are available in Clafer, however.

Constraints allow us restriting a model to a single instane. Figure 7 shows

a top-level onstraint speifying a single produt, with two ECUs, two large

displays per ECU, and all omponents in version 1. Based on this onstraint,

we an automatially instantiate the produt line using the Alloy analyzer, as

desribed in Set. 5.2.

5 Evaluation

5.1 Analytial Evaluation

We now disuss to what extent Clafer meets its design goals from Set. 3.

(1) Clafer provides a onise notation for feature modeling. This an be seen

by omparing Clafer to TVL, a state-of-the-art textual feature modeling lan-

guage [8℄. Feature models in Clafer look very similar to feature models in TVL,



Options group allof {1

Size group oneof { Small, Large },2

opt Cache group allof {3

CacheSize group allof {4

SizeVal { int val; },5

opt Fixed6

}7

},8

Constraint { (Small && Cache) -> Fixed; }9

}10

class Comp {1

reference version : Integer2

}3

4

class ECU extends Comp{ }5

6

class Display extends Comp {7

reference server : ECU8

attribute options : Options9

}10

a) Options feature model in TVL b) Component meta-model in KM3

Fig. 8. Our running example in TVL and KM3

exept that TVL uses expliit keywords (e.g., to delare groups) and braes for

nesting. Figure 8a shows the TVL enoding of the feature model from Fig. 3.

Clafer's language design reveals four key ingredients allowing a lass modeling

language to provide a onise notation for feature modeling:

� Containment features: A ontainment feature de�nition reates both a fea-

ture (a slot) and a type (the type of the slot); for example, all features in Figs.

3 and 6 are of this kind. Neither UML nor Alloy provide this mehanism; in

there, a slot and the lass used as its type are delared separately.

� Feature nesting : Feature nesting aomplishes instane omposition and type

nesting in a single onstrut. UML provides omposition, but type nesting

is spei�ed separately (f. Fig. 3). Alloy has no built-in support for om-

position and thus requires expliit parent-hild onstraints. It also has no

signature nesting, so name lashes need to be avoided using pre�xes or alike.

� Group onstraints: Clafer's group onstraints are expressed onisely as inter-

vals. In UML groups an be spei�ed in OCL, but using a lengthy enoding,

expliitly listing features belonging to the group. Same applies to Alloy.

� Constraints with default quanti�ers: Default quanti�ers on relations, suh as

some in Fig. 3, allow writing onstraints that look like propositional logi,

even though their underlying semantis is �rst-order prediate logi.

(2) Clafer provides a onise notation for meta-modeling. Figure 8b shows the

meta-model of Fig. 4 enoded in KM3 [21℄, a state-of-the-art textual meta-model-

ing language. The most visible syntati di�erene between KM3 and Clafer is

the use of expliit keywords introduing elements and mandatory braes estab-

lishing hierarhy. KM3 annot express additional onstraints in the model. They

are spei�ed separately, e.g. as OCL invariants.

It is instrutive to ompare the size of the Clafer and Alloy models of the

running example. With similar ode formatting (no omments and blank lines),

Clafer representation has 43 LOC and the automatially generated Alloy ode is

over two times longer. Sine the Alloy model ontains many long lines, let us also

ompare soure �le sizes: 1kb for Clafer and over 4kb for Alloy. The ode gener-

ator favors oniseness of the translation over uniformity of the generated ode.



Still, in the worst ase, the lak of the previously listed onstruts makes Alloy

models neessarily larger. Other language di�erenes tip the balane further in

favor of Clafer. For example, an abstrat type de�nition in Clafer guarantees

that the type will not be automatially instantiated; however, unextended ab-

strat sets an be still instantiated by Alloy Analyzer. Therefore, eah abstrat

signature in Alloy needs to be extended by an additional signature.

(3) Clafer allows mixing feature and meta-models. Quotations allow reusing fea-

ture or lass types in multiple loations; referenes allow reusing both types and

instanes. Feature and lass models an be related via onstraints (Fig. 6).

