
Multi-level Customization in Application Engineering
Krzysztof Czarnecki, Michał Antkiewicz, and Chang Hwan Peter Kim

University of Waterloo, Canada
Generative Software Development Lab

{kczarnec, mantkiew, chpkim}@swen.uwaterloo.ca
http://gp.uwaterloo.ca

Introduction
The goal of software product lines (SPLs) is to improve productivity, time-to-market, and quality of
application development by leveraging the commonalities of systems within an application domain while
managing their variations. SPLs package these commonalities and variations into a domain-specific
platform (DSP), which may be customized through configuration settings or code extensions. Examples of
large, vendor-provided DSPs are IBM's WebSphere Commerce for e-commerce applications and SAP's R/3
for enterprise resource management systems. The main advantage of creating a DSP is that its planned
variability allows for a common product line architecture while its domain focus allows for domain-specific
components that are functionality-rich.

Figure 1: The customization cliff – problem and solution

Today’s DSPs are usually implemented using code-centric technologies such as object-oriented
frameworks, components, and sometimes even #ifdef preprocessor directives or similar macro-facilities,
combined with wizards and form-based interfaces for easy configuration of requirements or features.
Applications built on top of such DSPs represent some mixture of platform configuration settings and
custom code. The left side of Figure 1 shows a typical DSP, where the horizontal dimension represents the
scope of applications that can be derived using the DSP and the vertical dimension represents the easiness
of deriving the applications. Cylinders represent applications that can be derived purely through feature
configuration, while the rest of the applications on the plane, including the red cross, require custom
coding. Custom coding is required if the customer desiring the system indicated by the red cross is not
willing to accept any of the next-best purely configured solutions, i.e. the closest cylinder to the red cross.
Unfortunately, in most DSPs, the scope covered by configuration is relatively sparse, and the transition
from configuration to custom coding is rather abrupt, requiring a jump off the top of a cylinder. Steve
Cook refers to this situation as the customization cliff1. The idea is that beyond simple configuration
facilities such as wizards, which are usually provided to lower the initial entry barrier, the platform user
faces custom coding against the gory details of the platform’s application programming interface (API). For
example, a change to the business workflow of an application generated from a particular feature
configuration may require custom code that needs to interact with different parts of the DSP’s API. Writing
such code may require substantial effort since the relevant parts of the low-level API need to be learned and

1 http://blogs.msdn.com/stevecook

used correctly, and the amount of code that needs to be written may also be substantial. This idea is at odds
with the intuitive principle that “easy things should be easy to do and progressively more complex tasks
should only get progressively harder to do, not insurmountably harder.”2

Model-driven software development [MDSD, Greenfield04] has the potential to eliminate the
customization cliff in traditional, code-centric implementations of SPLs by offering multi-level modeling
and customization as a middle ground between configuration and custom coding, as shown in the right part
of Figure 1. In a nutshell, a complex code customization is replaced by more manageable customizations at
multiple levels of abstraction. Furthermore, customizations at lower abstraction levels cover an increasing
amount of the DSP scope. For example, changing the business workflow of our sample application may be
done at the level of the analysis model with no need for custom coding, while interfacing to another
application may require custom coding.

In the rest of the paper, after illustrating the idea of multi-level modeling of DSP-based
applications with a concrete example, we compare and classify customization approaches that can be
applied at different levels of abstraction and discuss the tradeoffs among them.

Multi-Level Modeling for DSP-Based Applications

Figure 2: Multi-level representation and customization of an e-commerce system

The idea of a DSP supporting application engineering with multi-level customization is illustrated in Figure
2. We use an e-commerce DSP as an example. An application engineer first selects or configures the
desired business process features, as shown in the top callout. Features available for selection are defined
in a feature model [Kang90], which arranges the features in a composition-like hierarchy with some extra
constraints. Feature configuration process may be guided through constraint-based facilities, such as
consistency checking, choice propagation, and auto-completion [Batory05, Czarnecki05b]. For example, in
the top callout, selecting Checkout would cause the automatic selection of the undecided features
Registration and RequiredFor due to choice propagation.

Based on the feature selection, a default e-commerce application with requirements and design
models and code is generated. But for this generation to be possible, feature model must be mapped to
generic requirements and design models. One way to achieve such mappings, called feature-based model
templates, is to annotate model elements with presence conditions, which are Boolean formulas over
features [Czarnecki05a, Czarnecki06b]. For a given feature configuration, the presence conditions are

2 http://blogs.msdn.com/garethj

evaluated and the elements with false conditions are removed. In Figure 2, since WishList feature was
eliminated, Create WishList action, WishList class and its only association, and
lastWishListTotal attribute of Registered class are eliminated (as indicated by the red color),
thereby generating models from model templates with annotations.

