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ABSTRACT
Parallelization is attractive for speeding up dynamic program anal-

ysis on multicores. However, inter-thread communication overhead

may outweigh any benefit from parallel execution. We propose

deferred methods, a high-level Java framework to accelerate dy-

namic analysis on multicores. To minimize inter-thread commu-

nication overhead, invocations to analysis methods are automati-

cally aggregated in thread-local buffers that are processed when

full. In contrast to other approaches, our framework supports cus-

tom buffer processing strategies, eases pre-processing of buffers

to reduce contention on shared data structures, and offers a syn-

chronization mechanism to wait for the completion of previously

invoked deferred methods. We also present a novel adaptive buffer

processing strategy that parallelizes the analysis only when the ob-

served workload leaves some CPU cores under-utilized. Using a

profiler as case study, we show that deferred methods with the adap-

tive buffer processing strategy yield an average speedup of factor

4.09 on a quad-core machine. The speedup stems both from paral-

lelization and from reduced contention.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-

tures—Frameworks

General Terms
Languages, Measurement, Performance

Keywords
Deferred methods, parallelization, dynamic program analysis, mul-

ticores.

1. INTRODUCTION
While the use of polymorphism, reflection, and dynamic code

loading limits the applicability of static analysis in modern

object-oriented programming languages, dynamic program analy-

sis is becoming increasingly important because it supports a wide

range of software engineering tasks such as debugging, perfor-

mance optimization, and program comprehension [11]. However,

the feasibility of complex dynamic analyses is often impaired by

the large runtime overhead introduced in the base program, which

in some cases can run more than 1000x times slower [13, 14]. In

particular, this overhead often stems from frequent execution of

fine-grained analysis tasks that do not produce any results on which

the execution of the base program depends.

Modern shared-memory multicore systems offer potential for im-

proving the performance of dynamic analyses by offloading the

analysis tasks to under-utilized CPU cores and executing them in

parallel with the base program. However, efficient parallelization of

fine-grained tasks is not trivial, since the overhead from inter-thread

communication may easily outweigh all benefits from paralleliza-

tion. A possible solution to reduce communication overhead is

to aggregate the invocations of analysis methods in thread-local

buffers that are processed by helper threads when full [15, 7, 13,

2]. Compared to implementations based on standard thread pools,

in this approach communication costs are paid only once per buffer

rather than once per task.

In this paper, we propose deferred methods, a Java framework to

efficiently parallelize fine-grained dynamic analysis tasks. As il-

lustrated in Figure 1, upon invocation of a deferred method (e.g.,

methods profCall(...) and profAlloc(...)), instead of immediately

executing the method body, the deferred method ID and all argu-

ments are stored in a thread-local buffer. When a buffer becomes

full, a customizable processor executes all tasks conveyed in the

buffer; that is, the corresponding method bodies are executed using

the buffered arguments. The processor is a pluggable component

that implements custom buffer processing strategies. For exam-

ple, the buffer can be synchronously processed by the same thread

that has filled the buffer, or asynchronously processed by a helper

thread.

Our framework provides a high-level, flexible API in standard Java.

Thanks to automated code generation, low-level details of buffer

management are hidden from the programmer. Nevertheless, the

API provides users a set of primitives to customize the size and

the processing of the buffers. Compared to other approaches, our

framework introduces some new features to improve performance



���

�����������������

���

��������	���������

���

���ABCD����������

���

���ABCD����������

D�

D�

EFA	����B����	A EFA	����B����	A

��	AB��

CDBE

F���

�E��E����� �E��E��E�

����A�

�B��� � �	�CA � 

AFA	��AC� A!�AB������
�B"�	����B ����CA�A��AC�#A�$�C ���A�%���A�AC ����A� ���A����	A  AC��		��C�B&�������&&�%�A� ����A&�A 

D��	A  ��

�����������������

��������	���������

A���

A���

�������

�������

���BE�

���BE�

Figure 1: Comparison between sequential and deferred execution

of dynamic analysis tools based on buffering techniques. In partic-

ular, the novel contributions of this paper include:

• Description of a new buffer processing strategy that outper-

forms existing solutions by adapting to the CPU utilization of

the base program, switching between synchronous and asyn-

chronous processing depending on the amount of available

resources.

• Provision of an interface to allow coalescing of buffers, that

is, thread-local pre-processing of buffered data to reduce ac-

cesses to shared data structures, a common bottleneck for

many dynamic analyses.

• Provision of an API for the creation of processing check-

points to wait until all analysis data produced by a thread

has been processed.

• A detailed study of the performance of deferred methods

with different buffer capacities and processing strategies, of

the benefits from coalescing, and of the impact of extended

object lifetime on garbage collection.

Section 2 presents a motivating example which is used throughout

this paper. Section 3 provides the API of our framework. Section 4

discusses various buffer processing strategies. Section 5 describes

a detailed performance evaluation. Finally, Section 6 compares the

framework with related work, and Section 7 concludes.

2. MOTIVATING EXAMPLE
To illustrate the benefits of deferred methods, we chose a dy-

namic program analysis tool, profiling blueprints [3, 4], that exe-

cutes only a relatively lightweight analysis task for each intercepted

event. That is, parallelization of the analysis tasks is not trivial and

naïve parallelization using standard thread pools results in enor-

mous slowdowns due to excessive communication overhead.

