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ABSTRACT
Multi-Objective Combinatorial Optimization (MOCO) is fun-
damental to the development and optimization of software
systems. We propose five novel parallel algorithms for solv-
ing MOCO problems exactly and efficiently. Our algorithms
rely on off-the-shelf solvers to search for exact Pareto-optimal
solutions, and they parallelize the search via collaborative
communication, divide-and-conquer, or both. We demon-
strate the feasibility and performance of our algorithms by
experiments on three case studies of software-system de-
signs. A key finding is that one algorithm, which we call
FS-GIA, achieves substantial (even super-linear) speedups
that scale well up to 64 cores. Furthermore, we analyze
the performance bottlenecks and opportunities of our par-
allel algorithms, which facilitates further research on exact,
parallel MOCO.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—software con-
figuration management ; G.1.6 [Numerical Analysis]: Op-
timization—constrained optimization

Keywords
Multi-objective combinatorial optimization; parallelization

1. INTRODUCTION
Multi-Objective Combinatorial Optimization (MOCO) ex-

plores a finite search space of feasible solutions and finds the
optimal ones that balance multiple (often conflicting) objec-
tives simultaneously. MOCO is a fundamental challenge in
many design and development problems in engineering and
other domains. For example, in mobile-phone system design,
one often has to choose between different candidate designs
that trade off multiple competing objectives, such as low cost
and high performance. Each candidate design (i.e., a feasi-
ble solution) involves a wide variety of design options, which
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we call features (e.g., enabling Video Calls) [11], with respect
to a set of constraints (e.g., Video Calls requires Camera) and
quality attributes (e.g., the cost of enabling Video Calls). In
the worst case, the search space of candidate designs grows
exponentially in the number of features. Exploring such a
huge search space is often beyond human capabilities and
makes optimal system design a very challenging task. In
the same way, many software-engineering problems, such as
architecture design [1], test data generation [23, 44], and
project planning [20], involve the same form of MOCO.

MOCO problems are mostly NP-hard [10]. To address
them, approximate approaches that depend mainly on meta-
heuristics1 have been advocated for years. In most cases,
they solve MOCO problems in an acceptable time, but they
find only near-optimal solutions, and often suffer from pa-
rameter sensitivity (i.e., the accuracy of the found solu-
tions varies widely with the parameter settings of these ap-
proaches) [18]. In contrast, exact methods that scan all
candidate solutions one by one often take too long for large-
scale problems, but they are accurate in finding all, exact
optimal solutions, which is desirable for those stakeholders
who never want to miss any optimal opportunity.

Parallel computing carries out multiple calculations simul-
taneously on multiple processors [2]. It divides a large com-
puting problem into multiple smaller ones and solves them in
parallel, often with a significant performance improvement.
In the past, metaheuristics have been parallelized to address
MOCO problems efficiently [7, 39]. However, there are only
few parallel algorithms for exact MOCO [39].

We aim at exact, parallel approaches that solve MOCO
problems accurately and efficiently. As a baseline, we choose
the Guided Improvement Algorithm (GIA) [33], a general-
purpose, sequential algorithm for solving MOCO problems
exactly. GIA works with most off-the-shelf SAT (SATisfia-
bility), SMT (Satisfiability Modulo Theories) [12], and CSP
(Constraint Satisfaction Problem) [41] solvers. Accordingly,
the first parallel algorithm we propose, which we call Parallel
GIA (ParGIA), performs multiple GIAs simultaneously and
collaboratively. In ParGIA, each processor runs a GIA with
a different starting point in the search space; once a proces-
sor finds an optimal solution, it communicates the solution
to other processors so as to reduce duplicate searches.

1A metaheuristic is a strategy for exploring the search space
of a problem using a variety of methods that typically consist
of both a diversification (i.e., mechanisms to explore the
search space) and an intensification (i.e., mechanisms that
exploit previously found solutions) procedure [6].



To further scale MOCO, we propose two parallel divide-
and-conquer algorithms, Objective Split GIA (OS-GIA) and
Feature Split GIA (FS-GIA). OS-GIA geometrically divides
the search space of a MOCO problem into subspaces, and
then runs in parallel a GIA for each subspace. FS-GIA re-
cursively partitions a MOCO problem into subproblems by
selecting and deselecting certain features; then it performs in
parallel a GIA for each subproblem. Lastly, we propose two
hybrid parallel algorithms, OS-ParGIA and FS-ParGIA, in
which the GIA algorithm in OS-GIA and FS-GIA, respec-
tively, is replaced with ParGIA.

We implemented our proposed algorithms and evaluated
them in a series of experiments on three case studies of
software-system design. Our empirical results demonstrate
the feasibility and performance of our parallel algorithms.
In particular, FS-GIA shows a desirable scalability with an
increasing number of available processors, and it achieves
even super-linear speedups.2

In summary, we make the following contributions:
• Algorithms. We propose five novel parallel MOCO

algorithms that search for exact optimal solutions us-
ing off-the-shelf solvers, and that parallelize the search
via collaborative communication, divide-and-conquer,
or both.
• Implementation. We implement our proposed algo-

rithms and publish the source code and experimental
data at http://gsd.uwaterloo.ca/epoal.
• Evaluation. We evaluate the performance and scala-

bility of our parallel algorithms and analyze their per-
formance bottlenecks.
• Prospects. We open a new direction in scaling exact

MOCO algorithms and demonstrate the potential of
parallelization for exact MOCO.