(4) Clafer tries to use a minimal number of onepts and has uniform seman-

tis. While integrating feature modeling into meta-modeling, our goal was to

avoid reating a hybrid language with dupliate onepts. In Clafer, there is no

distintion between lass and feature types. Features are relations and, besides

their obvious role in feature modeling, they also play the role of attributes in

meta-modeling. We also ontribute a simpli�ation to feature modeling: Clafer

has no expliit feature group onstrut; instead, every feature an use a group

ardinality to onstrain the number of hildren. This is a signi�ant simpli�a-

tion, as we no longer need to distinguish between �grouping features� (features

used purely for grouping, suh as menus) and feature groups. The grouping in-

tention and grouping ardinalities are orthogonal: any feature an be annotated

as a grouping feature and any feature may hose to impose grouping onstraints

on hildren. Finally, both feature and lass modeling have a uniform semantis:

a Clafer model instane, just like Alloy's, is a set of relations.

5.2 Experimental Evaluation

Our experiment aims to show that Clafer an express a variety of realisti feature

models, meta-models and model templates and that useful analyses an be per-

formed on these enodings in reasonable time. Then it follows that the rihness

of Clafer's appliations, does not ome at a ost of lost analysis potential with

respet to models in more speialized languages.

The experiment methodology is summarized in the following steps:

1. Identify a set of models representative for the three main use ases of Clafer:

feature modeling, meta-modeling, and mixed feature and meta-modeling.

2. Selet representative analyses. We studied the analyses in published litera-

ture and deided to fous on a popular lass of analyses, whih redue to

model instane �nding. These inlude inonsisteny detetion, element live-

ness analysis, o�ine and interative on�guration, guided editing, et. Sine

all these have similar performane harateristis, we deided to use model

instane �nding, onsisteny and element liveness analysis as representative.

3. Translate models into Clafer and reord observations. We reated automati

translators for onverting models to Clafer if it was enough to apply simple

rewriting rules. In other ases, translation was done manually.



4. Run the analyses and reporting performane results. The analyses are imple-

mented by using our Clafer-to-Alloy translator, and then employing Alloy

Analyzer (whih is an instane �nder) to perform the analysis.

The Clafer-to-Alloy translator is written in Haskell and omprises several

hained modules: lexer, layout resolver, parser, desugarer, semanti analyzer,

and ode generator. Layout resolver makes braes grouping subfeatures optional.

Clafer is omposed of two languages: the ore and the full language. The �rst

one is a minimal language with well-de�ned semantis. The latter is built on top

of the ore language and provides large amount of syntati sugar (f. Fig. 3).

Semanti analyzer resolves names and deals with inheritane. The ode genera-

tor translates the ore language into Alloy. The generator has bene�ted from the

knowledge about the lass of models it is working with to optimize the transla-

tion, in the same way as analyzers for speialized languages have this knowledge.

The experiment was exeuted on a laptop with a Core Duo 2 �2.4GHz pro-

essor and 2.5GB of RAM, running Linux. Alloy Analyzer was on�gured to

use Minisat as a solver. All Clafer and generated Alloy models are available at

gsd.uwaterloo.ca/sle2010. In the subsequent paragraphs we present and disuss

the results for the three sublasses of models.

Feature Models. In order to �nd representative models we have onsulted SPLOT

[27℄ � a popular repository of feature models. We have sueeded in automat-

ially translating all 58 models from SPLOT to Clafer (non-generated, human-

made models; available as of July 4th, 2010). These inlude models with and

without ross-tree onstraints, ranging from a dozen to hundreds of features.

Results for all models are available online at the above link. Here, we report

the most interesting ases together with further four, whih have been randomly

generated; all listed in Table 1. Digital Video Systems is a small example with few

ross-tree onstraints. Dell Laptops models a set of laptops o�ered by Dell in 2009.

This is one of few models that ontains more onstraints than features. Arcade

Game desribes a produt line of omputer games; it ontains tens of features

and onstraints. EShop [25℄ is the largest realisti model that we have found

on SPLOT. It is a domain model of online stores. The remaining models are

randomly generated using SPLOT, with a �xed 10% onstraint/variable ratio.