Profiling blueprints provide graph-like views of a program’s exe-

cution to help programmers identify bottlenecks and give hints on

how to remove them. In these views, each node is represented as a

rectangle whose width and height independently illustrate two de-

sired dynamic metrics (e.g., number of allocated objects and total

size of the allocated objects) for a particular program element (e.g.,

method). Additionally, edges indicate relationships among the pro-

gram elements (e.g., caller/callee relationships) and the properties

of edges can show some characteristics of those relationships (e.g.,

the width of edges can show the number of times each callee is

called). Therefore, to create such visualizations, we need to col-

lect mappings elem→<Dynamic metric1, Dynamic metric2, Re-

lated program elements and their properties> for each program el-

ement elem at runtime. Figure 2 illustrates a simplified analysis

program that can be used to collect mappings caller→<Number of

allocated objects, Total size of allocated objects, Callees and the

number of times each callee is called> for each method1. In this

figure, the class ProfileTS (“TS” stands for “thread-safe”), which

is not shown for the sake of a condensed presentation of the code,

stores this mapping data for each method mid. This class relies on

thread-safe maps (i.e., ConcurrentHashMap) and atomic counters

(i.e., AtomicLong) for the implementation.

BlueprintAnalysis keeps a shadow stack of calls for each thread in

the thread-local variable stackTL. This shadow stack is maintained

in order to reconstruct the caller/callee relationships. Method

onEntry(...) is invoked by the instrumentation upon each method

entry. By calling the profCall(...) method, it registers the method

invocation in the collection of callees for the method which is cur-

rently on top of the shadow stack. Furthermore, the callee’s identi-

fier, of typeMethodID, is pushed onto the shadow stack.

Method onExit(), which is invoked by the instrumentation af-

ter (normal and abnormal) method completion, pops the com-

pleting method identifier off the shadow stack. Method

onObjectAllocation(...), which is invoked after object allocations,

invokes the profAlloc(...) method to increment the number and the

total size of the allocated objects for the current caller with the size

of the newly allocated object. However, it can be observed that it is

not necessary to synchronously call profCall(...) and profAlloc(...)

in methods onEntry(...) and onObjectAllocation(...) by the same

thread that runs the base program. Since the execution of the base

program does not depend on the computations performed by these

methods, they can be asynchronously executed in parallel by an-

other thread using under-utilized CPU cores. However, since these

methods perform fine-grained tasks, simply parallelizing them does

not pay off due to increased costs for object allocation, garbage

collection, and communication among the parallel threads. More

specifically, we measured that sequential blueprint profiling intro-

duces an average overhead of factor 12.31, while a naïve parallel

implementation introduces an average overhead of factor 190 on

standard benchmarks. Thus, to overcome the parallelization over-

heads and to improve performance, we make the parallelized tasks

coarse-grained by aggregating the invocations to these methods in a

thread-local buffer and processing them altogether when this buffer

is full. The following section presents how this can be done with

our framework.

1In this paper, the term ‘method’ refers to ‘method or constructor’.



1 public interface Profile {

2 void profCall(MethodID caller, MethodID callee);

3 void profAlloc(MethodID mid, Object allocObj);

4 void integrate(Profile prof); // used in coalescing

5 // (see Section 3.5)

6 ...

7 }

8 public class ProfileTS implements Profile {

9 ... // Perform the analysis using thread-safe

10 // data structures

11 }

12 public class BlueprintAnalysis {

13 private final ThreadLocal<Stack<MethodID>> stackTL =

14 new ThreadLocal<Stack<MethodID>>() {

15 protected Stack<MethodID> initialValue() {

16 return new Stack<MethodID>();

17 }

18 };

19 static final Profile profTS = new ProfileTS();

20 void onEntry(MethodID thisMID) {

21 Stack<MethodID> localStack = stackTL.get();

22 profTS.profCall(localStack.peek(), thisMID);

23 localStack.push(thisMID);

24 }

25 void onExit() { stackTL.get().pop(); }

26 void onObjectAllocation(Object allocObj) {

27 profTS.profAlloc(stackTL.get().peek(), allocObj);

28 }

29 ...

30 }

Figure 2: Simplified analysis class for blueprint profiling

3. DEFERRED METHODS
This section presents our framework with the help of the motivat-

ing example presented in Section 2. Figure 3 illustrates the archi-

tecture of our framework as a layered class diagram consisting of

three kinds of classes and interfaces: (1) classes and interfaces that

are provided by the framework API; (2) classes and interfaces that

are implemented by the application developer; and (3) classes that

are automatically generated by the framework at runtime. In the

following text, we describe these layers in detail.

3.1 Framework API
As illustrated in Figure 3, our framework provides a simple, flex-

ible API in standard Java for specifying deferred methods and for

custom processing of buffers. To this end, the Deferred interface in

Figure 3 is a marker interface; the programmer defines the meth-

ods that he wants to execute in a deferred way in an interface that

extends this Deferred interface.

The interface DeferredEnv provides some methods that can be

used by programmers to influence the management of buffers

and processing of deferred methods. The buffer capacity (de-

fined in terms of the number of entries) can be queried with

the method getBufferCapacity(), is initially specified through

a system property, and can be changed at runtime by call-

ing setBufferCapacity(int). Changing the buffer capacity influ-

ences subsequent buffer allocations and it does not change the

capacity of the current buffer. Although our framework auto-

matically processes a buffer when it becomes full, the method

processCurrentBuffer() can be used to force immediate processing

of the current thread’s buffer, independently of its filling state; af-

terwards, a new buffer is created.