2. PRELIMINARIES
First, we introduce MOCO by means of the example of

mobile-phone system design, including a set of features, con-
straints, quality attributes, and objectives. Next, we de-
scribe how to specify features and their constraints in propo-
sitional formulas and how to use solvers to acquire feasi-
ble solutions. Finally, we describe the concepts of Pareto-
optimal solutions and present how GIA (our baseline, se-
quential algorithm) finds all Pareto-optimal solutions and,
this way, solves MOCO problems exactly.

2.1 A Running Example
The design of a software system deployed on a mobile

phone can be characterized by the features supported by
the phone and the constraints defined between the features.
The features represent various design options. For exam-
ple, the phone’s software may optionally include support for
feature Video Calls. Figure 1 shows a design scenario of a
mobile-phone system, adapted from Benavides et al. [5].
We organize and visualize its features and their constraints
using a feature model [26], a tree structure, in which each
node except the root (i.e., MobilePhone) has one parent. Re-
lations between a feature and its group of child features are

2Speedup is defined as SP = T1
TP

, where T1 is the sequential

execution time of a problem and TP is the parallel execu-
tion time of the same problem using P processors. Linear
speedup is obtained when SP = P and super-linear speedup
is achieved when SP > P .
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Figure 1: A sample MOCO problem arising in
mobile-phone system design

classified as And- (no arc), Or- (filled arc), and Alternative-
groups (arc). The members of an And-group can be either
mandatory (filled circle) or optional (empty circle). Cross-
tree constraints comprise requires and excludes relations be-
tween features (e.g., Video requires Camera).

Stakeholders can customize the mobile-phone system by
selecting features, thereby deriving different design variants
that have different quality attributes (e.g., cost and latency).
Each feature may have an influence on the quality attributes
of a feasible system design that can be implemented and
measured [17]. For example, selecting (or deselecting) fea-
ture Bluetooth in Figure 1, increases (or reduces) the cost by
50 and the latency by 80 in the final mobile-phone system.
The quality attributes of a feasible system design can be cal-
culated by aggregating the quality attributes of all selected
features and feature interactions involved [38]. In this pa-
per, we assume that we already have the quality attributes
of features and potential feature interactions. For research
on measuring and inferring the quality attributes, we refer
the interested reader elsewhere [16, 38, 42].

Among the many feasible design variants, stakeholders of-
ten desire the optimal one that can simultaneously meet
multiple design objectives, such as minimizing cost and min-
imizing latency. This is a typical MOCO problem. However,
the objectives are often conflicting. For example, a mobile-
phone system often achieves a lower latency only by raising
its cost (e.g., using a larger cache). Thus, a MOCO problem
usually has a set of optimal solutions, not only a single one.
Finding all optimal solutions accurately and efficiently is a
major challenge, which we address in this paper.

2.2 Specification and Validation
The solutions to a MOCO problem must be feasible, i.e.,

satisfying the constraints defined between features. To this
end, we specify all features and their constraints in proposi-
tional formulas, and then we use off-the-shelf SAT, SMT, or
CSP solvers to return feasible solutions. Note that combina-
torial optimization, either single-objective or multi-objective,
explores a finite search space, and each feature ranges over
a finite domain [10]. In general, a finite-domain feature
can be converted to a finite set of Boolean-domain features
[8]. Here, we use only Boolean-domain features to describe
MOCO problems. In a nutshell, we represent a feature as



Table 1: Feature-selection constraints in propo-
sitional logic (P represents a parent feature and
C1, ..., Cn are its child features; M ⊆ {1, ..., n} denotes
the mandatory features by their indices in an And-
group; F1 and F2 denote arbitrary features)

Type Propositional Formulas

Mandatory C1 ↔ P
Optional C1 → P
And-group (P →

∧
i∈M Ci) ∧ (

∨
1≤i≤n Ci → P )

Or-group P ↔
∨

1≤i≤n Ci

Alternative-group (P ↔
∨

1≤i≤n Ci)∧
∧

i<j(¬Ci∨¬Cj)

Requires F1 → F2

Excludes ¬(F1 ∧ F2)

a Boolean decision variable. If a feature is supported by a
system design, then its corresponding variable is assigned
true, and false otherwise. Furthermore, we specify the
constraints between features in propositional formulas. For
example, the constraints defined in feature models can be
formulated in propositional logic, as summarized in Table 1
[3].

A solution is a selection of features, i.e., an assignment
of value true or false to the decision variable of each fea-
ture. A feasible solution is a valid selection of features that
respects all constraints defined between features. Using off-
the-shelf solvers, we are able to check whether a potential
solution satisfies all constraints, and thus is a feasible solu-
tion [3]. For example, by using a SAT solver, we determine
that solution {OS, Android, Calls, Video, Connectivity, Cam-
era} in Figure 1 is feasible, but solution {OS, Android, Calls,
Video, Connectivity, Wifi} is not, because the latter violates
the constraint: Video requires Camera.

2.3 Pareto-Optimal Solutions and GIA
As a baseline, we use GIA (Guided Improvement Algo-

rithm) [33] to determine whether a feasible solution is Pareto-
optimal and where to direct the search next. Figure 2 illus-
trates the search space of the MOCO problem of Figure 1, in
which each point indicates a solution.3 Given multiple po-
tentially conflicting objectives, a solution is Pareto-optimal
if it is not dominated by any other solution. A solution dom-
inates another solution when it is better regarding at least
one objective and not worse regarding all the other objec-
tives. According to the definition of Pareto dominance, a
solution partitions a search space into three areas: inferior,
superior, and equilibrium. For example, in Figure 2, the in-
ferior area (top-right) of solution S5 includes all solutions
that are dominated by S5. The superior area (bottom-left)
contains all solutions that dominate solution S5. Any so-
lution in the equilibrium areas (top-left and bottom-right)
does not dominate solution S5 and, at the same time, is
not dominated by S5. All Pareto-optimal solutions (filled
points) constitute the Pareto front.