Another way, called feature-based restriction, is to constrain models based on a feature
configuration [Wasowski04, Czarnecki06]. In Figure 2, an OCL constraint below the class diagram states
that if Registration feature has been eliminated, then instances of Customer class cannot be direct
instances of Registered, which effectively eliminates Registered. Since Registration feature
has been selected, the constraint has no effect. A comparison between feature-based model templates and
feature-based restriction is given in [Czarnecki06].

Yet another way of mapping features to models is using aspects. In Figure 2, the top-right callout
shows an authentication activity, which is part of a security aspect. A separate rule-based access policy
specifies locations in business processes, such as before the Checkout action, where the authentication
activity has to be woven.

The default implementation and models that were generated for the particular feature
configuration most probably need to be further customized through extensions or modifications at multiple
levels. Changes to one level need to be propagated to all other levels or at least the ones below the changed
level. Both generation and change propagation are achieved using the discussed feature-to-model
mappings, as well as model-to-model and model-to-code mappings, which are studied extensively in the
field of model transformation (see [Czarnecki06a] for a survey on this topic).

Classification of Customization Approaches
Up to this point, multi-level customization has been discussed in the context of mapping between levels,
without addressing how customization at each level occurs. In this section, we discuss a variety of
customization approaches, which are classified in Table 1. Customization approaches can firstly be divided
according to the modeling approach.

Table 1 Classification of Customization Approaches
Modeling
approach

Customization
access to lower
levels

Customizations
distinguishable from
their host layer or not

Special implementation
technology required

None Indistinguishable None
Indirect via
mark-up

Distinguishable Mark-ups
Black-box

Indirect via
escapes

Distinguishable Escapes

Indistinguishable None
Protected regions
API-based, e.g., through sub-
classing, call to/from
customization, and partial
classes

Direct without
round-trip Distinguishable

Aspects
Indistinguishable

Multi-level

Direct with
round-trip Distinguishable

Analysis and transformation

Black-box modeling approach
The black-box modeling approach is analogous to using a model compiler, which exposes only the top
level model for customization. We include the black-box approach in our classification as a degenerate
case of multi-level customization for the sake of completeness. The black-box approach is effective if all
desired systems are expressible in the source modeling language. Platform specific markups, which are
annotations for controlling source-to-target transformations [MDSD], offer limited customization. Escapes,

which are fragments in the target notation embedded in the source, enable more customization. For
example, in a modeling tool like Rational Rose RealTime, one can embed C++ code for actions in
statecharts. Both markups and escapes allow only indirect and limited (i.e. preplanned) access to the lower
level for customization. A notable drawback of both markups and escapes is that they mix levels of
abstraction by directly placing lower-level customizations at a higher level. Comparatively, escapes are
more problematic than markups in this respect since a source model can be considered as complete without
the markups but not without the escapes.

Multi-level modeling approach
Multi-level modeling affords direct editing of the lower levels for customization. Multi-level modeling
may or may not support round-tripping, which propagates lower level changes to the higher level and
higher-level changes to the entire lower level including the customizations. In current practice, most multi-
level modeling tools do not offer round-tripping. Another important dimension is whether the customized
parts of a layer can be distinguished from the rest of the layer. Indistinguishable customizations without
round-tripping are not practical since the customizations will be lost after regeneration. Indeed, current
multi-level modeling tools commonly support distinguishable customizations without round-tripping.
There are numerous ways to distinguish customizations. A protected region specially marks a
customization to prevent regeneration from overriding it. This marking may be done in an implicit way
through machinery that keeps track of user’s edits behind the scenes, as in CompuWare’s OptimalJ.
Another approach is to separate the customization completely from the generated parts using mechanisms
of the modeling or programming language. Such API-centric techniques include subclassing generated
classes, invoking generated elements by customized elements or vice versa, and using C#’s partial classes
[Greenfield04]. Yet another approach is to separate customizations into aspects. Protected regions and
aspects facilitate unplanned customization since they allow any part of the generated model or code to be
changed, unlike API-centric techniques. Although rare due to its difficulty, round-tripping can be achieved
by defining a reverse and a forward mapping between two levels that identify the higher level concepts in
the lower level and transforms the higher level concepts into the lower level elements respectively.
Customization is typically indistinguishable from generated elements in round-tripping, but distinction may
conceivably be leveraged to perform more sophisticated round-tripping.

