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Introduction 
The goal of software product lines (SPLs) is to improve productivity, time-to-market, and quality of 
application development by leveraging the commonalities of systems within an application domain while 
managing their variations. SPLs package these commonalities and variations into a domain-specific 
platform (DSP), which may be customized through configuration settings or code extensions.  Examples of 
large, vendor-provided DSPs are IBM's WebSphere Commerce for e-commerce applications and SAP's R/3 
for enterprise resource management systems.  The main advantage of creating a DSP is that its planned 
variability allows for a common product line architecture while its domain focus allows for domain-specific 
components that are functionality-rich. 
 

 
Figure 1: The customization cliff – problem and solution 
 

Today’s DSPs are usually implemented using code-centric technologies such as object-oriented 
frameworks, components, and sometimes even #ifdef preprocessor directives or similar macro-facilities, 
combined with wizards and form-based interfaces for easy configuration of requirements or features.  
Applications built on top of such DSPs represent some mixture of platform configuration settings and 
custom code.  The left side of Figure 1 shows a typical DSP, where the horizontal dimension represents the 
scope of applications that can be derived using the DSP and the vertical dimension represents the easiness 
of deriving the applications.  Cylinders represent applications that can be derived purely through feature 
configuration, while the rest of the applications on the plane, including the red cross, require custom 
coding.  Custom coding is required if the customer desiring the system indicated by the red cross is not 
willing to accept any of the next-best purely configured solutions, i.e. the closest cylinder to the red cross.  
Unfortunately, in most DSPs, the scope covered by configuration is relatively sparse, and the transition 
from configuration to custom coding is rather abrupt, requiring a jump off the top of a cylinder.  Steve 
Cook refers to this situation as the customization cliff1.  The idea is that beyond simple configuration 
facilities such as wizards, which are usually provided to lower the initial entry barrier, the platform user 
faces custom coding against the gory details of the platform’s application programming interface (API). For 
example, a change to the business workflow of an application generated from a particular feature 
configuration may require custom code that needs to interact with different parts of the DSP’s API. Writing 
such code may require substantial effort since the relevant parts of the low-level API need to be learned and 
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used correctly, and the amount of code that needs to be written may also be substantial.  This idea is at odds 
with the intuitive principle that “easy things should be easy to do and progressively more complex tasks 
should only get progressively harder to do, not insurmountably harder.”2 

Model-driven software development [MDSD, Greenfield04] has the potential to eliminate the 
customization cliff in traditional, code-centric implementations of SPLs by offering multi-level modeling 
and customization as a middle ground between configuration and custom coding, as shown in the right part 
of Figure 1. In a nutshell, a complex code customization is replaced by more manageable customizations at 
multiple levels of abstraction.  Furthermore, customizations at lower abstraction levels cover an increasing 
amount of the DSP scope.  For example, changing the business workflow of our sample application may be 
done at the level of the analysis model with no need for custom coding, while interfacing to another 
application may require custom coding. 

In the rest of the paper, after illustrating the idea of multi-level modeling of DSP-based 
applications with a concrete example, we compare and classify customization approaches that can be 
applied at different levels of abstraction and discuss the tradeoffs among them. 

Multi-Level Modeling for DSP-Based Applications 
 

 
Figure 2: Multi-level representation and customization of an e-commerce system 

 
The idea of a DSP supporting application engineering with multi-level customization is illustrated in Figure 
2.  We use an e-commerce DSP as an example.  An application engineer first selects or configures the 
desired business process features, as shown in the top callout.  Features available for selection are defined 
in a feature model [Kang90], which arranges the features in a composition-like hierarchy with some extra 
constraints.  Feature configuration process may be guided through constraint-based facilities, such as 
consistency checking, choice propagation, and auto-completion [Batory05, Czarnecki05b].  For example, in 
the top callout, selecting Checkout would cause the automatic selection of the undecided features 
Registration and RequiredFor due to choice propagation.  

Based on the feature selection, a default e-commerce application with requirements and design 
models and code is generated.  But for this generation to be possible, feature model must be mapped to 
generic requirements and design models.  One way to achieve such mappings, called feature-based model 
templates, is to annotate model elements with presence conditions, which are Boolean formulas over 
features [Czarnecki05a, Czarnecki06b].  For a given feature configuration, the presence conditions are 
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evaluated and the elements with false conditions are removed.  In Figure 2, since WishList feature was 
eliminated, Create WishList action, WishList class and its only association, and 
lastWishListTotal attribute of Registered class are eliminated (as indicated by the red color), 
thereby generating models from model templates with annotations. 

Another way, called feature-based restriction, is to constrain models based on a feature 
configuration [Wasowski04, Czarnecki06].  In Figure 2, an OCL constraint below the class diagram states 
that if Registration feature has been eliminated, then instances of Customer class cannot be direct 
instances of Registered, which effectively eliminates Registered.  Since Registration feature 
has been selected, the constraint has no effect.  A comparison between feature-based model templates and 
feature-based restriction is given in [Czarnecki06]. 

Yet another way of mapping features to models is using aspects.  In Figure 2, the top-right callout 
shows an authentication activity, which is part of a security aspect.  A separate rule-based access policy 
specifies locations in business processes, such as before the Checkout action, where the authentication 
activity has to be woven.  

