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ABSTRACT

Variability models represent the common and variable fea-
tures of products in a product line. Several variability mod-
eling languages have been proposed in academia and indus-
try; however, little is known about the practical use of such
languages. We study and compare the constructs, seman-
tics, usage and tools of two variability modeling languages,
Kconfig and CDL. We provide empirical evidence for the
real-world use of the concepts known from variability mod-
eling research. Since variability models provide basis for
automated tools (feature dependency checkers and product
configurators), we believe that our findings will be of interest
to variability modeling language and tool designers.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.8 [Software Engineering]: Metrics

General Terms

Design, Languages, Measurement

Keywords

Configuration, empirical software engineering, feature mod-
els, product line architectures, variability modeling

1. INTRODUCTION
Variability models represent the common and variable char-
acteristics, or features, of products in a product line. Prod-
uct line developers use them to manage the addition and
evolution of features and their dependencies. Product line
users derive concrete products from variability models. A
range of automated tools support these activities: analyz-
ers verify model consistency or detect dead features [1] and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’10, September 20–24, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$10.00.

Debug Level :int Compress Data

Journalling Flash File System 

Misc. Filesystems

Support ZLIB Default Compression

None SizePriority

Support ZLIB → ZLIB Inflate

JFFS2 → CRC ∧ MTD

0 ≤ Debug Level ≤ 2

Figure 1: Feature model interpretation of JFFS2

graphical configuration tools (configurators for short) sup-
port intelligent choice propagation and model completion [6,
23, 9]. Practical significance of variability modeling is re-
flected in the rise of industrial tools such as pure::variants by
Pure Systems GmbH and Gears by Big Lever Software Inc.
Recognizing the interest, the OMG currently seeks proposals
for a Common Variability Language (CVL) standard [14].

Although variability modeling languages have been de-
signed both in academia [10, 5, 3] and industry (pure::var-
iants, Gears), little is known on their practical use. A recent
survey [8] lists many research contributions on feature mod-
els but no empirical studies of industrial practice of feature
modeling. Our work addresses this gap. We study and com-
pare two variability modeling languages and their use: Kcon-
fig [24] and Component Description Language (CDL) [22].
Both were developed as part of open-source operating sys-
tems (OSs). Kconfig is used to describe the variability of
the Linux kernel. CDL is part of eCos, a real-time (RT) op-
erating system for embedded devices. Both Linux and eCos
have vast configuration spaces with thousands of features,
which explains their need for variability management.

We compare the constructs, the semantics, and the usage
of Kconfig and CDL, while using the well-researched con-
cepts of feature modeling as a reference. Feature models
were originally introduced as part of the Feature-Oriented
Domain Analysis (FODA) [10]. They gained popularity with
product-lines researchers and practitioners alike—mostly due
to the simple and intuitive notation.

Feature models are tree-like menus of configuration op-
tions, or features, with cross-tree constraints among the fea-
tures. Fig. 1 presents a sample feature model in the FODA
notation, which illustrates the core concepts shared by many
feature modeling languages. The sample model shows the



variability of the Journalling Flash File System—one of the nu-
merous files systems supported in both Linux and eCos. The
boxes represent features. The hierarchy represents depen-
dencies; for instance, the Default Compression feature allows
a further choice of sub-features that refine it: None, Prior-

ity, or Size. Filled dots mark mandatory features (like De-

bug Level), which must be selected if the parent is. Hol-
low dots represent optional features, which do not have this
constraint. Further, several features can be related by a
group constraint : the sub-features of Default Compression are
connected by an arc denoting the xor group constraint—
exactly one of the three choices has to be selected. Finally,
textual cross-tree constraints are listed to the right.

Our goal is (1) to provide quantitative and qualitative em-
pirical evidence whether the concepts researched in feature
modeling are used in real-world modeling languages and
product lines and, if so, how they are used; (2) to widen the
understanding of the design space for the studied concepts.

We analyzed the two languages and the models expressed
in them, the Linux kernel model and the eCos model. We
have instrumented the native tools supporting the languages
to build an infrastructure for collecting quantitative data
about the models. Guided by the collected statistics, we
inspected large parts of the models to study actual usage
patterns. In order to also compare the languages directly (as
opposed to via models) we also compared their semantics.
Many semantic differences turned out to be subtle and not
immediately obvious from the syntax.

With respect to the first objective, our study shows that
the core concepts of FODA feature modeling are supported
by both Kconfig and CDL and are used in both the Linux
and the eCos models. These include Boolean (optional),
integer and string features, a hierarchy, group constraints,
and cross-tree constraints. Interestingly, both languages and
models use concepts that are beyond FODA and have not
been as widely studied as the core concepts:

• Visibility : Both languages allow controlling the visi-
bility of features in the user interface (UI) of the con-
figuration tool via visibility conditions.

• Computed defaults: They both support computing de-
fault values of features, using values of other features.

• Binding modes: Kconfig uses three-valued logics to
specify whether a feature implementation is linked stat-
ically, built for dynamic linking, or absent. FODA uses
much more space, if representing this in Boolean logic.

• Domain-specific vocabulary : Both languages provide
specialized vocabularies for various kinds of features,
including architectural terms (CDL), such as compo-
nents and interfaces, or terms related to the configura-
tor UI (Kconfig), such as menus. The vocabularies are
specific to the two projects and likely improve the un-
derstandability of the models within the communities.

For the second objective, the study reveals interesting differ-
ences in how Kconfig and CDL provide the above concepts:

• Feature representation: Kconfig treats each feature as
a variable, either of Boolean, integer or String type;
CDL, in addition, also supports composite features
that contain both a Boolean component encoding fea-
ture presence and a numeric or string value.

• Feature hierarchy : For both languages the hierarchy
shown to users in a configurator largely follows the syn-
tactic nesting in the corresponding model; still, both

Figure 2: The eCos Configtool GUI

languages offer some mechanisms to control the con-
figuration hierarchy separately from syntactic nesting.

• Group constraints: Kconfig supports feature grouping
constructs with group cardinalities limited to xor, mu-
tex, and or. CDL is more flexible, allowing integer
intervals as group cardinalities; however, the studied
models only use xor, mutex, and or cardinalities.
In feature modeling (and Kconfig), only parents can
impose group constraints on their children; in CDL
features can impose group constraints on any other
features and eCos makes use of it.