GIA uses a solver to return a solution and then aug-
ments the constraints to search for solutions that domi-
nate ones found already. Moreover, GIA incrementally finds
Pareto-optimal solutions during computation and thus guar-
antees that all solutions yielded by the algorithm are Pareto-

3Unless otherwise specified, all solutions mentioned in the
following sections are feasible.
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Figure 2: Solution S5 partitions the search space
into inferior (top-right), superior (bottom-left), and
equilibrium (top-left and bottom-right) areas

Algorithm 1: Guided Improvement Algorithm (GIA)

input : M , A, O
output: S

1 S ← ∅
2 EqC ← true
3 s ← solveOne(M )
4 while s 6= null do
5 while s 6= null do
6 s′ ← s
7 SupC ← genSupC(s,M,A,O)
8 s← solveOne(M ∧ EqC ∧ SupC)

9 S ← S ∪ {s′}
10 EqC ← EqC ∧ genEqC(s′,M,A,O)
11 s ← solveOne(M ∧ EqC )

12 return S
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Figure 3: (a) GIA returns solution S4 and calculates
the constraints of the superior area of S4; (b) GIA
finds a Pareto-optimal solution S1 and calculates the
constraints of the equilibrium area of S1

optimal, even if one terminates the execution halfway. This
gains a competitive advantage over other exact methods [15,
29].

Algorithm 1 lists the pseudo-code of GIA. GIA starts with
a model M , a set of quality attributes A, and multiple ob-
jectives O. The model M specifies all features and their con-
straints as propositional formulas. The output is the Pareto
front S. As demonstrated in Figure 3a, GIA first inputs a



model into a solver and computes a solution S4 (Line 3 in
Algorithm 1). GIA calculates the constraints of the superior
area of solution S4 (grey area in Figure 3a) and adds them to
the solver for finding another solution dominating S4 (Lines
7–8). A Pareto-optimal solution has been found when there
is no solution in its superior area. As shown in Figure 3b,
solution S1 is marked as Pareto-optimal (filled). Next, GIA
calculates the constraints of the equilibrium area of solution
S1 (grey areas in Figure 3b) and adds them to the solver for
finding other Pareto-optimal solutions (Lines 10–11).

3. PARALLEL ALGORITHMS
In this section, we present five novel parallel algorithms

for exactly solving MOCO problems. We use the exam-
ple of Figures 1 and 2 to explain them. The input of each
algorithm includes a model M specifying features and con-
straints, a set of quality attributes A, multiple objectives O,
and the number of available processors P . The output is the
Pareto front S.

3.1 ParGIA
ParGIA uses P processors to perform P GIAs simultane-

ously and collaboratively over the search space of a given
MOCO problem. Each processor runs a GIA instance to
search for Pareto-optimal solutions and then communicates
the constraints of the found solutions to all other processors.
Algorithm 2 lists the pseudo-code of ParGIA. Figure 4 illus-
trates the search process of ParGIA using two processors.
Processor P1 inputs a model into a solver and computes
a solution S7; P1 keeps searching until it finds a Pareto-
optimal solution S1. Meanwhile, processor P2 starts with
a solution S4 and then finds another Pareto-optimal solu-
tion S2. If processors P1 and P2 find S1 and S2 at exactly
the same time, they communicate to each other the con-
straints of the equilibrium areas of S1 and S2 (Lines 11–12
in Algorithm 2). Next, both processors search the com-
bined equilibrium area (grey areas in Figure 4b), looking
for other Pareto-optimal solutions. However, in most cases,
the search processes of processors P1 and P2 are not syn-
chronous. For example, processor P1 may find solution S1

before processor P2 reaches solution S2. In this case, pro-
cessor P1 communicates the constraints of the equilibrium
area of S1 to processor P2, but it does not receive any con-
straints from P2. Subsequently, processor P1 keeps searching
for other Pareto-optimal solutions in the equilibrium area
of S1, which may cause the overlapping search of solution
S2 that will be found by processor P2 later. Following the
idea of optimistic parallelism [27], ParGIA does not control
or avoid potentially overlapping search of the same Pareto-
optimal solutions. But, after all processors finish searching,
ParGIA checks all found Pareto-optimal solutions and re-
moves duplicates (Line 14).

3.2 OS-GIA and OS-ParGIA
OS-GIA geometrically divides the search space of a given

MOCO problem into P subspaces and then simultaneously
conquers all subspaces using P processors. In each subspace,
a GIA instance is performed by one processor to search for
Pareto-optimal solutions. Algorithm 3 lists the pseudo-code
of OS-GIA. We adopt the idea of cone separation [7] to di-
vide the search space. First, OS-GIA converts all objectives
to be all minimizations or all maximizations (Line 2 in Algo-
rithm 3). Note that an objective to maximize X is equivalent

Algorithm 2: ParGIA

input : M , A, O , P
output: S

1 S ← ∅
2 forall i← 1 to P in parallel do
3 EqCi ← true
4 s ← solveOne(M )
5 while s 6= null do
6 while s 6= null do
7 s′ ← s
8 SupCi ← genSupC(s,M,A,O)
9 s← solveOne(M ∧ EqCi ∧ SupCi)