Finally, the method createDeferredEnv(...) of class

DeferredExecution creates an instance of the deferred envi-

<<interface>>

Runnable

 run()

DeferredExecution

 createDeferredEnv(UserDefIntf:Class,UserDefImpl:Class,Proc:Processor): DeferredEnv

<<optional>>

<<interface>>

Deferred

<<interface>>

DeferredEnv

 setBufferCapacity(size:int)

 getBufferCapacity(): int

 processCurrentBuffer()

 createCheckPoint(): ProcessingCheckPoint

<<interface>>

ProcessingHooks

 beforeProccessing()

 afterProccessing()

GeneratedDeferredEnv

GeneratedBuffer

 deferredMethodID: int[]

 argA: MethodID[]

 argB: MethodID[]

 argC: Object[]

 appendPC(caller:MethodID,callee:MethodID)

 appendPA(mid:MethodID,allocObj:Object)

<<interface>>

DefMethods

 profCall(caller:MethodID,callee:MethodID)

 profAlloc(mid:MethodID,allocObj:Object)

DefMethodsImpl

CustomProc

<<interface>>

Processor

 process(buffer:Runnable)

<<interface>>

ProcessingCheckPoint

 isProcessed(): boolean

 awaitProcessed()

SynchronousProc ThreadPoolProc

Figure 3: Architecture of deferred methods framework

ronment. After that, all invocations to deferred methods are

buffered and processed later using this environment. It is also

possible for the user to call this method multiple times to create

several instances of the deferred environment with different buffers

and processors for various needs.

3.2 User Classes
The code illustrated in Figure 4 implements the class diagram in

Figure 3, showing how to refactor the code in Figure 2 to use de-

ferred methods. The programmer extends the Deferred interface

with the methods that should be deferred and then implements the

extended interface. All deferred methods must return void and all

data required by the analysis (e.g., objects allocated by the base

program) must be passed as method arguments. As represented

both in the refactored code (Figure 4) and in the class diagram (Fig-

ure 3), a custom interface named DefMethods extends the Deferred

interface and defines two methods: profCall(...) and profAlloc(...).

This interface is implemented in class DefMethodsImpl such that

the methods profCall(...) and profAlloc(...) invoke the correspond-

ing methods in ProfileTS.

3.3 Automatically Generated Classes
Based on the user class that implements the deferred methods (i.e.,

DefMethodsImpl in Figure 3), our framework generates a buffer

class, named GeneratedBuffer, that implements the Runnable in-

terface. Additionally, based on the deferred interface provided



1 public interface DefMethods extends Deferred {

2 void profCall(MethodID caller, MethodID callee);

3 void profAlloc(MethodID mid, Object allocObj);

4 }

5 public class DefMethodsImpl implements DefMethods {

6 static final Profile profTS = new ProfileTS();

7 public void profCall(MethodID caller, MethodID callee) {

8 profTS.profCall(caller, callee);

9 }

10 public void profAlloc(MethodID mid, Object allocObj) {

11 profTS.profAlloc(mid, allocObj);

12 }

13 }

14 public class DefBlueprintAnalysis {

15 private static final int NUM_THREADS = 4;

16 private static final DefMethods def =

17 (DefMethods)DeferredExecution.createDeferredEnv(

18 DefMethods.class, DefMethodsImpl.class,

19 new ThreadPoolProc(NUM_THREADS));

20 private final ThreadLocal<Stack<MethodID>> stackTL =

21 new ThreadLocal<Stack<MethodID>>() {

22 protected Stack<MethodID> initialValue() {

23 return new Stack<MethodID>();

24 }

25 };

26 void onEntry(MethodID thisMID) {

27 Stack<MethodID> localStack = stackTL.get();

28 def.profCall(localStack.peek(), thisMID);

29 localStack.push(thisMID);

30 }

31 void onExit() { stackTL.get().pop(); }

32 void onObjectAllocation(Object allocObj) {

33 def.profAlloc(stackTL.get().peek(), allocObj);

34 }

35 ...

36 }

Figure 4: Blueprint profiling using deferred methods

by the user (i.e., DefMethods), our framework generates the class

GeneratedDeferredEnv. At runtime, this class acts similar to a dy-

namic proxy and redirects each invocation of a deferred method

(e.g., line 28 in Figure 4) to the corresponding method (e.g.,

appendPC(...)) in class GeneratedBuffer, which in turn appends

that invocation to the current thread’s buffer for later processing.

The buffer content is stored in several arrays. The integer array

deferredMethodID holds unique IDs representing the invoked de-

ferred methods (i.e., deferred methods are numbered). The other

arrays keep the arguments of deferred methods. Consequently, the

element types of these arrays correspond to the types of the argu-

ments of deferred methods. If several deferred methods share the

same argument type, the same array is used for storing the argu-

ments to minimize the number of allocated arrays. For instance, in

Figure 4, the type of the first argument of both methods profCall(...)

and profAlloc(...) isMethodID. Hence, the array argA in the buffer

holds the first arguments of invocations to both of these methods.

3.4 Buffer Processing
When a buffer becomes full, it is automatically submitted to

the specified processor for processing via calling the processor’s

process(buffer) method and a new instance of the buffer is cre-

ated then. In addition, our framework modifies the run() method of

class java.lang.Thread and of all its subclasses so as to submit the

thread’s buffer, even if it is not full, before the thread terminates.

The processor then calls the buffer’s run()method which in turn ex-

ecutes all method invocations conveyed in the buffer. In contrast to

1 public class ProfileTL implements Profile {

2 ... // Perform the analysis using thread-local

3 // data structures

4 }

5 public class DefMethodsImpl implements DefMethods,

6 ProcessingHooks {

7 private ProfileTL profTL;

8 static final Profile profTS = new ProfileTS();

9 public void beforeProcessing() {

10 profTL = new ProfileTL();

11 }

12 public void afterProcessing() {

13 profTS.integrate(profTL);

14 }

15 public void profCall(MethodID caller, MethodID callee) {

16 profTL.profCall(caller, callee);

17 }

18 public void profAlloc(MethodID mid, Object allocObj) {

19 profTL.profAlloc(mid, allocObj);

20 }

21 }

Figure 5: DefMethodsImpl based on coalescing

the automatically generated buffer, the processor implementation

may be provided by the programmer. This is represented by class

CustomProc in the second layer of Figure 3. For convenience, our

framework includes processor implementations that are suited for

various applications. Section 4 provides a detailed discussion of

these processing strategies.