• Visibility and computed defaults: Both languages sup-
port two types of conditions on a feature: conditions
defining only configuration dependencies and condi-
tions defining both such dependencies and visibility.
Further, visibility and computed defaults are used to-
gether to provide derived features—automatically com-
puted features, not shown to the user in the UI. De-
rived features are used to simplify constraints or define
implementation features used in the build system.

• Constraint language: Both languages support arbi-
trary Boolean constraints. Kconfig supports also equal-
ity tests on integer and string values. CDL adds vari-
ous arithmetic and string operations, and a few built-in
functions. The models reveal that arithmetic opera-
tions are likely needed for embedded software, as in
eCos; whereas string operations could be dealt with in
the build system outside of the models, as in Linux.

We observed limitations in the configurators for Kconfig and
CDL (see Fig. 2 for the UI of the eCos tool). Particularly
the Kconfig configurator lacks reasoning procedures to sup-
port choice propagation. To mitigate this, the Kconfig lan-
guage includes an imperative construct for specifying choice
propagation, which delegates this task to model developers;
however, both the Kconfig user manual and many devel-
oper comments in the Linux revision history [11] acknowl-
edge that using the construct is very error-prone. The eCos
configurator is far more intelligent thanks to an inference
engine; however, the engine offers incomplete reasoning and
may propose configuration choices that would not be desir-
able for the user. Interestingly, both configurators follow a
reconfiguration paradigm: any configuration task starts with
an initial, possibly default, configuration. However, scalable
reasoning to support conflict resolution in reconfiguration
for rich languages such as Kconfig and CDL remains an in-
teresting open problem.



Kconfig and CDL are interesting and highly relevant study
objects. Designed not by researchers, but by developers of
large industrial-strength product lines, they are tailored to
satisfy the needs of these large projects (8M SLOC for Linux
and 0.9M SLOC for eCos). The size of the models (6320
features for Linux and 1244 features for eCos) witnesses the
scalability of the respective modeling approaches.

Since both Linux and eCos are open source, their usage
can be studied openly, and researchers can independently
validate and replicate such studies. Both languages sup-
port quite different systems: the kernel of a general purpose
OS (Linux) vs. the entire real-time OS for embedded ap-
plications (eCos). They were developed independently from
each other, and independently from the feature modeling
languages with research origin. Since they share many sim-
ilar concepts, they can confirm the importance of the mod-
eling constructs discussed in the literature.

Although our analysis is limited to variability languages
and models from the OS domain, we believe that other
projects such as RT embedded systems that require static
configuration will likely have similar requirements. Thus,
our findings are of interest to a growing audience of vari-
ability modeling language and tool designers, especially in
efforts such as the development of OMG’s CVL standard.

2. THE SYSTEMS
The implementation of the Kconfig language is distributed

together with the Linux kernel source. Kconfig has been
used to specify build-time dependencies of the kernel since
2002. The Linux configurator reads the Kconfig model and
allows the user to select features in a graphical UI closely
resembling the CDL configurator of Fig. 2. It outputs a set
of feature-value mappings that are referenced in Makefiles
and in the source code (as preprocessor directives).

The studied version 2.6.32 of the Linux kernel supports
23 hardware architectures. The code base spans 1880 direc-
tories and 701 Kconfig files. Kconfig models are distributed
over multiple files, organized according to the source code hi-
erarchy. Each Kconfig specification is placed alongside the
related code. An architecture-specific Kconfig file is used
as a starting point for the specification; a simple inclusion
mechanism is used to include other files.

CDL was designed for the purposes of the configurable em-
bedded operating system eCos (ecos.sourceware.org). Unlike
Kconfig, which is a standalone language, CDL is embed-
ded in Tcl, a dynamic and highly extensible scripting lan-
guage. CDL inherits characteristics from Tcl, such as syn-
tactic nesting of blocks, dynamic typing of values, and a rich
set of operators in constraint expressions. CDL’s configura-
tor (Fig. 2) offers an inference engine for conflict resolution.

The studied version 3.0 of eCos supports 116 hardware
architectures, called targets, and comprises almost a mil-
lion lines of code. The code base is divided into packages,
each one containing the source code and a set of CDL files
declaring the configurability of the package. Each target de-
fines a set of packages specific to the architecture. So-called
templates aggregate packages with more cross-architecture
functionality. In the configurator, a user first selects a target
and then one of the templates; finally, the user may decide
to load additional packages into the configuration tree.

We scope our analysis to the x86 architecture in Linux and
i386PC target with the all template in eCos. We extended the

configurators to export the configuration tree together with
all the information necessary for our analysis.

3. THE LANGUAGES

To compare Kconfig and CDL, we reverse-engineered for-
mal semantics specification for each of them [18, 2], by an-
alyzing user manuals, testing the tools on examples, and
inspecting tool implementations. This step allowed us to
discover many subtle differences and connections.

Here we summarize the key similarities and differences
between the languages using the feature model in Fig. 1 as
the running example. Fig. 3 shows the same model in Kcon-
fig (to the left) and CDL (to the right). Both snippets are
in fact extracted from the original Linux and eCos models.
They define the features of the Journalling Flash File Sys-
tem, version 2 (JFFS2), supported by both OSs. In fact,
eCos’s JFFS2 implementation was ported from Linux. JFFS2

is one of very few of such ports, but it makes an ideal ex-
ample to illustrate the similarities and differences between
Kconfig and CDL. To give a realistic impression of both lan-
guages, we keep the examples close to the originals; in partic-
ular, we retain the original identifiers, which differ somewhat
from the names in Fig. 1. The few lines introduced purely
for the purpose of the example are underlined; we also left
out unnecessary parts of the corresponding sources. Our dis-
cussion will follow Table 1 as an outline. The table summa-
rizes the similarities and differences among Kconfig, CDL,
and FODA-based feature modeling and provides citations
for concepts that go beyond the original FODA notation.