10 S ← S ∪ {s′}
11 for j ← 1 to P do
12 EqCj ← EqCj ∧ genEqC(s′,M,A,O)

13 s ← solveOne(M ∧ EqCi)

14 S ← postprocess(S)
15 return S
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Figure 4: (a) ParGIA finds two solutions S7 and S4

simultaneously using two processors and calculates
the constraints of the superior areas of the two so-
lutions; (b) ParGIA finds two Pareto-optimal solu-
tions S1 and S2 and calculates the constraints of the
combined equilibrium areas of the two solutions

to the objective to minimize −X. Without loss of generality,
we assume that all objectives involve minimizations, as the
example of Figures 1 and 2. Then, OS-GIA determines a
reference point (the crossed point in Figure 5a) whose value
regarding each objective is sufficiently large, such that all
solutions are located in its superior area.4

If the given MOCO problem has more than two objectives,
OS-GIA projects the search space onto a bi-dimensional
plane formed by two chosen objectives (Line 3). Next, OS-
GIA divides the projective plane into cones by, starting from
the reference point, dividing the 90◦ angle encompassing the
superior area of the reference point into P equal parts (Lines
4–5). Figure 5a shows the result of dividing the projective
into two cones; each cone has a 45◦ angle starting from the
reference point. Finally, OS-GIA applies a GIA to each cone
to search for Pareto-optimal solutions (Line 7).

The overhead of geometric decomposition is very small.
However, choosing the objectives that determine the pro-
jective plane and cones plays a critical role in the eventual

4If all objectives are maximizations, the reference must be
small enough regarding all the objectives.
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Figure 5: After geometrically dividing the search
space of Figure 2 into two cones, (a) OS-GIA per-
forms a GIA instance using one processor in each
cone, and (b) OS-ParGIA performs a ParGIA in-
stance using two processors in each cone

Algorithm 3: OS-GIA

input : M , A, O , P
output: S

1 S ← ∅
2 O ← preprocess(O)
3 O2 ← chooseTwo(O)
4 for j ← 1 to P do
5 Mj ← objectiveSplit(M,A,O2, P, j)

6 forall j ← 1 to P in parallel do
7 Sj = GIA(Mj , A,O)
8 S ← S ∪ Sj

9 S ← postprocess(S)
10 return S

Algorithm 4: OS-ParGIA

input : M , A, O , P
output: S

1 S ← ∅
2 Q← P/2
3 O ← preprocess(O)
4 O2 ← chooseTwo(O)
5 for j ← 1 to Q do
6 Mj ← objectiveSplit(M,A,O2, Q, j)

7 forall j ← 1 to Q in parallel do
8 Sj = ParGIA(Mj , A,O, 2)
9 S ← S ∪ Sj

10 S ← postprocess(S)
11 return S

workload of each processor for each cone. In the worst case,
a poor selection of the two objectives may cause all solutions
to fall into one cone of the plane, which results in one proces-
sor overloaded and the others idle. To balance the workload
of different processors, we follow a straightforward intuition
of choosing the two objectives that have the first and sec-
ond largest value ranges to form a large projective plane, in
which all solutions are distributed as evenly as possible.

Note that the Pareto-optimal solutions found by each pro-
cessor are local to that processor’s cone. Moreover, a solu-
tion that is locally Pareto-optimal in a cone may not be

globally Pareto-optimal in the entire search space. There-
fore, after all processors finish searching, OS-GIA collects all
local Pareto fronts found by each processor (Line 8), removes
duplicate solutions, and calculates the global Pareto front in
the search space (Line 9). Such calculation is straightfor-
ward and usually takes little time.

OS-ParGIA is a hybrid of OS-GIA and ParGIA. Algo-
rithm 4 lists the pseudo-code of OS-ParGIA. As shown in
Figure 5b, the key difference between OS-ParGIA and OS-
GIA is that OS-ParGIA searches each cone using a ParGIA
instance with two processors instead of using a GIA instance
with one processor (Line 8 in Algorithm 4). Moreover, the
input P of OS-ParGIA is double the number of divided cones
(Line 2). Of course, one can perform ParGIA using more
than two processors per cone, but the performance gains
are not necessarily higher when using more processors, as
we demonstrate in Section 5.3.

3.3 FS-GIA and FS-ParGIA
FS-GIA divides a given MOCO problem into P subprob-

lems and then simultaneously conquers all subproblems us-
ing P processors. For each subproblem, a GIA instance
is performed by one processor to search for Pareto-optimal
solutions. The key idea of FS-GIA is to divide a MOCO
problem into subproblems of relatively equal size, where each
subproblem is defined by a partial feature selection that rep-
resents a subset of solutions. If a MOCO problem has N
solutions in total, FS-GIA partitions the set of N solutions
into P subsets of roughly equal size (ideally, N

P
solutions).

Subsequently, FS-GIA uses the GIA algorithm to search for
Pareto-optimal solutions among each subset. The approach
has the potential to significantly reduce the number of solu-
tions that each processor has to explore (by up to a factor of
P ), leading to a significant performance improvement. Al-
gorithm 5 lists the pseudo-code of FS-GIA.

A major challenge of FS-GIA is to accurately and quickly
calculate the number of all solutions selecting or deselect-
ing a certain feature. This reduces to the well-known #SAT
problem [40], where the goal is to count the number of sat-
isfying variable assignments #(x) for a given propositional
formula x. Although this is generally a hard problem, ex-
isting #SAT solvers, such as sharpSAT, which we use for
FS-GIA,5 are capable of quickly calculating the exact num-
ber of solutions for the propositional formulas of our case
studies, as we demonstrate in Section 5.4.