3.5 Coalescing
A unique feature of our framework is that users can implement

the ProcessingHooks interface to receive callbacks before and after

processing the deferred method invocations. The main use case of

this interface is to support the implementation of custom strategies

for coalescing deferred method invocations. Instead of accessing

shared data structures each time that a deferred method is invoked,

one can define some instance fields in class DefMethodsImpl to

record the invocations in thread-local data structures. These fields

can be initialized in the beforeProcessing() method, updated in the

deferred methods, and finally the results can be integrated into the

shared data structures in the afterProcessing() method. In this way,

we prevent the shared data structures from becoming a bottleneck

in parallelized access.

For example, Figure 5 presents an updated implementation of class

DefMethodsImpl from Figure 4 that supports the coalescing of de-

ferred method invocations. To this end, it uses an optimized, non-

thread-safe implementation (i.e., based onHashMap data structures

and long counters) of the interface Profile (defined in Figure 2),

named ProfileTL (“TL” stands for “thread-local”). The same anal-

ysis that was presented in Figure 4 is used again in this implemen-

tation. As can be seen in Figure 5, an instance of class ProfileTL,

i.e., profTL, is instantiated in the beforeProcessing()method. Then,

all invocations of deferred methods are stored in thread-local data

structures used in profTL instead of accessing the shared data struc-

tures in profTS. The results in profTL are then integrated into the

profTS in the afterProcessing() method. As our evaluation in Sec-

tion 5.4 shows, coalescing of deferred methods yields significant

performance improvements in our case study.

3.6 Processing Checkpoints
Synchronization between the thread invoking a deferred method

and the thread executing it can be achieved by passing a synchro-



nizer (e.g., a Semaphore instance) as an argument to the deferred

method. It is also possible to pass future value objects as arguments

to deferred methods, such that the caller can later wait for a result.

This mitigates the restriction that only methods with return type

void can be deferred. However, in order to prevent deadlocks, it

is essential that the programmer ensures processing of the current

buffer (i.e., by calling processCurrentBuffer()) before invoking any

blocking method of a synchronizer that has been passed to a de-

ferred method.

Processing checkpoints are a novel feature of our framework

that makes it easy to wait until all analysis data produced by

a thread has been processed. The method createCheckPoint()

of class DeferredEnv can be used to create processing check-

points (instances of type ProcessingCheckPoint). A processing

checkpoint marks the current position in the buffer of the cur-

rent thread T , and allows T to wait for the processing of all

deferred methods invoked by it before creating the checkpoint.

While method isProcessed() of type ProcessingCheckPoint is non-

blocking, method awaitProcessed() is blocking. Since buffers sub-

mitted by the same thread may be processed out-of-order (depend-

ing on the Processor implementation), it is not sufficient to wait just

until the deferred methods conveyed in the current buffer have been

processed; the deferred methods in previously submitted buffers

(for the same deferred environment and the same thread) must have

been processed as well.

The implementation is optimized for incurring only negligible

overhead when the feature is not used. A buffer may have at most

one processing checkpoint associated. Hence, when a processing

checkpoint is created, the current buffer has to be processed imme-

diately, even though it may not be full. Therefore, frequent cre-

ation of processing checkpoints may incur high overhead because

more buffers are created but not fully used. For each thread of the

base program, the produced buffers are numbered (starting with

buffer 1). The implementation keeps a counter CT (initially zero)

of consecutive buffers that have been processed for each thread T .
After buffer n has been completely processed, CT is incremented

if its value is n− 1; in this case, an eventual processing checkpoint
associated with buffer n is set to the processed state. Otherwise, an

entry containing the value n and an eventual processing checkpoint

associated with buffer n is stored in the heap2 data structure HT

which keeps track of buffers that have been processed while there is

still at least one pending buffer with a smaller number (produced by

thread T ). Whenever CT is increased to the new value x, the heap
HT is checked whether it contains the entry with the value x + 1;
in this case, the entry is removed from HT , an eventual processing

checkpoint stored in the entry is set to the processed state, CT is

incremented, and the heap check is repeated. Note that this imple-

mentation does not prevent processed buffers from being reclaimed

by the garbage collector, since the entries stored on the heap do not

refer to the buffers (but only to eventual processing checkpoints).

4. BUFFER PROCESSING STRATEGIES
We propose three strategies for processing full buffers: (1) syn-

chronous processing (SP) by the thread that has filled the buffer,

(2) asynchronous processing using a thread pool (TP), and

(3) adaptive processing (AP) that reconciles synchronous and asyn-

chronous processing. In the following text, the term producer refers

to a thread of the base program that fills buffers, whereas the term

2We use a heap because access to the smallest element is an O(1)
operation.

consumer refers to a dedicated thread that only processes buffers.

While the number of producers depends on the base program and

on the scope of the analysis, the number of consumers is a con-

trolled variable depending on the processing strategy.

4.1 Synchronous Processing (SP)
With SP, each full buffer is processed by its producer, i.e., there are

no consumers. Hence, SP does not parallelize base program exe-

cution and dynamic analysis. SP guarantees that for each producer,

the full buffers are processed in order.

Compared to a traditional, sequential dynamic analysis without de-

ferred methods, SP introduces overhead due to buffer allocation,

initialization, and garbage collection, as well as storing to and read-

ing from the arrays in the buffer. However, if the deferred methods

can be coalesced, the number of accesses to shared data structures

in the analysis code can be reduced. Furthermore, as shown in Sec-

tion 5.3, SP can effectively improve locality. Locality improvement

thanks to deferred methods is quite common in dynamic analysis,

as the data structures accessed by analysis code are often different

from those accessed by the base program. Since the bodies of de-

ferred methods are executed altogether when a buffer is processed,

deferred methods improve locality of the analysis code and some-

times also of the base program because the execution flow in the

base program is less “disrupted” by storing data in a thread-local

buffer instead of performing analysis actions that may require ex-

pensive access to shared data structures.