We heked onsisteny of eah model by instane �nding. Table 1 presents

summary of results. The analysis time was less then a seond for up to several

hundred features and less than a minute for up to several thousand features. In-

terestingly, the biggest bottlenek was the Alloy Analyzer itself (whih translates

Alloy into a CNF formula)�reasoning about the CNF formula in a SAT-solver

takes no more than hundreds of milliseonds.

Meta-Models In order to identify representative meta-models, we have turned

to the Eore Meta-model Zoo (www.emn.fr/z-info/atlanmod/index.php/Ecore), from

where we have seleted the following meta-models: AWK Programs, ATL, ANT, Bib-

Tex, UML2, ranging from tens to hundreds of elements. We translated all these

into Clafer automatially. One interesting mapping is the translation of ERef-

erence elements with eOpposite attribute (symmetri referene), as there is no



�rst-lass support for symmetri referenes in Clafer. We modeled them as on-

straints relating referenes with their symmetri ounterparts. Moreover we have

not handled multiple inheritane in our translation.

Sine none of these meta-models ontained OCL onstraints, we extrated

OCL onstraints from the UML spei�ation [29℄ and manually added them

to the Clafer enoding of UML2. We did observe ertain patterns during that

translation and believe that this task an be automated for a large lass of

onstraints. Table 2 presents sample OCL onstraints translated into Clafer.

Eah onstraint, but last, is written in a ontext of some lass. Their intuitive

meanings are as follows: 1) ownedReception is empty if there is no isActive; 2)

endType aggregates all types of memberEnds; 3) if memberEnd's aggregation is

di�erent from none then there are two instanes of memberEnd; 4) there are

no two types of the same names. All Clafer enodings of the meta-models are

available at the above link.

There are several reasons why Clafer onstraints are more onise and uni-

form ompared with OCL invariants. Similarly to Alloy, every Clafer de�nition

is a relation. This approah, eliminates extra onstrutions suh as OCL's collect,

allInstances. Finally, assuming the default some quanti�er before relational op-

erations (e.g. memberEnd.aggregation - none), we an treat result of an operation

as if it was a propositional formula, thus eliminating extra exists quanti�ers.

We applied automated analyses to slies of the UML2 meta-model: Class

Diagram from [10℄, State Machines, and Behaviors (Table 3). Eah slie has tens of

lasses and our goal was to inlude a wide range of OCL onstraints. We heked

the strong onsisteny property [9℄ for these meta-models. To verify this property,

we instantiated meta-models' elements that were at the bottom of inheritane

hierarhy, by restriting their ardinality to be at least one. The same onstraints

were imposed on ontainment referenes within all meta-model elements. The

analysis on�rmed that none of the meta-models had dead elements. Our results

show that liveness analysis an be done e�iently for realisti meta-models of

moderate size.

Feature-Based Model Templates. The last lass of models are feature-based

model templates akin to our telematis example. A FBMT onsists of a fea-

Table 1. Results of onsisteny analysis for feature models expressed in Clafer.

model name nature size [# features] [# constraints] running time [s]

Digital Video System Realisti 26 3 0.012
Dell Laptops Realisti 46 110 0.025
Arcade Game Realisti 61 34 0.040
eShop Realisti 287 21 0.15
FM-500-50-1 Generated 500 50 0.45
FM-1000-100-2 Generated 1000 100 1.5
FM-2000-200-3 Generated 2000 200 4.5
FM-5000-500-4 Generated 5000 500 28.0



ture model (f. Fig. 6, left), a meta-model (f. Fig. 4), a template (f. Fig. 5a),

and a set of mapping onstraints (f. Fig. 6, right). To the best of our knowledge,

Eletroni Shopping [25℄ is the largest example of a model template found in the

literature. We used its templates, listed in Table 4, for evaluation: FindProduct

and Checkout are ativity diagram templates, and TaxRule is a lass diagram

template. Eah template had substantial variability in it. All templates have be-

tween 10 and 20 features, tens of lasses and from tens to hundreds onstraints.

For omparison, we also inlude our telematis example.