To acquire subproblems as equal-sized as possible, FS-GIA
recursively chooses an appropriate feature and partitions
each MOCO subproblem into a subsubproblem that includes
the feature and a subsubproblem that does not (Lines 2–4
in Algorithm 5). As shown in Figure 6, FS-GIA starts with
the input model M of a given MOCO problem. FS-GIA ex-
haustively tests every feature f and computes the number of
solutions for submodels M ∧f and M ∧¬f (i.e., the number
of valid assignments when the corresponding variable of f is
true or false). Then, FS-GIA chooses the best split feature
(e.g., f1 in Figure 6) to divide model M into two submodels
such that:

|#(M ∧ f)−#(M ∧ ¬f)| is minimal (1)

If multiple features satisfy the above equation, one is ran-
domly chosen amongst them. Each submodel is divided re-
cursively by further split features, such as features f2 and
5https://github.com/marcthurley/sharpSAT.
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Figure 6: FS-GIA recursively chooses features f1, f2,
and f3 to divide a given MOCO problem into four
equal-sized subproblems

Algorithm 5: FS-GIA

input : M , A, O , P
output: S

1 S ← ∅
2 F ← parallelPreprocess(M,P )
3 for j ← 1 to P do
4 Mj ← generate(M,F, j)

5 forall j ← 1 to P in parallel do
6 Sj = GIA(Mj , A,O)
7 S ← S ∪ Sj

8 S ← postprocess(S)
9 return S

Algorithm 6: FS-ParGIA

input : M , A, O , P
output: S

1 S ← ∅
2 Q← P/2
3 F ← parallelPreprocess(M,Q)
4 for j ← 1 to Q do
5 Mj ← generate(M,F, j)

6 forall j ← 1 to Q in parallel do
7 Sj = ParGIA(Mj , A,O, 2)
8 S ← S ∪ Sj

9 S ← postprocess(S)
10 return S

f3 in Figure 6. The above recursive division process forms
a binary decision tree, as shown in Figure 6. Note that the
submodels generated at the same level of the tree are equal-
sized and non-overlapping. They represent the subproblems
we need for FS-GIA. Hence, the number of generated sub-
problems has to be a power of two, which equals to the
number of assigned processors P , since each subproblem is
assigned one processor.

If we carry out the recursive division process of FS-GIA
sequentially, the dividing overhead increases linearly with
P . As shown in Figure 6, FS-GIA has to choose three split
features and divide three times to acquire four subproblems
for four processors. To reduce the dividing overhead of FS-
GIA, we parallelize the preprocessing of FS-GIA (Line 2 in
Algorithm 5) to choose split features simultaneously. For
example, in Figure 6, the preprocessing tasks of choosing

features f2 and f3 can be run simultaneously. In general,
subproblems with the same number of split-feature clauses
can be further divided in parallel: in step i, 2i−1 subprob-
lems are split roughly in half, producing 2i smaller subprob-
lems. Thus, the overhead of partitioning the model increases
logarithmically with P .

FS-ParGIA is a hybrid of FS-GIA and ParGIA. Algo-
rithm 6 lists the pseudo-code of FS-ParGIA. The key dif-
ference between FS-ParGIA and FS-GIA is that, for each
subproblem, FS-ParGIA performs a ParGIA using multiple
processors instead of a GIA using one processor. For exam-
ple, Algorithm 6 (Lines 2 and 7) addresses each subproblem
using two processors. Hence, the input P of FS-ParGIA is
double the P of FS-GIA, when addressing the same num-
ber of subproblems. As with OS-GIA and OS-ParGIA, the
Pareto fronts found by FS-GIA and FS-ParGIA are local
to the corresponding subproblems. Thus, a post-processing
step (Algorithm 5, Line 8, and Algorithm 6, Line 9) identifies
which locally Pareto-optimal solutions make up the global
Pareto front with respect to the entire search space. This
step takes proportionately little time.

4. IMPLEMENTATION
We implemented our parallel algorithms using Python

2.7 and its multiprocessing package. The multiprocess-
ing package effectively steps aside the issue of Global Inter-
preter Lock by using subprocesses instead of threads.6 It
allows programmers to fully leverage multiple processors on
a given machine, in which each spawned subprocess is as-
signed a processor.

Following the idea of optimistic parallelism [27] and re-
ducing the communication cost for ParGIA, we avoid using
any synchronization primitives, such as locks, but we use
message-passing mechanisms, such as queues, which provide
a process-safe communication channel. Thus, each processor
in ParGIA has its own queue to manage the constraints of
the Pareto-optimal points found by itself, and then commu-
nicates the constraints to the queues of other processors.

A recent study [35] shows that SMT might be the most
efficient reasoning formalism in checking model properties,
compared to CSP, Alloy [24], and Answer Set Programming
(ASP) [30]. SMT combines standard SAT with richer theo-
ries, such as equality reasoning, linear arithmetic, bitvectors,
and arrays [12]. Therefore, in our implementation, we reason
about MOCO problems in SMT solvers. In particular, we
implemented GIA and all five parallel algorithms with the
efficient SMT solver Z3, developed at Microsoft Research.7

5. EVALUATION
We conducted a series of experiments to evaluate the par-

allel algorithms we propose. We aim at investigating the
performance and scalability of each algorithm and at iden-
tifying potential bottlenecks and opportunities.