4.2 Asynchronous Processing (TP)
With TP, all buffers are processed by dedicated consumers. In this

paper, we assume that the number of consumers NTP (i.e., the

thread pool size) is fixed, and that the thread pool uses a bounded

blocking FIFO queue of size QTP . That is, if the queue is full,

producers block until there is space in the queue. The use of a

bounded blocking queue helps limiting memory consumption when

full buffers are produced at a faster rate than they are consumed.

However, when QTP is too small, producers may be blocked too

frequently. Moreover, with TP, full buffers from the same producer

may be processed out-of-order due to the presence of multiple con-

sumers. In contrast to SP, TP takes advantage of under-utilized

cores by parallelizing execution of the base program (by produc-

ers) and dynamic analysis (by consumers). Similarly to SP, TP also

benefits from improved locality and from coalescing.

Nonetheless, since the communication of full buffers between

threads introduces extra overhead, there are workloads where SP

outperforms TP. In particular, if producers keep all cores busy,

there are no under-utilized cores that could be exploited by the con-

sumers.

4.3 Adaptive Processing (AP)
AP is a novel processing strategy that is unique in combining the

benefits of TP and SP. On the one hand, when producers underuti-

lize some cores, consumers can take advantage of available com-

putational resources to process full buffers in parallel with the exe-

cution of the base program. On the other hand, when producers al-

ready keep all cores busy, full buffers are synchronously processed

by their producers, avoiding inter-thread communication overhead

when it is not possible to further parallelize the workload.

Similar to TP, AP uses a bounded FIFO queue of sizeQAP , which

however never blocks a producer. If the queue is full, the producer



itself processes the full buffer, like SP. Alternatively, buffers are

passed to a pool of consumers, which execute at minimum thread

priority3. As (most) producers are typically executing at normal

thread priority, they are generally scheduled more frequently than

consumers if they are competing for CPU time (albeit the exact

scheduling behavior depends on the operating system, as state-of-

the-art JVMs rely on native threads). Consequently, consumers can

execute when some cores are under-utilized, but rarely preempt

producers. Here, we assume that the number of consumers NAP

is equal to the number of cores in the system. That is, if all pro-

ducers are blocked, the consumers can exploit all cores if there are

enough full buffers to be processed. If the dynamic analysis in-

volves frequently blocking actions (which is not the case for the

analyses considered in this paper), a higher number of consumers

may be appropriate.

While AP significantly outperforms SP and TP in our evaluations,

it also has some drawbacks. Out-of-order processing of full buffers

from the same producer occurs much more frequently than with TP.

Moreover, AP is prone to starvation if a producer uses synchroniza-

tion to wait for the completion of a deferred method (e.g., using

a ProcessingCheckPoint). If other producers keep all cores busy,

consumers may not be able to process full buffers in the queue. This

problem is mitigated on operating systems where the scheduler

dynamically changes thread priorities, so that low-priority threads

eventually receive some CPU time (unless they are blocked).

5. EVALUATION
In this section we evaluate our framework using the blueprint pro-

filer on a modern quad-core machine, typically used for tasks such

as dynamic program analysis. Section 5.1 presents the setup of

our evaluation. First, we investigate the speedup factor thanks to

deferred methods with different buffer processing strategies com-

pared to when no buffering is used (Section 5.2). Second, we ex-

plore the overhead of buffering (Section 5.3). Third, we analyze

the benefits of coalescing the execution of deferred methods (Sec-

tion 5.4). Fourth, we investigate the performance impact and CPU

utilization of different buffer processing strategies (Section 5.5).

Fifth, we explore the impact of extended object lifetime due to de-

ferred methods on the number and the duration of garbage collec-

tion runs (Section 5.6).

5.1 Evaluation Setup
We use the benchmarks in the DaCapo suite (dacapo-2006-10-

MR2)4 as base programs in our evaluations. To ensure that the

ending time of a benchmark run is not prematurely taken, we ex-

tend the benchmark harness to wait until all pending buffers have

been processed. Our dynamic analysis is implemented as an aspect

in the AspectJ language. The measurements reported in this article

correspond to the median of 11 benchmark runs within the same

JVM process in order to attenuate the perturbations due to class-

loading, load-time instrumentation, and just-in-time compilation.

All measurements are collected on a quad-core machine with an

Intel Core i7 Q720 1.6 GHz processor and 8 GB RAM in which we

disable frequency scaling, turbo boost, and hyper-threading. We

run this machine under Ubuntu GNU/Linux 10.04 and we use Or-

acle’s JDK 1.6.0_20 Hotspot Server VM (64 bit) with 7 GB maxi-

mum heap size and with the default garbage collector. We config-

3We use method setPriority(...) in class java.lang.Thread to manip-
ulate the priorities of the consumers before they are started.
4http://www.dacapobench.org/

Table 1: Speedup factor (geometric mean for DaCapo) of

blueprint profiling with deferred methods and different buffer

processing strategies over sequential analysis for different

buffer capacity B and queue sizeQ

Buffer capacity (B)

100 1000 10000 100000 1000000

0.94 0.95 0.97 0.99 0.97

(a) SP without coalescing (SP noC)

Buffer capacity (B)

100 1000 10000 100000 1000000

0.86 1.29 1.54 1.65 1.69

(b) SP with coalescing

Queue size (Q)
Buffer capacity (B)

100 1000 10000 100000 1000000

1 0.65 2.19 2.95 3.22 3.72

10 0.75 2.31 2.97 3.40 3.79

100 1.01 2.43 2.97 3.45 3.32

1000 1.37 2.78 3.23 3.14 -

10000 1.41 2.80 2.83 - -

100000 1.27 1.93 - - -

(c) TP with coalescing

Queue size (Q)
Buffer capacity (B)

100 1000 10000 100000 1000000

1 0.75 1.99 3.01 3.68 4.09

10 1.29 2.45 3.26 3.74 4.02

100 1.41 2.70 3.37 3.70 3.62

1000 1.75 2.96 3.32 3.47 -

10000 1.75 2.95 2.93 - -

100000 1.20 2.11 - - -

(d) AP with coalescing

ure the TP and AP buffer processing strategies to use a fixed thread

pool of four threads on our quad-core machine.