The mappings between features and models discussed previously support any kind of direct
customization without round-tripping. We are not aware of any comprehensive round-tripping support in
feature-to-model mappings, but it is conceivably similar to model-to-code round-tripping in Framework-
Specific Modeling Languages [Antkiewicz06].

Conclusion
In this paper we introduced the customization cliff – a situation in which the application engineers face
custom coding after initial product configuration. We discussed the reasons behind the customization cliff
and proposed multi-level customization as the solution. In multi-level customization, the initial product
configuration results in a number of models and code at different levels of abstraction, enabling the
engineers to apply customizations at appropriate levels. We also discussed the need for models to be
connected by various kinds of mappings to enable change propagation between models and code. In
particular, we discussed mappings between feature models and other models which are specific to SPLs.
We also classified different customization approaches ranging from black-box to multi-level approaches
and discussed their properties and tradeoffs.

Multi-level customization is an existing technique whose value has already been demonstrated
through industrial support, including OptimalJ. However, multi-level customization involving features has
not been explored in practice yet. Although a larger example in the context of a realistic e-commerce DSP
within our group demonstrated the scalability of feature-based model templates [Lau06], realizing the
vision of multi-level customization from features to models to code remains a future work item that boasts
many challenges. In particular, multi-level round-tripping, verifying product derivation correctness, and
migrating customizations back into the DSP offer exciting opportunities for future exploration.

References

[Antkiewicz06] M. Antkiewicz and K. Czarnecki. Framework-specific Modeling Languages with Round-
trip Engineering. To appear in O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, editors, Proceedings of
Model Driven Engineering Languages and Systems, 9th International Conference, MoDELS 2006, Genoa,
Italy, October 2006.

[Batory03] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling stepwise refinement. In Proceedings of
the 25th International Conference on Software Engineering (ICSE), Portland, Oregon, pages 187–197, Los
Alamitos, CA, 2003. IEEE Computer Society.

[Batory05] D. S. Batory. Feature models, grammars, and propositional formulas. In J. H. Obbink and K.
Pohl, editors, Software Product Lines, 9th International Conference, SPLC 2005, Rennes, France,
September 26-29, 2005, Proceedings, volume 3714 of Lecture Notes in Computer Science, pages 7–20.
Springer, 2005.

[Czarnecki05a] K. Czarnecki, M. Antkiewicz. Mapping features to models: A template approach based on
superimposed variants. In R. Glueck and M. Lowry, editors, GPCE 2005 - Generative Programming and
Component Engineering. 4th International Conference, Tallinn, Estonia, Sept. 29 – Oct. 1, 2005,
Proceedings, volume 3676 of LNCS, pages 422 – 437, Springer, 2005.

[Czarnecki05b] K. Czarnecki and C. H. P. Kim. Cardinality-based feature modeling and constraints: a
progress report. In International Workshop on Software Factories, San Diego, California, Oct 2005. Paper
available from http://softwarefactories.com/workshops/OOPSLA-2005/Papers/Czarnecki.pdf.

[Czarnecki06] K. Czarnecki, C. H. P. Kim and K. T. Kalleberg. Feature Models are Views on Ontologies.
In Software Product Line Conference (SPLC), Baltimore, USA, August 21-24, 2006, IEEE CS, 2006.

[Czarnecki06a] K. Czarnecki and S. Helsen. A Characterization and Categorization of Model
Transformation Approaches. IBM Systems Journal, 2006.

[Czarnecki06b] K. Czarnecki, K. Pietroszek. Verifying Feature-Based Model Templates Against OCL Well-
Formedness Constraints. In Generative Programming and Component Engineering (GPCE), 2006.

[Greenfield04] J. Greenfield and K. Short. Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Wiley, Indianapolis, IN, 2004.

[Kang90] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report, Carnegie Mellon University, Software Engineering Institute, CMU/SE-
90-TR-21, 1990.

[Lau06] S. Q. Lau. Domain Analysis of E-commerce Systems Using Feature-Based Model Templates.
MASc thesis, University of Waterloo, Ontario, Canada, Jan. 2006. Available from http://gp.uwaterloo.ca/.

[MDSD] T. Stahl, M. Völter. Model-Driven Software Development: Technology, Engineering,
Management. Wiley, 2006.

[Wasowski04] A. Wasowski. Automatic generation of program families by model restrictions. In R. L.
Nord, editor, Software Product Lines: Third International Conference, SPLC 2004, Boston, MA, USA,
August 30-September 2, 2004. Proceedings, volume 3154 of Lecture Notes in Computer Science, pages
73–89, Heidelberg, Germany, 2004. Springer-Verlag.