The default implementation and models that were generated for the particular feature 
configuration most probably need to be further customized through extensions or modifications at multiple 
levels. Changes to one level need to be propagated to all other levels or at least the ones below the changed 
level. Both generation and change propagation are achieved using the discussed feature-to-model 
mappings, as well as model-to-model and model-to-code mappings, which are studied extensively in the 
field of model transformation (see [Czarnecki06a] for a survey on this topic).  

 

Classification of Customization Approaches 
Up to this point, multi-level customization has been discussed in the context of mapping between levels, 
without addressing how customization at each level occurs.  In this section, we discuss a variety of 
customization approaches, which are classified in Table 1.  Customization approaches can firstly be divided 
according to the modeling approach. 
 
Table 1 Classification of Customization Approaches 
Modeling 
approach 

Customization 
access to lower 
levels 

Customizations 
distinguishable from 
their host layer or not 

Special implementation 
technology required 

None Indistinguishable None 
Indirect via 
mark-up 

Distinguishable Mark-ups 
Black-box 

Indirect via 
escapes 

Distinguishable Escapes 

Indistinguishable None 
Protected regions 
API-based, e.g., through sub-
classing, call to/from 
customization, and partial 
classes 

Direct without 
round-trip Distinguishable 

Aspects 
Indistinguishable  

Multi-level 

Direct with 
round-trip Distinguishable 

Analysis and transformation 

Black-box modeling approach 
The black-box modeling approach is analogous to using a model compiler, which exposes only the top 
level model for customization.  We include the black-box approach in our classification as a degenerate 
case of multi-level customization for the sake of completeness.  The black-box approach is effective if all 
desired systems are expressible in the source modeling language.  Platform specific markups, which are 
annotations for controlling source-to-target transformations [MDSD], offer limited customization.  Escapes, 



which are fragments in the target notation embedded in the source, enable more customization.  For 
example, in a modeling tool like Rational Rose RealTime, one can embed C++ code for actions in 
statecharts.  Both markups and escapes allow only indirect and limited (i.e. preplanned) access to the lower 
level for customization.  A notable drawback of both markups and escapes is that they mix levels of 
abstraction by directly placing lower-level customizations at a higher level.  Comparatively, escapes are 
more problematic than markups in this respect since a source model can be considered as complete without 
the markups but not without the escapes. 
 

Multi-level modeling approach 
Multi-level modeling affords direct editing of the lower levels for customization.  Multi-level modeling 
may or may not support round-tripping, which propagates lower level changes to the higher level and 
higher-level changes to the entire lower level including the customizations.  In current practice, most multi-
level modeling tools do not offer round-tripping.  Another important dimension is whether the customized 
parts of a layer can be distinguished from the rest of the layer.  Indistinguishable customizations without 
round-tripping are not practical since the customizations will be lost after regeneration.  Indeed, current 
multi-level modeling tools commonly support distinguishable customizations without round-tripping.  
There are numerous ways to distinguish customizations.  A protected region specially marks a 
customization to prevent regeneration from overriding it.  This marking may be done in an implicit way 
through machinery that keeps track of user’s edits behind the scenes, as in CompuWare’s OptimalJ.  
Another approach is to separate the customization completely from the generated parts using mechanisms 
of the modeling or programming language.  Such API-centric techniques include subclassing generated 
classes, invoking generated elements by customized elements or vice versa, and using C#’s partial classes 
[Greenfield04].  Yet another approach is to separate customizations into aspects.  Protected regions and 
aspects facilitate unplanned customization since they allow any part of the generated model or code to be 
changed, unlike API-centric techniques.  Although rare due to its difficulty, round-tripping can be achieved 
by defining a reverse and a forward mapping between two levels that identify the higher level concepts in 
the lower level and transforms the higher level concepts into the lower level elements respectively.  
Customization is typically indistinguishable from generated elements in round-tripping, but distinction may 
conceivably be leveraged to perform more sophisticated round-tripping. 

The mappings between features and models discussed previously support any kind of direct 
customization without round-tripping.  We are not aware of any comprehensive round-tripping support in 
feature-to-model mappings, but it is conceivably similar to model-to-code round-tripping in Framework-
Specific Modeling Languages [Antkiewicz06].   

Conclusion 
In this paper we introduced the customization cliff – a situation in which the application engineers face 
custom coding after initial product configuration. We discussed the reasons behind the customization cliff 
and proposed multi-level customization as the solution. In multi-level customization, the initial product 
configuration results in a number of models and code at different levels of abstraction, enabling the 
engineers to apply customizations at appropriate levels. We also discussed the need for models to be 
connected by various kinds of mappings to enable change propagation between models and code. In 
particular, we discussed mappings between feature models and other models which are specific to SPLs. 
We also classified different customization approaches ranging from black-box to multi-level approaches 
and discussed their properties and tradeoffs. 

Multi-level customization is an existing technique whose value has already been demonstrated 
through industrial support, including OptimalJ.  However, multi-level customization involving features has 
not been explored in practice yet.  Although a larger example in the context of a realistic e-commerce DSP 
within our group demonstrated the scalability of feature-based model templates [Lau06], realizing the 
vision of multi-level customization from features to models to code remains a future work item that boasts 
many challenges.  In particular, multi-level round-tripping, verifying product derivation correctness, and 
migrating customizations back into the DSP offer exciting opportunities for future exploration. 
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