5.2 Impact of Buffer and Queue Size
In the following text, we first investigate the performance impact of

the chosen buffer capacity (for SP, TP, and AP) and queue size (only

for TP and AP), both measured in terms of the number of entries.

The parameters that yield the highest average speedup (geometric

mean for the DaCapo benchmarks) over our baseline are used in the

experiments presented in the next subsections. Then, we explore

the performance impact of different buffer processing strategies.

Table 1 presents the average speedup factor for deferred blueprint

profiling with various buffer processing strategies depending on

different buffer capacity B and queue size Q. The baseline

for assessing the speedups is the traditional, sequential execution

that does not make use of deferred methods. Measurements for

blueprint profiling with SP and without coalescing are presented

in Table 1(a). In the rest of this article, we refer to this setting as

SP noC, whereas SP, TP, and AP refer to settings with coalescing.

In Table 1, empty cells refer to settings producing out-of-memory

errors on some of the benchmarks, while the numbers in bold indi-

cate the parameters that yield the highest speedups. These numbers

are also presented diagrammatically in Figure 6 to better compare

different buffer processing strategies. In Figure 6, the naïve imple-

mentation simply uses a thread pool without any buffering. This

approach is extremely slow with an overhead of factor 190.
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Figure 6: Speedup factor (geometric mean for DaCapo)

For all buffer processing strategies except SP noC, we can see per-

formance improvements in Table 1 and Figure 6. The speedup with

SP is due to coalescing and buffering whereas the speedups with TP

and AP are because of coalescing, buffering, and parallelization.

As shown in Table 1 and Figure 6, AP outperforms SP and TP since

it aims at combining the benefits of SP and TP. Due to both coalesc-

ing and parallelization, AP achieves a speedup of factor 4.09 (with

Q = 1 and B = 1, 000, 000). If we focus on the parameters of

AP in Table 1, we observe three trends for blueprint profiling with

AP: (i) for a given buffer capacity B, the speedup factor is rather

stable across different queue sizes; (ii) when the buffer capacity

is sufficiently large, small queue sizes yield higher speedups than

larger queue sizes; and (iii) small buffer capacities may result in

slowdowns with respect to the baseline (i.e., values below 1.0 in

Table 1). The last observation also supports our claim that paral-

lelizing small workloads often does not pay off.

In summary, SP compared to SP noC illustrates the benefits of co-

alescing; TP compared to SP presents the benefits due to paral-

lelization; and finally, AP compared to TP indicates the benefits of

a flexible strategy that does not offload the buffer to a consumer

thread when the queue is full.

5.3 Buffering Overhead
As shown in Table 1(a) and Figure 6, the speedup factor of SP noC

over the baseline is almost one (i.e., 0.99). Since SP noC does not

benefit from parallelization, the fact that the overheads of buffer

management are not significant suggests that they are outweighed

by locality improvements. To quantify these locality benefits, we

used hardware performance counters to measure performance of

the L1-data, L1-instruction, and L2 caches for deferred analysis

with SP noC. The results show that deferred execution with SP noC

reduces miss rates, particularly for L1-instruction caching. On

average (geometric mean for DaCapo), the miss rate is reduced

by 0.61% for L1-data, 1.32% for L1-instruction, and 0.63% for

L2. These relatively small improvements can significantly improve

performance, because millions of instructions are executed by the

CPU.

5.4 Impact of Coalescing
In this section we explore the impacts of coalescing the executions

of deferred methods. Table 1(b) and Figure 6 illustrate that SP

with coalescing is considerably faster than SP noC, i.e., a speedup

of factor 1.69 vs. 0.99. The best speedup factor with SP noC is

reached for B = 100, 000. However, with SP, it is possible to

use buffers with bigger capacities (e.g., B = 1, 000, 000) because
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Figure 7: Average accesses to shared data structures
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Figure 8: Average number of executed CPU instructions

the costs of increased memory utilization are compensated by the

speedups due to coalescing5.

Coalescing the execution of deferred methods has two main ben-

efits: it reduces the number of expensive accesses to shared data

structures and consequently reduces the overall number of executed

CPU instructions. Figure 7 reports the number of accesses to shared

data structures for the baseline (i.e., no deferred methods) and for

SP with different buffer capacities. For example, in our case study,

accesses to shared data structures are reduced by 94.56%when coa-

lescing buffers of capacity B = 10, 000. Moreover, Figure 8 shows

the average number of executed CPU instructions. As we increase

the buffer capacity, the average number of executed instructions de-

creases. This reduction is due to the reduced complexity involved in

accessing thread-local data structures that do not require synchro-

nization (e.g., HashMap) compared to thread-safe implementations

(e.g., ConcurrentHashMap). For the smallest measured buffer ca-

pacity of 100 entries, the extra instructions due to buffering are not

compensated by coalescing.

5.5 Impact of Parallelization
This section explores the performance impact of parallelization due

to using the TP and AP buffer processing strategies. In contrast

to SP, which only benefits from buffering and coalescing, these

approaches also leverage under-utilized CPU cores to parallelize

the execution of deferred methods. As can be seen in Table 1(c)

and Table 1(d), these approaches yield much better speedup fac-

tors when compared to SP. More specifically, careful considera-

5Interestingly, the best results for SP, TP, and AP are achieved with
large buffer capacities, where whole buffers cannot fit in the largest
cache of the system.