5.1 Subjects
We evaluated our parallel algorithms on three MOCO case

studies from the domain of software-system designs. As
MOCO problems reported by industry [22, 25, 34] are not

6Global Interpreter Lock is the mechanism used by Python
interpreter to assure that only one thread executes Python
bytecode at a time.
7http://z3.codeplex.com.



Table 2: Overview of subject systems

#Features #Solutions #Objectives

SAS 35 5 184 7
Web Portal 44 2 120 800 4
E-Shop 290 5.02E+49 4

available publicly, we resorted to using three case studies
from existing literature [14, 37] as subjects. The first sub-
ject, SAS, optimizes the architecture of a real-world situation-
awareness system that deploys personnel in emergency re-
sponse scenarios [14]. The original authors collected seven
integer and float quality attributes for each feature. Ac-
cordingly, SAS has seven objectives: minimizing cost, maxi-
mizing reliability, minimizing battery usage, minimizing re-
sponse time, minimizing ramp-up time, minimizing develop-
ment time, and minimizing deployment time.

Web Portal and E-Shop are two product-line design
models available at the SPLOT website [31], which is a pop-
ular repository of software-system models used by many re-
searchers. Sayyad et al. [37] extended the two models and
formulated corresponding MOCO problems by adding inte-
ger and float quality attributes for each feature and defining
a set of objectives. They randomly generated quality at-
tributes resembling real-world project characteristics [21].
We use the same data and target the same objectives they
defined for both case studies: minimizing cost, minimizing
the number of defects, maximizing the number of offered
features, and maximizing the number of features that were
used before.

As listed in Table 2, these case studies cover a reasonable
spectrum of MOCO problems with different characteristics:
different number of features (35 to 290), different number
of solutions (3 to 49 orders of magnitude), different num-
ber of objectives (4 to 7), different quality attributes (e.g.,
cost, response time, battery usage, reliability, and software
defects), different value types of quality attributes (integer
and float), and different optimization directions (minimiza-
tion and maximization). Furthermore, finding the Pareto
front of these case studies takes different time ranges (from
seconds to minutes and days).

5.2 Experimental Setup
We conducted our experiments on SHARCNET, which is

a consortium of Canadian academic institutions that share a
network of high-performance computers.8 To reduce fluctu-
ations in measurements caused by different hardware envi-
ronments, we performed all measurements on the same clus-
ter comprising 160 AMD Opteron cores each at 2.2 GHz
and a total of 640 GB RAM. However, we were not able to
occupy all resources (e.g., cores and memory) on the clus-
ter at all times, because SHARCNET uses a priority queue
to schedule the jobs submitted to a cluster. The priority
of a job is ranked according to the resources requested by
the job. More resources requested result in lower priority
and more waiting time in the queue. Due to the limitation
of resources and time, our experiments use up to 64 cores
simultaneously for each job submitted to the cluster.

In our experiments, the independent variables are the sub-
ject systems, the evaluated algorithms, and the number of

8http://www.sharcnet.ca.

assigned cores. We measured the execution time of each se-
quential and parallel algorithm finding the Pareto front of
a certain subject system, and we calculated the speedups of
each parallel algorithm as the dependent variables. Unfor-
tunately, we were not able to determine all Pareto-optimal
solutions of E-Shop using any of the algorithms in six days,
which is the maximum execution time allocated to a job
submitted to SHARCNET. Hence, we measured the num-
ber of Pareto-optimal solutions found by each algorithm in
six days as the dependent variable for E-Shop.

To reduce fluctuations in the values of dependent vari-
ables caused by randomness (e.g., the random seeds used
by solvers to return a solution), we evaluated each combina-
tion of the independent variables 10 times. That is, for each
subject system, we executed each of the algorithms with the
same number of assigned cores 10 times, and we measured
the resulting execution times. We report only the means of
the execution times for analysis.

As a baseline, we performed sequential GIA on the three
subjects for performance comparison and speedup calcula-
tion. On average, GIA takes 70.2 seconds to find the Pareto
front of SAS and 228.8 minutes to find the Pareto front of
Web Portal. For E-shop, GIA finds an average of only
one Pareto-optimal solution in six days.

5.3 Performance Comparison
In a first set of experiments, we compare the performance

of our parallel algorithms. We aim at determining which
algorithm has the best performance, is the most scalable,
and is the most promising to solve large MOCO problems
such as E-shop. To obtain results in reasonable time, we
use at most 16 processors simultaneously and apply each
algorithm only to SAS and Web Portal.

Results. Figure 7 presents the speedups of each parallel
algorithm finding the Pareto fronts of SAS and Web Por-
tal using up to 16 processors. FS-GIA achieves super-linear
speedups when using two processors for SAS and when us-
ing 2 to 16 processors for Web Portal. Furthermore, the
speedup of FS-GIA increases steadily and rapidly when the
number of available processors increases.

FS-ParGIA acquires super-linear speedups when using 8
to 16 processors for Web Portal. Using the same number
of processors, the speedup of FS-ParGIA is less than that
of FS-GIA. Also, the speedup of FS-ParGIA has a stable
increasing trend with the increasing number of processors,
but the speedup increasing rate of FS-ParGIA is lower than
that of FS-GIA.

For ParGIA, OS-GIA, and OS-ParGIA, we did not ob-
serve super-linear or linear speedups in either case study.
The speedup of ParGIA increases steadily and slowly as the
number of processors increases, and then reaches a plateau
(e.g., when using 12 or more processors for SAS, or using 5
or more processors for Web Portal).