Features. A feature is a label that can take one or more of
the following roles:

1. User feature: a configuration option that can be set by
the user in a configurator;

2. Grouping feature: a label grouping a set of other re-
lated features, such as a menu;

3. Implementation feature: a configuration option accessed
by the build system or a generator; and

4. Derived feature: a configuration option automatically
computed via constraints.

Kconfig and CDL are domain-specific languages, providing
specialized keywords for various kinds of features (Tbl. 1,
row 1). Feature kinds in Kconfig reflect their appearance
in the configurator UI: menus are pure grouping features;
menuconfigs are menus that can be enabled and disabled
by clicking; choices are like menus or menuconfigs except
that they also impose grouping constraints on their chil-
dren; and configs are individual options. The menucon-
fig MISC_FILESYSTEMS (Fig. 3 Line k-1) corresponds to the
root in Fig. 1. It contains the choice (k-38) corresponding
to the parent feature of the xor-group, Default Compression,
and eight configs corresponding to the remaining features of
Fig. 1—all enclosed in if (k-4) and endif (k-49).

CDL feature kinds reflect types of implementation entities
they map to: packages are top-level containers for features,
mapping to eCos packages. Components are nested features
grouping other features. Options are simple configuration
options (leaves). Several possibly exclusive features can pro-
vide equivalent functionality required elsewhere. Interfaces
are abstractions allowing imposing cardinality constraints
in such cases. Line c-9 states that CYGPKG_FS_JFFS2 imple-
ments the interface CYGINT_IO_FILEIO (not shown).



concept Kconfig CDL feature models [10]
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Grouping menu, menuconfig, choice package, component, interface feature
Individual config option feature

fe
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s
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ta

ti
o
n Composition single value bool. value w/opt. data value bool. value w/opt. attribute

Feature type
Switch bool, tristate bool, booldata (optional)
Data hex, int, string booldata, data integer, string
None (menu) none (mandatory)

h
ie
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rc

h
y

Specification syntactic and computed syntactic and reparenting syntactic
Child-to-parent impl. visibility configuration & visibility configuration
Root synthetic synthetic explicit

g
ro

u
p

c
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n
s
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a
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ts Mutex [0..1] optional Boolean choice interface constraint, int ≤ 1 mutex group [4]
Or [1..∗] mandatory tristate choice interface constraint, int ≥ 1 or group [4]
Xor [1..1] mandatory Boolean choice interface constraint, int = 1 xor group
Interval [m..n] N/A interface constraint, m ≤ int ≤ n [m..n] group [16]

fe
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re
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o
n
s
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ts

Configuration select requires, active if cross-tree constraint
Value restrictions range legal values cross-tree constraint
Derived features non-prompt default calculated, interface rare [5]

Defaults prompt default default value rare [4]
Visibility conditions prompt condition active if rare [5]
Expression operators &&, ||, !, =, != also inequality, arithm. and str. ops. unspecified
Binding modes three-value logic N/A rare [4]

o
th

e
r

Textual content prompt, help display, description description
Modularization textual inclusion dynamic loading/unloading rare [3]
Build symbols one-to-one one-to-many unspecified
Code mappings no, uses KBuild (m:n) yes (1:n), and build specifications N/A

Table 1: Mapping of concepts between Kconfig, CDL and feature modeling

Feature representation. The semantics of a feature model is
a set of configurations. A configuration specifies the presence
or absence of each feature, and a value for the related integer
or string if the feature is present (when applicable).

Kconfig and CDL differ in the ways they represent con-
figurations (see Tbl. 1, row 2). In Kconfig, a configuration
assigns a single value to each feature. If F is the set of all
features in the model, and Val is a set of all possible values,
then a particular configuration σ maps features to values:

σ : F 7→ Val and if σ(f) = v then v ∈ type-of(f)

Table 1 lists the possible feature types in three categories:
switch, data, and none. Switch features appear as a checkbox
in the configurator. Data features allow the user to input a
value in a text box. Kconfig’s menus have no type, which
corresponds to features of type none in CDL.

The Kconfig type bool has two values, y and n, internally
represented by 2 and 0; 0 denotes feature absence, while 2
means that the feature’s implementation is compiled stati-
cally into the kernel. Tristate resembles bool, except for
the additional m value, represented internally by 1, which de-
notes that the feature should be compiled as a dynamically
loadable module. For example JFFS2_ZLIB (k-32) has type
bool and JFFS2_FS (k-6) is tristate. Kconfig supports two
integer types: int (decimal) and hex (hexadecimal). Both
types also allow an empty value, which is used to encode the
absence of an integer feature. The type string is ambiguous
in this respect: a string feature with the empty value can
be seen as a present feature with that value or an absent
feature; the two cases are indistinguishable.

In CDL, every feature has two values: an enabled state and
a data value. The enabled state is a Boolean and encodes
the presence or absence of the feature; the data value is
dynamically typed and used to store numbers and strings.

Thus, a configuration maps features to value pairs:

σ : F 7→ {0, 1}×Val and if σ(f)=(e, d) then d∈type-of(f)

CDL refers to the type of a feature as a flavor. The available
flavors map neatly to FODA features as follows:

none 7→ Mandatory with no attribute
bool 7→ Optional with no attribute
data 7→ Mandatory with attribute

booldata 7→ Optional with attribute

More precisely, features with the flavors none and data can
be made optional by specifying a configuration constraint
(explained later). Still, an optional feature with flavor none
or data differs from its respective bool or booldata counter-
part: the latter two are shown as user-selectable checkboxes
in the configurator, whereas the former two have no check-
boxes since their presence is controlled via visibility condi-
tions. Figure 3 includes features assuming numeric values
(CYGOPT_FS_JFFS2_DEBUG), Bool values (CYGOPT_JFFS2_-

NAND), or strings (CYGOPT_FS_JFFS2_COMPRESS_CMODE).

Hierarchy. Typical modeling languages organize features
into hierarchies (Tbl. 1, row 3). We distinguish between syn-
tactic and configuration hierarchy. The former is given by
the syntactic nesting of features, such as the nesting of con-
figs in menus or choices in Kconfig, or options and compo-
nents in other components and packages in CDL. The config-
uration hierarchy is shown to the user in a configurator (cf.
Fig. 2). In the notation of Fig. 1, the diagrammatic tree rep-
resents both the intended configuration hierarchy and the
syntactic nesting. In Kconfig and CDL the configuration
hierarchy can deviate from the syntactic one.