We manually enoded the above FBMTs in Clafer. For eah of the diagrams in

[25℄, we took a slie of UML2 meta-model and reated a template that onforms

to the meta-model, using mandatory and optional singleton lasses as desribed

in Set. 4.2. To reate useful and simple slies of UML diagrams, we removed

unused attributes and �attened inheritane hierarhy, sine many superlasses

were left without any attributes. Thus, the slie preserved the ore semantis.

Furthermore, we slied the full feature model, so that it ontains only features

that appear in diagram. Finally, we added mappings to express dependenies

between features and model elements, as desribed in Set. 4.3.

We performed two types of analyses on FBMTs. First, we reated sample

feature on�gurations (like in Fig. 7) and instantiated templates in the Alloy

Analyzer. We inspeted eah instane and veri�ed that it was the expeted one.

Seond, we performed element liveness analysis for the templates. The analy-

sis is similar to element liveness for meta-models [9℄, but now applied to template

elements. We performed the analysis by repeated instane �nding; in eah iter-

ation we required the presene of groups of non-exlusive model elements.

Table 4 presents summary of inspeted models and times of analyses. Often

the time of liveness analysis is very lose to the time of instantiation multiplied

by the number of element groups. For instane, for FindProduct, liveness analysis

was three times longer than time of instantiation, beause elements were ar-

ranged into 3 groups of non-on�iting elements. This rule holds when the Alloy

Analyzer uses the same sope for element instanes.

We onsider our results promising, sine we obtained aeptable timings for

slies of realisti models, without fully exploiting the potential of Alloy. The

Table 2. Constraints in OCL and Clafer.

Context OCL Clafer

Class (not self.isActive) implies ∼isActive => no ownedReception

self.ownedReception->isEmpty()

Assoiation self.endType = self.memberEnd-> endType = memberEnd.type

collect(e | e.type)

Assoiation self.memberEnd->exists(aggregation memberEnd.aggregation - none =>

<> Aggregation::none) implies #memberEnd = 2

self.memberEnd->size() = 2

� Type.allInstances() -> forAll (t1, t2 | all disj t1, t2 : Type | t1.name != t2.name

t1 <> t2 implies t1.name <> t2.name)



results an learly be further improved by better enoding of slies (for example,

representing ativity diagram edges as relations instead of sets in Alloy) and

using more intelligent sliing methods; e.g. some onstraints are redundant, suh

as setting soure and target edges in ActivityNodes, so removing these onstraints

would speed up reasoning proess. However already now we an see that Clafer

is a suitable vehile for speifying FBMTs and analyzing them automatially.

Threats to Validity

External Validity Our evaluation is based on the assumption that we hose

representative models and useful and representative analyses.

All models, exept the four randomly generated feature models, were re-

ated by humans to model real-word artifats. As all, exept UML2, ome from

aademia, there is no guarantee that they share harateristis with industrial

models. Majority of pratial models have less than a thousand features [24℄, so

reasoning about orresponding Clafer models is feasible and e�ient. Perhaps

the biggest real-world feature model up to date is the Linux Kernel model (al-

most 5500 features and thousands of onstraints) [31℄. It would presently pose a

hallenge for our tools. Working with models of this size requires proper engi-

neering of analyses. Our objetive here was to demonstrate feasibility of analyses.

We will ontinue to work on robust tools for Clafer in future.

We believe that the slies of UML2 seleted for the experiment are represen-

tative of the entire meta-model beause we piked the parts with more omplex

onstraints. While there are not many existing FBMTs to hoose from, the e-

ommere example [25℄ was reversed engineered from the doumentation of an

IBM e-ommere platform, whih makes the model quite realisti.

Not all model analyses an be redued to instane �nding performed using

ombinatorial solvers (relational model �nder in ase of Alloy [34℄). However

ombinatorial analyses belong to most widely reognized and e�etive [7℄.

Instane �nding for models has similar uses to testing and debugging for

programs [19℄�it helps to unover �aws in models, assists in evolution and

on�guration. For example it helped us disover that our original Clafer ode

was missing onstraints (lines 9�10 and 14�15 in Fig. 5a and line 14 in Fig. 6).