The speedups of OS-GIA and OS-ParGIA fluctuate con-
siderably. In some cases, the speedups of OS-GIA and OS-
ParGIA are less than one, which means that the execution
time of OS-GIA and OS-ParGIA is even longer than the
execution time of the sequential algorithm GIA.

Discussion. FS-GIA relies on a sound and efficient #SAT
solver to control the overhead of dividing a given MOCO
problem into subproblems and to guarantee that all subprob-
lems are as equal-sized as possible. In the search space of
each subproblem, the number of solutions that FS-GIA ex-
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Figure 7: Speedups of five parallel algorithms find-
ing the Pareto fronts of (a) SAS and (b) Web Portal,
using up to 16 processors

plores has been reduced substantially, which results in lower
workload of conquering each subproblem. We are aware that
equal-sized subproblems may not be equally hard [19], that
is, solving each equal-sized subproblems may still need dif-
ferent workload. However, our empirical results demonstrate
that FS-GIA effectively balances the overhead of the divide-
and-conquer scheme and gains even super-linear speedups.
In both case studies, FS-GIA achieves the best performance.
More importantly, FS-GIA presents a desirable scalability
when the number of available processors increases from 2 to
16, and the size of case studies augments from SAS to Web
Portal.

FS-ParGIA uses the same divide-and-conquer approach
as FS-GIA. For each divided subproblem, FS-ParGIA per-
forms a ParGIA using two processors, while FS-GIA runs a
GIA using one processor. When using the same number of
processors, FS-GIA works more efficiently than FS-ParGIA.
However, when addressing the same number of subprob-
lems, FS-ParGIA usually works more efficiently than FS-

GIA. For example, working with the same 4 subproblems of
Web Portal, FS-ParGIA using 8 processors gains a higher
speedup than FS-GIA using 4 processors. Therefore, there is
a trade-off of using more processors for divide-and-conquer
or for collaborative communication in each subproblem. Our
empirical results show that it is worthwhile to spare more
processors to perform more equal-sized subproblems instead
of more GIA instances in each subproblem, especially when
the number of available processors is limited.

ParGIA implements collaborative communication using
message passing. However, due to the latency of message
passing, a processor may already start searching an overlap-
ping area before receiving the information about that area
from other processors. The problem of overlapping searches
may get worse when using more processors. According to
our empirical results, ParGIA suffers from a performance
bottleneck when running a large number of GIA instances
simultaneously, and its speedup does not scale well with the
increasing number of processors.

OS-GIA and OS-ParGIA geometrically divide the search
space of a given MOCO problem into cones by projective-
plane selection and cone separation. However, it is hard to
foresee how solutions are distributed in the global search
space and in the projective plane. Hence, the algorithms
cannot guarantee that the workload of conquering each cone
(i.e., finding Pareto-optimal solutions in each cone) is effec-
tively balanced among processors, even though the cost of
dividing the original MOCO problem (i.e., obtaining cones)
is trivial. Unbalanced loads among processors gives rise
to performance fluctuations when using OS-GIA and OS-
ParGIA, as demonstrated by our experiments. In the worst
case, finding the local Pareto front in a cone may take more
time than finding the global Pareto front in the entire search
space. This can happen when the number of locally Pareto-
optimal solutions in a cone is higher than the number of
globally Pareto-optimal solutions in the entire search space.

5.4 Scalability of FS-GIA
In a second series of experiments, we further explore the

scalability of FS-GIA, as it performed best in the first set
of experiments. We applied FS-GIA to all three case stud-
ies, using up to 64 processors simultaneously. We measured
the preprocessing time of FS-GIA (i.e., the time of dividing
a given MOCO problem into roughly equal-sized subprob-
lems). Then, we analyzed the impact of the preprocessing
time on the scalability of FS-GIA.

Results. Figure 8a shows the speedups of FS-GIA find-
ing the Pareto front of SAS using up to 64 processors. For
the normal execution time including the preprocessing (solid
line), we observe that FS-GIA has a stable increasing trend
of speedups when using 2 to 64 processors, but the increas-
ing rate significantly slows down when using more than 32
processors. In contrast, if we ignore the preprocessing time
(dashed line), then the speedup of FS-GIA maintains a sta-
ble and rapid increasing trend with the increasing number
of processors.

For Web Portal, as shown in Figure 8b, the prepro-
cessing time has little impact on the speedup of FS-GIA.
Regardless of whether the preprocessing time is included in
the execution time of FS-GIA, FS-GIA reaches super-linear
speedups that scale well to any number of processors from
2 to 64.
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Figure 8: Speedups of FS-GIA (with and without
preprocessing) using up to 64 processors to find the
Pareto front for SAS and Web Portal

For E-Shop, FS-GIA finds more Pareto-optimal solutions
when using more processors. This is in contrast to the single
Pareto-optimal solution found by the sequential algorithm
GIA over the course of six days. If we determine the speedup
in terms of the number of Pareto-optimal solutions found in
six days, as shown in Figure 9, FS-GIA still provides super-
linear speedups in all cases (ranging from 2 to 64 processors).
Furthermore, the preprocessing time has almost no impact
on the speedups of FS-GIA.