In Kconfig, syntactic nesting within menuconfigs and choices
will be reflected in the configuration hierarchy; however, con-
figs can also appear as children of other configs, even though



k-1 menuconfig MISC_FILESYSTEMS

k-2 bool "Miscellaneous filesystems"

k-3

k-4 if MISC_FILESYSTEMS

k-5

k-6 config JFFS2_FS

k-7 tristate "Journalling Flash File System" if MTD

k-8 select CRC32 if MTD

k-9

k-10

k-11

k-12

k-13 config JFFS2_FS_DEBUG

k-14 int "JFFS2 Debug level (0=quiet, 2=noisy)"

k-15 depends on JFFS2_FS

k-16 default 0

k-17 range 0 2

k-18 --- help ---

k-19 Debug verbosity of ...

k-20

k-21

k-22 config JFFS2_FS_WRITEBUFFER

k-23 bool

k-24 depends on JFFS2_FS

k-25 default HAS_IOMEM

k-26

k-27

k-28 config JFFS2_COMPRESS

k-29 bool "Advanced compression options for JFFS2"

k-30 depends on JFFS2_FS

k-31

k-32 config JFFS2_ZLIB

k-33 bool "Compress w/zlib..." if JFFS2_COMPRESS

k-34 depends on JFFS2_FS

k-35 select ZLIB_INFLATE

k-36 default y

k-37

k-38 choice

k-39 prompt "Default compression" if JFFS2_COMPRESS

k-40 default JFFS2_CMODE_PRIORITY

k-41 depends on JFFS2_FS

k-42 config JFFS2_CMODE_NONE

k-43 bool "no compression"

k-44 config JFFS2_CMODE_PRIORITY

k-45 bool "priority"

k-46 config JFFS2_CMODE_SIZE

k-47 bool "size (EXPERIMENTAL)"

k-48 endchoice

k-49 endif

c-1 cdl_component MISC_FILESYSTEMS {

c-2 display "Miscellaneous filesystems"

c-3 flavor none

c-4 }

c-5

c-6 cdl_package CYGPKG_FS_JFFS2 {

c-7 display "Journalling Flash File System"

c-8 requires CYGPKG_CRC

c-9 implements CYGINT_IO_FILEIO

c-10 parent MISC_FILESYSTEMS

c-11 active_if MTD

c-12

c-13 cdl_option CYGOPT_FS_JFFS2_DEBUG {

c-14 display "Debug level"

c-15 flavor data

c-16 default_value 0

c-17 legal_values 0 to 2

c-18 define CONFIG_JFFS2_FS_DEBUG

c-19 description "Debug verbosity of...."

c-20 }

c-21

c-22 cdl_option CYGOPT_FS_JFFS2_NAND {

c-23 flavor bool

c-24 define CONFIG_JFFS2_FS_WRITEBUFFER

c-25 calculated HAS_IOMEM

c-26 }

c-27

c-28 cdl_component CYGOPT_FS_JFFS2_COMPRESS {

c-29 display "Compress data"

c-30 default_value 1

c-31

c-32 cdl_option CYGOPT_FS_JFFS2_COMPRESS_ZLIB {

c-33 display "Compress data using zlib"

c-34 requires CYGPKG_COMPRESS_ZLIB

c-35 default_value 1

c-36 }

c-37

c-38 cdl_option CYGOPT_FS_JFFS2_COMPRESS_CMODE {

c-39 display "Set the default compression mode"

c-40 flavor data

c-41 default_value { "PRIORITY" }

c-42 legal_values { "NONE" "PRIORITY" "SIZE" }

c-43 }

c-44 }

c-45 }

c-46

c-47

c-48

c-49

Figure 3: A model excerpt expressed in Kconfig (left) and CDL (right). Corresponding definitions are aligned.

they cannot be nested syntactically. For example, a group of
consecutive configs declaring dependency on the same par-
ent (lines k-13-25), is placed under this parent (JFFS2_FS).

In CDL, the configuration hierarchy mostly follows the
syntactic nesting of features unless declared otherwise. Re-
parenting is a mechanism to explicitly specify a parent from
a different syntactic scope (see Line c-10). It allows adjust-
ing the developer-oriented structure of the model to make it
more user-oriented before it is shown in the configurator.

An important property of the configuration hierarchy in
FODA-like languages is that the presence of a child feature
implies the presence of its parent: for each edge from child
c to parent p, we have that σ(c) → σ(p). The configuration
hierarchy in CDL has this property too. In contrast, the
configuration hierarchy in Kconfig only enforces the child-
to-parent implications for the visibility conditions. So the
parent of a feature that is visible in the configurator must be
visible. However, if the parent is not selected, a feature can
still be selected automatically, unlike in other known feature
modeling languages.

Finally, both Kconfig and CDL configurators show a syn-
thetic root—a fresh root node that is not explicitly specified

in the model. This enables working with diagrams that are
forests and not trees like in FODA.

Group constraints. In feature modeling, group constraints
restrict the number of sibling features to be selected if their
parent is selected (Tbl. 1, row 4): exactly one child for xor,
at least one for or, and at most one for mutex. Alterna-
tively, the constraint can be given as an interval.

In Kconfig, a choice groups a set of features and imposes
a group constraint on them. Choices are either bool or
tristate with a mandatory or optional modifier flag. If
not specified otherwise, a choice is bool and mandatory;
thus, the choice in line k-38 is an xor group. Note that
eCos developers decided to model this group differently (c-

38): with a data-flavoured option holding one of three string
values encoding the three compression modes.

CDL interfaces are a more expressive construct for re-
stricting cardinality of a set of features. The value of an
interface counts the number of its selected implementations
(concrete features). Restricting this value introduces a car-
dinality constraint. In contrast to FODA-like languages,
CDL does not require that all implementing features are



siblings—the feature activating the group constraint need
not be a parent of the constrained features.