Some software platforms already provide on�guration tools using reasoners; for

example, Elipse uses a SAT solver to help users selet valid sets of plug-ins [26℄.

Liveness analysis for model elements has been previously exploited, for in-

stane in [33, 9℄. Tartler et al. [33℄ analyze liveness of features in the Linux kernel

Table 3. Results of strong onsisteny analysis for UML2 meta-model slies in Clafer

meta-model/instance size [#classes] [#constraints] running time [s]

State Machines 11 28 0.08
Class Diagram 19 17 0.15
Behaviors 20 13 0.23



ode, reporting about 60 previously unreported dead features in the released ker-

nel versions. Linux is not stritly a feature-based model template, but its build

arhiteture, whih relies on (a form of) feature models and presene onditions

on ode (onditional ompilation) highly resembles our model templates.

Analyzers based on instane �nding solve an NP-hard problem. Thus no hard

guarantees an be given for their running times. Although progress in solver

tehnologies has plaed these problems in the range of pratially tratable,

there do exist instanes of models and meta-models, whih will e�etively break

the performane of our tools. Our experiments aim at showing that this does

not happen for realisti models.

There exist more sophistiated analyzes (and lasses of models) that annot

be addressed with Clafer infrastruture, and are not re�eted in our experiment.

For example instane �nding is limited to instanes of bounded size. It is possible

to build sophistiated meta-models that only have very large instanes. This

problem is irrelevant for feature models and model templates as they allow no

no lasses that an be instantiated without bounds.

Moreover speial purpose languages may require more sophistiated analy-

ses tehniques suh as behavioral re�nement heking, model heking, model

equivalene heking, et. These properties typially go beyond stati semantis

expressed in meta-models and thus are out of sope for generi Clafer tools.

Internal Validity Translating models from one language to another an introdue

errors and hange semantis of the resulting model.

We used our own tools to onvert SPLOT and Eore models to Clafer and

then to translate Clafer to Alloy. We translated FBMTs and OCL onstraints

manually. The former is rather straightforward; the latter is more involved. We

publish all the models so that their orretness an be reviewed independently.

Another threat to orretness is the slie extration for UML2 and e-ommere

models. Meta-model sliing is a ommon tehnique used to speed-up model anal-

yses, where reasoner proesses only relevant parts of the meta-model. We per-

formed it manually, while making sure that all parts relevant to the seleted

onstraints were inluded; however, the tehnique an be automated [30℄.

The orretness of the analyses relies on the orretness of the Clafer-to-

Alloy translator and the Alloy analyzer. The Alloy analyzer is a mature piee of

software. We tested Clafer-to-Alloy translator by translating sample models to

Alloy and inspeting the results.

Table 4. Analyses for Feature-Based Model Templates expressed in Clafer. Parentheses
by the model names indiate the number of optional elements in eah template.

FBMT #features/#classes/#constraints instantiation [s] element liveness [s]

Telematics (8) 8/7/17 0.04 0.26
FindProduct (16) 13/29/10 0.07 0.18
TaxRules (7) 16/24/62 0.11 0.12
Checkout (41) 18/78/314 1.6 5.8



6 Related Work

We have already mentioned related work on model analysis; here we fous on

work related to our main ontribution, Clafer's novel language design.

Asikainen and Männistö present Forfamel, a uni�ed oneptual foundation for

feature modeling [4℄. The basi onepts of Forfamel and Clafer are similar; both

inlude subfeature, attribute, and subtype relations. The main di�erene is that

Clafer's fous is to provide onise onrete syntax, suh as being able to de�ne

feature, feature type, and nesting by stating an indented feature name. Also, the

oneptual foundations of Forfamel and Clafer di�er; e.g., features in Forfamel

orrespond to Clafer's instanes, but features in Clafer are relations. Also, a

feature instane in Forfamel an have several parents; in Clafer, an instane

has at most one parent. These di�erenes likely stem from the di�erene in

perspetive: Forfamel takes a feature modeling perspetive and aims at providing

a foundation unifying the many existing extensions to feature modeling; Clafer

limits feature modeling to its original FODA sope [22℄, but integrates it into

lass modeling. Finally, Forfamel onsiders a onstraint language as out of sope,

hinting at OCL. Clafer omes with a onise onstraint notation.