Table 2: CPU utilization for the DaCapo benchmarks

Benchmark

SP TP AP

Elapsed Idle CPU

[%]

Parallelism Idle CPU

[%]

CPU used by Parallelism Idle CPU

[%]

CPU used by

time [s] speedup factor consumers [%] speedup factor consumers [%]

antlr 26.53 292 3.21 57 229 3.29 54 227

bloat 164.43 299 3.38 38 260 3.72 30 258

chart 63.49 299 3.11 88 210 3.20 74 208

eclipse 154.69 297 2.56 129 163 2.67 115 163

fop 8.77 288 2.34 124 152 2.41 120 150

hsqldb 35.29 289 2.24 133 144 2.31 129 143

jython 78.03 271 2.95 56 208 3.08 48 206

luindex 64.88 299 2.71 105 191 2.87 97 190

lusearch 17.75 14 0.68 47 237 0.94 13 51

pmd 75.12 298 3.43 41 253 3.46 35 251

xalan 30.30 7 0.85 7 251 1.00 5 124
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(a) Execution with SP (b) Execution with TP (c) Execution with AP

Figure 9: CPU utilization of application threads (producers) and analysis threads (consumers) for lusearch
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(a) Execution with SP (b) Execution with TP (c) Execution with AP

Figure 10: CPU utilization of application threads (producers) and analysis threads (consumers) for xalan

tion of Figure 6 indicates that parallelization improves the speedup

over SP with a factor of 3.79/1.69 = 2.24 for TP, and a factor

of 4.09/1.69 = 2.42 for AP. These speedup factors due to par-

allelization are particularly good since some of the computational

resources are already used by the non-parallelizable parts of the ex-

ecution such as the base program or the computation necessary to

fill and submit the buffers.

Table 2 presents a detailed speedup analysis due to parallelization

for different benchmarks in the DaCapo benchmark suite. A careful

study of this table indicates that the parallelization speedups that

are reached with TP and AP are closely related to the amount of

available CPU resources with SP. For lusearch and xalan, which are

characterized by a high concurrency level, parallelization using TP

or AP is not beneficial. For these two benchmarks, the consumers

in TP or AP are taking CPU resources from the application threads

which results in reduced performance.

Below, we provide a detailed analysis of CPU utilization for de-

ferred execution with SP, TP, and AP. For space limitations, we

focus our analysis on lusearch (Figure 9) and xalan (Figure 10),

the critical cases in which TP or AP cannot outperform SP. The

diagrams correspond to the sixth run of the respective benchmark

within a single JVM process; hence, class-loading, load-time in-

strumentation, and just-in-time compilation do not significantly

perturb the measurements. The data is obtained by sampling CPU

utilization every 100ms.

Synchronous Processing (SP) CPU utilization with SP is illus-

trated in Figure 9(a) for lusearch and in Figure 10(a) for xalan.

In both cases, CPU utilization is almost constantly 400%; that is,

producer threads keep all available cores busy. Temporarily re-

duced CPU utilization is mainly due to garbage collection or block-

ing actions such as I/O. This implies that both lusearch and xalan

execute a well-parallelized workload that does not leave much



under-utilized CPU resources; that is, producer threads keep all

available cores busy.

Thread-Pool Processing (TP) Table 2 and Figure 9(b) show that

in lusearch the producers only utilize 116% of CPU time on av-

erage, whereas the four consumers use an average of 237%. This

is because producers are very often blocked waiting for free space

in the queue. Consequently, deferred analysis with TP causes fre-

quent thread switches that introduce extra overhead. In addition,

the number of garbage collections may increase because of the in-

creased memory consumption due to pending buffers. As shown in

Table 2, xalan, another heavily multi-threaded benchmark, also per-

forms badly under deferred analysis with TP. Figure 10(b) shows

that in xalan the producers only utilize roughly 142% of the CPU

resources, whereas the four consumers use up to 251%. For all

other benchmarks, which are either single-threaded or synchro-

nized in a way that severely limits parallelism, deferred analysis

with TP yields a considerable speedup of factor 2.24–3.43 over SP.

Adaptive Processing (AP) Table 2 shows that in lusearch de-

ferred analysis with AP yields a speedup of factor 0.94 over SP

in lusearch. In this particular case, SP still outperforms AP, but the

difference is relatively small. However, as depicted in Figure 10(c),

in xalan producers use roughly 271% of the CPU resources and AP

reaches the same level of performance as SP. Figure 9(c) shows

that in lusearch CPU utilization with AP is completely different

from TP. While in TP producers use 116% of CPU time, in AP

they use 336%. Since the queue is often full, the producers process

the buffers themselves most of the time. We also explore whether

TP can benefit from lowest thread priority for the consumers, as

it happens for AP. However, on average, this solution introduces

some overhead compared to the standard implementation of TP.

We conclude that AP outperforms SP and TP for most benchmarks,

reconciling the benefits of SP and TP. Even for lusearch, where SP

outperforms AP, the performance of the two processing strategies

is very similar.

5.6 Impact of Garbage Collection
One of the well-known issues concerning the use of buffers is ex-

tended object lifetime. As threads in the base programmay perform

blocking actions, filling a buffer can take arbitrarily long time. Be-

fore a full buffer has been processed, the garbage collector cannot

reclaim any of the buffered objects, thus leading to a higher num-

ber of objects alive at the same time. In particular, for generational

garbage collection, increased object lifetime can increase garbage

collection time, because old objects are moved to the next genera-

tion. In our case study, each object allocated in the base program

is stored in a buffer. Consequently, deferred analysis may possibly

increase the lifetime of each allocated object.