Feature Constraints. CDL and Kconfig support three types
of constraints (Tbl. 1, row 5): (1) configuration constraints
restrict the legal combinations and values of features; (2) de-
faults provide default values for features, possibly depending
on other features (computed defaults); they can be overrid-
den by the user; (3) visibility conditions control the visibility
of features in the configurator UI. Features whose visibility
condition is false are not shown or otherwise disabled for user
input. Computed defaults and visibility conditions have not
been widely considered in feature modeling. Unlike configu-
ration constraints, defaults and visibility conditions have no
direct impact on the configuration semantics. However, they
interact with each other in complex ways that may impact
configuration semantics. We will explain this soon.

A configuration constraint is expressed using select in
Kconfig and requires or active_if in CDL. For instance,
the constraint Support ZLIB→ZLIB Inflate of Fig. 1 is expressed
as a select in line k-35 and as a requires in c-34. Both
select and requires take a condition, say p, and denote
the configuration constraint f → p, where f is the feature in
which they are defined. While p can only be a feature iden-
tifier for select (Kconfig), it can be an arbitrary Boolean
expression for requires (CDL), possibly accessing multiple
features via logical, arithmetic, and string operators.

CDL’s active_if has the same syntactic form and config-
uration semantics as requires, except that it also enforces
a visibility condition. While the visibility of a child in both
Kconfig and CDL is inherited from its parent in the con-
figuration hierarchy, an explicit visibility condition allows
non-parent features to control the visibility, too. For exam-
ple, the visibility of CYGPKG_FS_JFFS2 is controlled by the
parent (c-10) and another feature, MTD (c-11).

In Kconfig, the visibility of a feature is controlled by a
prompt condition. A prompt is a string that follows a type
declaration (k-7). It is shown to the user when the feature
is visible (the condition is satisfied). The condition is spec-
ified after the prompt: here MTD in line k-7. Note that the
select statement in line k-8 is also conditioned on the same
condition as the prompt. This pattern of guarding other con-
straints by the prompt condition is frequent in Kconfig; thus,
the language provides a syntactic sugar for it. The depends
on statement adds a condition to the prompt and all other
constraints of a feature. For example, the prompt, default,
and range specifications of JFFS2_FS_DEBUG are only active
if JFFS2_FS is selected, as specified in line k-15. Constraint
expressions in Kconfig can use logical operators and equality
tests over bool, tristate, integers and strings.

Range restrictions on integer values are specified using
range in Kconfig and legal_values in CDL (k-17, c-17); the
latter can also be used to specify valid string values (c-42).
Default values are specified using default in Kconfig (k-16)
and default_value in CDL (c-16). If no default value is
specified, Kconfig assumes 0 for bool and tristate and the
empty string for string, int, and hex; in CDL the assumed
defaults for boolean and data values is 0.

In Kconfig visibility conditions, defaults, and configura-
tion constraints interact in intricate ways. If the visibility
condition of a feature is false, its default value specification
becomes a configuration constraint because the feature can-
not be accessed by the user to modify the default value. We
refer to such invisible features with calculated values as de-

rived features. JFFS_FS_WRITEBUFFER in line k-22 is derived
since it has no prompt declared, thus, has a false visibility
condition, but has a default that determines its value. Notice
that this feature was not shown in Fig. 1, as FODA notation
does not include syntax for invisible, derived features.

An example of a conditionally derived feature is JFFS2_ZLIB,
with a stronger visibility condition (prompt and depends on)
than its default condition (just depends on). Thus, when
the feature is not visible, its value is derived using its de-
fault. This happens even if its parent, JFFS2_COMPRESS is
not selected. Consequently, JFFS2_ZLIB does not establish a
child-parent implication, as in feature modeling notations.

CDL clearly separates defaults, which can be overridden
by the user and have no configuration semantics, from de-
rived features, which cannot be changed directly by the user.
Default values are specified using default_value and only
take effect when the feature is visible. Invisible features can-
not be part of a configuration. Derived features comprise in-
terfaces as well as other feature kinds with the calculated
keyword, which carry an expression that computes their
values (for example line c-25). A feature can either use
default_value or calculated, but not both. Thus, com-
plex conditionally derived features do not appear in CDL.

A unique feature of Kconfig is its first-class support for a
three-valued logic. Its main operators are defined as follows:

eval(! e) = 2 − eval(e)

eval(e1 && e2) = min(eval(e1), eval(e2))

eval(e1 || e2) = max(eval(e1), eval(e2))

The semantics of expressions follows the logic of Kleene,
where mod corresponds to the unknown state. The equality
test is defined only between constants (i.e. tristate, int,
hex and string) and features state. It evaluates to y (2) if
the values match, and to n (0) otherwise.

Textual content. Both Kconfig and CDL allow providing
natural language descriptions for features (Tbl. 1, row 6):
a short text, called prompt (k-7) and display (c-7), that is
displayed to the user to elicit a configuration decision; and
a longer description, called help (k-19) and description (c-

19) that explains the feature in detail.

Modularization. Modularization allows division of specifica-
tions into parts. Kconfig and CDL have modularization ca-
pabilities that range from static source inclusion in Kconfig
to more complex mechanisms for dynamic loading of pack-
ages during configuration in CDL.

Mapping to code. All configs and menuconfigs in Kconfig
correspond directly to symbols controlling the build system,
and to the preprocessor directives of the same name. These
symbols and their values are referenced in presence condi-
tions inside the KBuild system and control the inclusion of
particular source files from the Linux codebase. Although
these presence conditions can be of any form, they are a
disjunction or conjunction of symbols in most cases.

In CDL, feature names do not always correspond directly
to symbols for the build and the preprocessor. Instead, a
more fine-grained control over symbols is supported, such as
suppressing symbols, defining additional ones, or changing
their formatting. Line c-18 shows an example of a feature
defining a build symbol, CONFIG_JFFS2_FS_DEBUG, which
actually appears in the code ported from Linux to eCos.



Linux #ftrs %ftrs eCos #ftrs %ftrs
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bool type 2313 37 bool flavor 455 37
tristate type 3692 58 booldata flavor1 192 15

6005 95 647 52
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int type 175 2.8
hex type 32 0.5 data flavor 489 39
string type 28 0.4 booldata flavor1 192 15

235 3.7 681 55

n
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e menu 80 1.3 component 108 9

(no type) (flavor none)

Total 6320 100 Total 1244 100
1 Repeated as booldata is both switch and data feature type.