TVL is a textual feature modeling language [8℄. It favors the use of ex-

pliit keywords, whih some software developers may prefer. The language overs

Boolean features and features of other primitive types suh as integer. The key

di�erene is that Clafer is also a lass modeling language with multiple instantia-

tion, referenes, and inheritane. It would be interesting to provide a translation

from TVL to Clafer. The opposite translation is only partially possible.

As mentioned earlier, lass-based meta-modeling languages, suh as KM3 [21℄

and MOF [28℄ annot express feature models as onisely as Clafer.

Nivel is a meta-modeling language, whih was applied to de�ne feature and

lass modeling languages [3℄. It supports deep instantiation, enabling onise

de�nitions of languages with lass-like instantiation semantis. Clafer's purpose

is di�erent: to provide a onise notation for ombining feature and lass models

within a single model. Nivel ould be used to de�ne the abstrat syntax of Clafer,

but it would not be able to naturally support our onise onrete syntax.

Clafer builds on our several previous works, inluding enoding feature mod-

els as UML lass models with OCL [16℄; a Clafer-like graphial pro�le for Eore,

having a bidiretional translation between an annotated Eore model and its

rendering in the graphial syntax [32℄; and the Clafer-like notation used to spe-

ify framework-spei� modeling languages [2℄. None of these works provided

a proper language de�nition and implementation like Clafer; also, they laked

Clafer's onise onstraint notation.

Gheyi et al. [17℄ pioneered translating Boolean feature models into Alloy.

Anastasakis et al. [1℄ automatially translated UML lass diagrams with OCL

onstraints to Alloy. Clafer overs both types of models.

Relating problem-spae feature models and solution-spae models has a long

tradition. For example, feature models have been used to on�gure model tem-

plates before [13, 18℄. That work onsidered model templates as superimposed in-

stanes of a metamodel and presene onditions attahed to individual elements



of the instanes; however, the solution in Set. 4.2 implements model templates

as speializations of a metamodel. Suh a solution allows us treating the fea-

ture model, the metamodel, and the template at the same metalevel, simply as

parts of a single Clafer model. This design allows us to elegantly reuse a single

onstraint language at all these levels. As another example, Janota and Botter-

wek show how to relate feature and arhitetural models using onstraints [20℄.

Again, our work di�ers from this work in that our goal is to provide suh integra-

tion within a single language. Suh integration is given in Kumbang [5℄, whih is

a language that supports both feature and arhitetural models, related via on-

straints. Kumbang models are translated to Weight Constraint Rule Language

(WCRL), whih has a reasoner supporting model analysis and instantiation.

Kumbang provides a rih domain-spei� voabulary, inluding features, om-

ponents, interfaes, and ports; however, Clafer's goal is a minimal lean language

overing both feature and lass modeling, and serving as a platform to derive

suh domain spei� languages, as needed.

7 Conlusion

The premise for our work are usage senarios mixing feature and lass models

together, suh as representing omponents as lasses and their on�guration

options as feature hierarhies and relating feature models and omponent models

using onstraints. Representing both types of models in single languages allows

us to use a ommon infrastruture for model analysis and instantiation.

We set o� to integrate feature modeling into lass modeling, rather than try-

ing to extend feature modeling as previously done [15℄. We propose the onept

of a lass modeling language with �rst-lass support for feature modeling and

de�ne a set of design goals for suh languages. Clafer is an example of suh a

language, and we demonstrate that it satis�es these goals. The design of Clafer

revealed that a lass modeling language an provide a onise notation for feature

modeling if it supports ontainment feature de�nitions, feature nesting, group

ardinalities, and onstraints with default quanti�ers. Our design ontributes a

preise haraterization of the relationship between feature and lass modeling

and a uniform framework to reason about both feature and lass models.
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