To find out whether extended object lifetime is really an issue with

our framework, we evaluate the impact of different buffer capaci-

ties and queue sizes on the duration of garbage collection runs with

AP. Table 3 illustrates the results of this analysis (average for the

DaCapo benchmarks). Since SP and TP follow similar trends in our

measurements, their results are not provided here. All empty cells

in Table 3 refer to tests that produce out-of-memory errors in at

least one benchmark. In general, for each queue size, the garbage

collection time is less than 15% until the total number of entries

(i.e., the product of Q and B) is higher than 1,000,000. These re-

sults suggest that increased object lifetime due to deferred meth-

Table 3: Average percentage of garbage collection time with AP

depending on buffer capacity and queue size

Queue Buffer Capacity (B)

Size (Q) 100 1000 10000 100000 1000000

1 0.43 1.02 1.51 2.14 7.33

10 0.71 1.27 1.64 2.17 7.61

100 0.78 1.41 1.75 2.59 33.33

1000 1.08 1.95 2.45 16.05 -

10000 2.40 11.19 22.20 - -

100000 52.88 75.94 - - -

ods can have a strong negative impact on garbage collection time,

which grows proportionally to the product of Q and B. We con-

clude that it is preferable to choose a small size for the queue and

the highest possible capacity for the buffer, to leverage coalescing

and to improve locality. It is up to the user to tune these parameters,

depending on the number of arguments passed to deferred methods,

which defines the memory footprint of a single buffer entry. If the

analysis requires a large amount of data as input, the benefits from

deferred methods may be limited.

6. RELATEDWORK
Approaches based on parallelized slice profiling, such as Shadow

Profiling [9] and SuperPin [14], parallelize dynamic analysis by

periodically forking a shadow process that executes a slice of in-

strumented code while the application process runs uninstrumented

code. Both frameworks are based on a dynamic binary instrumen-

tation system, and both are limited to single-threaded applications.

This limitation stems from the implementation of fork on most

thread libraries, which can only fork from the current thread. Un-

like these approaches, deferred methods do not pose any constraint

to the internal concurrency of the base program.

PiPA (Pipelined Profiling and Analysis) [15] is a technique for par-

allelizing dynamic analysis by associating an analysis pipeline with

each application thread. Analysis data is collected within the appli-

cation thread and stored in a thread-local buffer. Once full, the

buffer is passed to the pipeline, where multiple helper threads per-

form the analysis as stages of the pipeline. Compared to deferred

methods, PiPA is based on a dynamic binary instrumentation sys-

tem, does not provide a high-level API, and does not support adap-

tive processing strategies, coalescing, and processing checkpoints.

CAB (Cache-friendly Asymmetric Buffering) [7], is a dynamic

analysis framework based on lock-free ring buffers to communi-

cate analysis data from the base program to analysis threads. This

approach is implemented at the JVM level and efficiently exploits

shared caches of multicore systems. However, CAB does not

allow adaptive buffer processing strategies and does not provide

high-level constructs for coalescing and processing checkpoints.

The implementation of lock-free ring buffers could be used in our

framework to further speed up dynamic analysis on the supported

JVM.

Buffered advice [2] allow asynchronous execution of AspectJ ad-

vice that are marked with a special annotation. Similar to deferred

methods, input parameters are stored in thread-local buffers that

are processed when full. However, buffered advice is specific to

AspectJ, requires a custom compiler, and does not support cus-

tom buffer processing strategies, coalescing, and processing check-

points.



In [13], the authors introduce a framework based on a dynamic bi-

nary instrumentation system to speed up data collection by means

of thread-local buffers. Similar to deferred methods, this work de-

scribes a high-level API that automatically generates the code to

fill and submit the buffer. However, this work lacks important fea-

tures for developers of dynamic analysis tools, such as coalescing,

processing checkpoints, and the adaptive processing strategy.

HeapMon [12] uses an extra helper thread that runs on a separate

processor to monitor the status of each word on the heap and to

detect memory bugs such as reads from uninitialized or unallo-

cated memory locations. HeapMon achieves low-overhead because

of hardware buffering and instrumentation support such as aug-

menting each cached word with one extra state bit, communication

queues between the application thread and the helper thread, and a

small private cache for the helper thread. In contrast to the frame-

work of deferred methods, HeapMon is thus a special-purpose tool

aiming to monitor the memory at runtime.

ParCCT [5, 6] is a technique for parallelizing calling context pro-

filing and application execution on multicores. ParCCT profiles

calling contexts as Calling Context Trees (CCTs) [1]. In this tech-

nique, each thread maintains a shadow stack and generates packets

of method calls and returns that correspond to partial CCTs. Packet

consuming threads then merge these partial CCTs with the overall

CCT of the program in parallel with its execution. While this tech-

nique is restricted only to calling context profiling, our API can be

used to develop different dynamic analyses for various purposes.

From Java 7, the language includes the Fork/Join framework [8],

which provides a thread pool implementation based on work-

stealing [10] and eases scalable implementations of recursive

divide-and-conquer algorithms. Compared to our work, the

Fork/Join framework does not address the parallelization of fine-

grained, independent tasks, where the overhead of allocating a

wrapper object and submitting it to the thread pool outweighs the

benefits from parallelization. Our framework allows the implemen-

tation of custom processors based on ForkJoinPool.

7. CONCLUSION
This paper addresses the issue of parallelizing fine-grained dy-

namic analysis tasks by means of deferred methods, a Java frame-

work that helps reduce communication among the parallel threads

by aggregating the invocations to analysis methods in thread-local

buffers and processing them altogether. While programmers can

provide their own buffer processing strategies, the details of buffer-

ing are hidden and the required code is automatically generated.

Distinguishing features of our framework are the support for co-

alescing and processing checkpoints. Moreover, we presented a

novel buffer processing strategy that adapts to the overall CPU uti-

lization. A thorough performance evaluation on a quad-core ma-

chine with standard benchmarks confirms that our framework, to-

gether with the adaptive buffer processing strategy and coalescing,

yields an average speedup of factor 4.09 in our case study.
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