Table 2: Representation statistics (cf. Tbl. 1 row 2)
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xor 39 0.6 xor 11 0.9
or 3 0.05 or 0 0
mutex 0 0 mutex 1 0.08

42 0.7 12 1

Table 3: Grouping statistics (cf. Tbl. 1 row 4)

4. THE MODELS
Let us turn from the languages to their use. We now discuss
the models of Linux and eCos, expressed in Kconfig and
CDL respectively. Again we will use Table 1 as an outline.

Features and grouping. The Linux model has 6320 features;
the eCos model is one fifth of this size. Table 2 shows the
breakdown of features by type. The majority of features
(95%) in the Linux model are bool or tristate, with only 3.7%
having integer or string types. In contrast, more than half of
the features in eCos are data features; this is interesting since
the majority of the examples found in the literature have
few or no such features [19]. Note that we listed booldata
features both as switch and data features to reflect their
dual nature; the percentages are given with respect to the
total number of features, which counts them only once. We
established the following reasons for the large percentage of
data features in eCos. First, some feature kinds contain data
values by default, even though they are not intended to be
directly set by the user: interfaces carry the count of the
number of implementing features selected in a configuration
and packages always have the type booldata, with the data
part representing the package version as a string.

There are 130 data or booldata interfaces and 56 booldata
packages in eCos. Further, 24 of data or booldata features
represent enumerations, similar to the last option in Fig. 3.
Interestingly, they accept 117 legal values in total, which is
the number of additional bool features that we would need
to express these enumerations in Kconfig, as shown in Fig. 3.
There are also 72 data or booldata features representing
compiler flags, 4 representing linker flags, and 40 holding
names of files with test code. The remaining 355 data or
booldata features, or 28% of all features, represent diverse
configuration constants such as priorities, buffer sizes, and
supported IO ports. Many of these constants are specific

to a RTOS and would either be set dynamically or not be
configurable in Linux.

As many as a quarter of all eCos features are explicit
grouping features (Table 3), as opposed to Linux’s 4%. This
is unexpected given that the percentages of non-leaf features
in both models are comparable: 16% for Linux and 24% for
eCos (some components in eCos are leaves). The reason is
that Linux also allows nesting of configs, so configs can also
take a grouping role. Whereas menus and menuconfigs cre-
ate a separate menu structure requiring explicit drill-down
by the user, config hierarchies are shown by indentation and
are, thus, more lightweight to navigate.

Less than 1% of features in eCos and Linux impose group
constraints on their children. Let us see how group con-
straints are used in practice. The three or groups in Linux
are motivated by binding time: the or constraint in the
model allows including multiple alternative features in the
configured kernel as dynamically loadable modules; only one
of them will be loaded at runtime. The only mutex group
in eCos represents three alternative random number gen-
erators. There are no mutex groups in Linux; a possible
reason is the need to define a build symbol even when no
group member is selected, cf. JFFS_CMODE_NONE in Fig. 3.

Recall that CDL interfaces generalize group cardinality
constraints. This generality is not exploited in practice,
though. We did not find a single instance of a group car-
dinality constraint, which is a proper (m, n)-interval, as op-
posed to intervals with lower bound being 0 or 1 and upper
bound being 1 or *. Moreover, although an interface can
place a group constraint on features that are not siblings, all
interfaces are implemented by sibling features. Still, the in-
terface and the implementing features are usually far apart,
i.e., do not have a common parent and are implemented
across different packages. In other words, the group con-
straint is activated (implied) by the parent of the interface,
which is not the parent of the set of constrained features.
This form of a group constraint is more general than what
is found in feature modeling, where the parent of the group
activates the group constraint. Such generalized group con-
straints are used to model the case where a given package
defines an interface required by its implementation and mul-
tiple other packages provide alternative implementations of
that interface. In total, we had 81 such constraints in eCos.

Hierarchy. Both Linux and eCos have shallow configura-
tion hierarchies, with an average depth of 4 for Linux and 3
for eCos and maximum depth of 8 and 6 respectively. The
number of features with a given number of children decreases
sharply with the increase of the number of children: the ma-
jority of features are leaves (5316 and 947 respectively); the
second-largest class are single-child parents (452 and 76),
followed by two-child parents (161 and 72). Nevertheless
the maximum number of children (branching) is as much
158 and 29 respectively. This indicates a need to develop
modeling interfaces that support high variation in branch-
ing from very limited to very wide.

Recall that, unlike feature modeling and CDL, Kconfig
uses hierarchy to depict a visibility relation instead of a
presence condition, allowing a child feature to be configured
without its parent. This possibility is indeed exploited in
the Linux model. We verified with a SAT solver applied to
a derived boolean semantics of the Linux model that 300 fea-
tures do not imply their parents (like JFFS2_ZLIB in Fig. 3).

We found 39 (3%) re-parented features in eCos. Most



Number of referenced features

N
u
m

b
e
r 

o
f 
fe

a
tu

re
s

0

200

400

600

800

1000

1200

0

200

400

600

800

0 5 10 15 20

lin
u
x

e
c
o
s

Figure 4: Feature dependencies per feature

re-parentings move packages in the hierarchy; however, 10
options and 2 components were re-parented as well. For ex-
ample, the CYGBLD_GLOBAL_OPTIONS component from CYG-

PKG_HAL_I386_PC package was promoted to the top-level
and, in addition to its syntactic children, two new options
were re-parented under this component. Still, since rela-
tively few features (3% in eCos, 5% in Linux) violate hierar-
chical rules of feature modeling, we observe that practition-
ers find hierarchical organization of dependencies natural.

Constraints. The vast majority of features (surprisingly
86% both for Linux and eCos) declare constraints of some
sort (configuration, visibility, or defaults). Fig. 4 shows his-
tograms with dependencies per feature, defined as the num-
ber of features referenced in constraints of a given feature. In
Linux, most features refer to 2-4 other features; this range is
much lower in eCos, with typically 1-2 dependencies. Some
features declare a large number of dependencies; the maxi-
mum is 56 in Linux and 21 in eCos.

Table 4 summarizes the use of visibility conditions and
defaults. Both Linux and eCos models use visibility condi-
tions. In Linux, 3% of features have an explicitly specified
prompt condition (like JFFS2_COMPRESS), rather than just
via depends on, and 10% of features in eCos use active_if.
Further, 15% of Linux features specify explicit defaults; eCos
makes heavy use of explicit defaults (69% of features). Only
a small part of features is computed via expressions: 2% for
Linux and 7% for eCos; the remaining defaults are specified
as literals. Recall that Linux supports conditionally-derived
features, i.e., features that are derived or user-changeable
with a default value, depending on a condition; 3% of Linux
features belong into this category. Finally, 12% (Linux) and
18% (eCos) of features are (unconditionally) derived.

Let us look at some examples of constraints. Linux con-
straints are mostly logical expressions, such as a single fea-
ture or more complex expressions, e.g.,

SMP && (X86_32 && !X86_VOYAGER || X86_64)

Linux constraints often reference integer or string features
using equality tests. In a single case, an integer feature in
Linux uses another feature as a bound in a range constraint.

Many eCos constraints are logical expressions too, but
arithmetic and string operations are not uncommon. For
example,

requires { CYGNUM_FS_FAT_NODE_POOL_SIZE >=
( CYGNUM_FILEIO_NFILE + 2 ) }

String concatenation (denoted by “.”) is often used to
produce lists of test or implementation source files:

calculated {"tests/sprintf1 tests/sprintf2 " .
((FILEIO && RAM) ? "tests/fileio" : "")}

Other constraints check whether a particular file name
is included in a list; e.g. requires is_substr(LIBS, "lib-

target.a"). Such constraints implement code mappings. In
Linux, these are computed in KBuild, outside of the model.

Summary. Let us now summarize the main lessons learnt:

• Core FODA concepts (Tbl. 1) are used in both models.

• Boolean features are the basic and most common type;
the constraint language should support arbitrary Bool-
ean constraints, including mutual exclusion.

• Linux uses heavily the three-state logics for controlling
binding mode; more than half features are tristate.

• The languages benefit from being domain-specific. Do-
main vocabulary increases understandability.

• Integer features are important for embedded systems;
eCos uses arithmetic operators and comparisons.

• Strings are mostly used for file names; string opera-
tions other than equality tests seem essential if the
build system lacks appropriate support.

• Group constraints dependent on a remote feature im-
prove modularity in the eCos model. Since only basic
cardinalities are used, the interfaces appear overly gen-
eral. It suffices to include n-ary xor, or and mutex
operators in the constraint language.

• Separating configuration hierarchy from syntactic hier-
archy helps maintain modularity of the developer view
separately from the user view.

• Like in feature modeling, child-to-parent implications
are enforced in CDL and in most of the Linux model.

• Default values (also computed) are used a lot in prac-
tice, saving the user unnecessary configuration work.

• Visibility control is essential in both models. Two con-
structs are useful: a pure configuration condition (like
requires) and a combined configuration-and-visibility
condition (like active_if). Configuration indepen-
dent of visibility leads to intricate semantics.

• Derived features are mostly used to perform calcula-
tions that otherwise would be hidden in the build sys-
tem; this way feature dependencies are specified uni-
formly and explicitly in one model.

5. THE CONFIGURATORS
Kconfig and CDL are supported by GUI-based configu-

rators that both support a configuration process known as
reconfiguration: The tool is initialized with a configuration
loaded from a file, or based on default values, which is mod-
ified by the user to reach a desired state. Each of the two
configurators takes a different approach to ensure that the
user reaches a valid configuration. The Kconfig configura-
tor prevents the user from modifications that violate con-
straints; the eCos configurator allows such modifications,
but it detects violations and helps in resolving them.

The Kconfig configurator offers little support for prop-
agating user configuration choices. If the dependencies of
a given feature are not satisfied, the tool prohibits select-
ing it. The user has to find out which other features need



Concept Linux eCos

Visibility conditions 200 (3%) 123 (10%)
Explicit defaults 944 (15%) 857 (69%)
Computed (expressions) 104 (2%) 82 (7%)
Literals 632 (10%) 775 (62%)
Conditionally derived 198 (3%) n/a

Unconditionally derived 736 (12%) 218 (18%)

Table 4: Visibility and default statistics

to be reconfigured to enable the selection. A rudimentary
propagation support is offered by the select construct; it
enforces a selection of a single feature, when the feature host-
ing the statement is selected. The selection is made without
respecting any constraints. This imperative behaviour can
lead to illegal configurations and requires Kconfig developers
to explicitly specify any transitive dependencies to maintain
consistency. For example, LATENCY_TOP contains selects for
both KALLSYM and KALLSYM_ALL. KALLSYM_ALL depends on
KALLSYM, thus, the sole selection of KALLSYM_ALL would be
sufficient if the configurator used a propagating reasoner. In
fact, the official documentation and the Linux kernel com-
mit log contain multiple warnings and complaints about the
error-proneness of using this construct [11]. Still, the Linux
model is full of select statements, as this is the only way
to obtain (limited) propagation in the configurator.

The CDL configurator is far more intelligent than its Kcon-
fig counterpart. When the user modifies a configuration, the
tool detects all constraint violations and offers the user sup-
port to resolve them via an inference engine.

Every change to the model is wrapped in a transaction
and the configurator checks for any constraint violation. If
one occurs, the inference engine tries to resolve the conflict
by a heuristics-based recursive search algorithm. It builds a
tree of transactions, starting a transaction for each new sub-
conflict that arises when testing conflict resolutions. The en-
gine estimates the benefit of particular (sub-)conflict resolu-
tion, by using the number of required changes and source of
the values being changed, e.g. user, default or inference. If a
sub-resolution is beneficial, it gets committed to the parent
transaction. If one overall solution is found for the top-level
conflict, the tool lists necessary changes and requests confir-
mation. Otherwise, the conflict requires manual resolution.

We investigated the inference engine’s source code with
respect to correctness and completeness. The resolution is
correct, since the proposed resolutions are verified against
the model constraints. The resolution is incomplete as:

• The inference rules are incomplete. For example, the
engine has rules for handling cardinality constraints on
interfaces of 0 or 1, but not for arbitrary bounds.

• The recursion depth is limited to 3 levels; thus, reason-
ing on transitive requires dependencies is incomplete.

• The engine uses a greedy search, evaluating resolutions
to sub-conflicts in separation and pruning all but the
optimal one. This may prune all successful branches.

Although the inference engine is less powerful than general
CSP solvers, it performs very well on the actual eCos model.
The support for mutex and xor groups is particularly ef-
fective and the resolution of requires dependencies is far
more maintainable than the select statement in Kconfig.

The main limitation of the CDL configurator is that if
several resolutions exist, it finds at most one and possibly
not the desired one. The following comment on the mail-
ing list (sourceware.org/ml/ecos-discuss/2001-11/msg00161.html)
indicates that developers struggle with this problem:

[. . . ] if CYGPKG_MYPKG_OP1 is active, make sure
that the list of tests for that package is a substring of
CYGDAT_MYPKG_ACTIVE_TESTS. This works 50% of
the time. Problem is the other 50% of the time,
rather than fiddling with the substrings, it enables
/ disables my subpackage!

Our findings underscore the importance of building con-
figurators based on strong reasoners. Tools employing com-
plete reasoners do exist for package configuration involving
simple use dependencies and version ranges. For example p2

in Eclipse is using a SAT solver. However, scalable reason-
ing to support conflict resolution for rich languages such as
Kconfig and CDL remains an interesting open problem.

6. THREATS TO VALIDITY
The main threat to the external validity of our findings

is that they are based on two languages and two operating
systems only. On the other hand, both are large indepen-
dently developed real-world projects, with different objec-
tives: Linux is a general purpose kernel and eCos is an en-
tire specialized RTOS for embedded systems. We believe
that other related domains, especially embedded RT such
as automotive and avionic control software, will share many
characteristics with the studied systems. Further, compar-
ison to other feature modeling languages, shows that both
are representative of the space of feature modeling.

Projects such as Mozilla Firefox or Eclipse IDE are or-
ganized as plug-in architectures, with dynamically loadable
extensions. Such extensions are often listed on marketplace
sites, rather than managed centrally in a closed feature hi-
erarchy. Variability languages for these systems (extension
manifests) only capture use dependencies and required ver-
sion ranges, but no exclusions or other complex constraints.
Our study does not apply to such systems.

We only look at the available artifacts: the languages,
manuals, models, and mailing lists. We have not interviewed
developers and users. We plan to perform such interviews
in future work. We only examined one architecture per OS;
however, both architectures represent large and mature por-
tions of the systems: Linux’s x86 architecture covers 61% of
the total of 10415 features and 67% of the total of 8M SLOC;
the eCos’s i386PC covers 44% of the total of 2859 features
and 33% of the total of 0.9M SLOC.

An internal threat is that our statistics are incorrect. To
reduce this risk, we instrumented the native tools to gather
the statistics rather than building our own parsers. We thor-
oughly tested our infrastructure using synthetic test cases
and cross-checked overlapping statistics. We tested our for-
mal semantics specification against the native configurators
and cross-reviewed the specifications. We used the Boolean
abstraction of the semantics to translate both models into
Boolean formulas and run a SAT solver on them to find dead
(always inactive) features. We found 114 dead features in
Linux and 28 in eCos. We manually confirmed that all of
them are indeed dead, either because they depended on fea-
tures from another architecture or they were intentionally
deactivated.



7. RELATED WORK
Semantics of academic variability modeling languages were
studied before [17, 5]. We focus on languages originating
from practice. A survey on the use of feature models [8]
identified only five papers reporting practical experience.
References [14,16,17] in [8] are experiences from researchers
applying feature modeling to sample problems from indus-
try. References [31,37] therein are self-reported industry ex-
periences: the first on using feature modeling tool prototype
on automotive control software and the second one on man-
aging avionic control software with feature models, but with
few details on the languages and tools used. A notable ex-
ception is the report on the industrial use of Dopler for vari-
ability modeling and product derivation [7]; Sadly, neither
the models nor data are available.

We reported early findings on the Linux model in a previ-
ous workshop paper [19]; however, the present paper differs
significantly. The previous work was to extract a FODA
feature model from Linux and compare it with feature mod-
els from research papers. The present work compares two
languages and models in their full richness (beyond FODA),
including their formal semantics and a different set of statis-
tics. The resulting findings (Sections 2–4) are new. We also
studied the evolution of the Linux model [11], showing that
the number of dependencies has grown proportionally to the
number of features over the last five years.

Table 1 provides references to research on feature model-
ing concepts. Most of them were present in FODA; however,
computed defaults, visibility conditions, and derived fea-
tures, are marked as rare. State-of-the-art feature modeling
languages such as TVL [3] and pure::variants do not support
them. Computed defaults were proposed by researchers [4],
but not provided by feature modeling languages.

None of the other variability languages supports binding
modes via three-valued logics. Interestingly, Dopler sup-
ports visibility conditions. Although it has been defined as
a decision modeling language [5], it shares many characteris-
tics with feature modeling. The connection between Kcon-
fig and feature modeling was made in [20]. We advance this
work by studying Kconfig’s semantics and the Linux model.

Interactive support for resolving variability was ranked
highest in a recent expert survey of requirements for prod-
uct derivation [15]. A variety of reasoners have been used
to create feature model analyzers and configurators, includ-
ing CSP solvers [23], SAT solvers [21, 13], and BDD pack-
ages [12]. These works tested the reasoners on either small
meaningful models or large automatically generated models;
however, it is not clear how these tools will scale to handle
the Linux and eCos model. This remains future work.

8. CONCLUSION
Our study provides empirical evidence for the use of vari-

ability modeling in real-world large-scale systems. The study
confirms that feature modeling concepts from FODA are
used in practice; however, it shows that more advanced con-
cepts, such as visibility conditions, derived features, and
binding mode are also needed. Our language comparison
showed intricate semantic interactions among the advanced

concepts, deepening our understanding of such languages.
We also identified significant limitations of existing configur-
ators—a call to arms for future research. We believe our
findings will be of interest to variability modeling language
and tool designers.
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