Discussion. The preprocessing time of FS-GIA reflects
the overhead of dividing a given MOCO problem into sub-
problems. As explained in Section 3.3, the preprocessing
time of FS-GIA increases logarithmically with the number
of generated subproblems (i.e., equal to P where P is a power
of two). Our empirical results show that we can effectively
control the dividing overhead of FS-GIA. As listed in Ta-
ble 3, the preprocessing of FS-GIA takes 6.6, 6.0, and 34.8
seconds to generate 64 equal-sized subproblems for SAS,
Web Portal, and E-Shop.
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Figure 9: Number of Pareto-optimal solutions found
by FS-GIA (with and without preprocessing) using
up to 64 processors in six days for E-Shop

For small MOCO problems, such as SAS, each divided
subproblem is small enough that it can be solved in sec-
onds. In this case, the impact of the preprocessing time on
the speedup of FS-GIA is non-negligible. As listed in Ta-
ble 3, FS-GIA takes 6.6 seconds to divide the MOCO prob-
lem of SAS into 64 subproblems, whereas all subproblems
can be solved simultaneously in 1.6 seconds. Thus, 80.5% of
the execution time of FS-GIA is spent on the preprocessing
stage. However, for large MOCO problems, such as Web
Portal or E-Shop, the cost of conquering each subproblem
is far more than the cost of dividing these MOCO problems
into subproblems. In this case, the preprocessing time of FS-
GIA has little impact on the speedups of FS-GIA, and the
speedup of FS-GIA scales well with the increasing number
of processors.

5.5 Threats to Validity
To increase internal validity, we use either standard or

straightforward techniques to implement our algorithms. We
chose an exact, general-purpose algorithm GIA as a base-
line to solve MOCO problems sequentially. We rely on the
standard solver sharpSAT to choose appropriate features
for FS-GIA and FS-ParGIA generating equal-sized subprob-
lems. In ParGIA, we implement the collaborative commu-
nication between processors using simple message passing.
In OS-GIA and OS-ParGIA, we use an intuitive heuristic to
choose two objectives with the first and second largest value
ranges to form a large projective plane for cone separation.
However, we cannot guarantee that the Pareto-optimal so-
lutions are distributed evenly among the cones, and thus the
parallelism in OS-GIA and OS-ParGIA suffers from unbal-
anced workloads among the processors.

To avoid the misleading effects caused by random fluctua-
tion in measurements, we executed each algorithm 10 times
on each case study, for each hardware configuration from 2
to 64 processors, and we used the means of the measured
execution times in our analyses of speedups and scalability.

To help ensure external validity, we evaluated our pro-
posed algorithms on three relatively large case studies from
the literature. The three case studies cover a reasonable



Table 3: Impact of the preprocessing time of FS-GIA (TFS−GIAprep) on the entire execution time of FS-GIA
(TFS−GIA) and speedups; P – the number of processors; s – seconds; m – minutes

P SAS Web Portal E-Shop

TFS−GIA(s) TFS−GIAprep(s)
TFS−GIAprep

TFS−GIA
Speedups TFS−GIA(m) TFS−GIAprep(m)

TFS−GIAprep

TFS−GIA
Speedups TFS−GIAprep(s)

2 32.7 1.1 3.4 % 2.1 81.9 0.02 0.02 % 2.8 5.8
4 20.1 2.2 10.9 % 3.5 30.1 0.03 0.10 % 7.6 11.6
8 14.5 3.3 22.8 % 4.8 14.1 0.05 0.35 % 16.3 17.4

16 10.4 4.4 42.3 % 6.8 7.8 0.07 0.90 % 29.5 23.2
32 8.7 5.5 63.2 % 8.1 5.2 0.08 1.54 % 44.1 29.0
64 8.2 6.6 80.5 % 8.6 3.4 0.10 2.94 % 67.3 34.8

spectrum of MOCO problems with different characteristics,
such as different sizes of problems, different types of quality
attributes, and different optimization directions. One sys-
tem has been used in a real-world scenario, and the other
two systems are from a popular repository used by many
researchers. However, we are aware that the results of our
experiments may not transfer to other systems. We expect
that especially large systems, such as Linux Kernel with
thousands of features [36], would benefit from a combina-
tion of our parallel algorithms and other methods, such as
approximation MOCO approaches.

6. RELATED WORK
In the field of Search Based Software Engineering (SBSE),

multi-objective optimization has been identified as a ma-
jor challenge for many software-engineering problems [20].
Metaheuristics, such as multi-objective evolutionary algo-
rithms, have been used to provide approximate solutions for
MOCO problems [37]. However, it is non-trivial for these
metaheuristics to guarantee the accuracy of approximate so-
lutions. On the one hand, metaheuristics depend mainly on
a number of heuristically-chosen metrics, such as Hypervol-
ume Indicator [46] and Maximum Spread [45], to evaluate
the accuracy of approximate solutions. However, every met-
ric provides some specific, but incomplete, quantifications
of accuracy and can only be used effectively under certain
conditions [43]. On the other hand, metaheuristics usually
suffer from parameter sensitivity [18]. They often demand a
considerable time to tune parameters for finding reasonably
approximate solutions [32]. These problems motivated us to
explore the feasibility of exact MOCO methods and improve
their performance as far as possible.

As the size and complexity of a software system increases,
not only exact methods but also metaheuristics became too
time-consuming to address large MOCO problems [1, 36].
Many parallel models for metaheuristics have been proposed
to solve MOCO problems efficiently, and they have been
evaluated on a wide range of academic and real-world MOCO
problems in different domains [7, 39]. Furthermore, paral-
lelization of exact combinatorial-optimization methods, such
as Branch and Bound [28] and Dynamic Programming [4],
has been studied and implemented in multi-core environ-
ments [9]; however, it has been rarely addressed in the con-
text of multi-objective optimization [39]. The only work we
are aware is from Dhaenens et al. [13], who parallelized the
exact solving of MOCO problems by geometrically splitting
the search space into cubes and evaluated their algorithm
on one case study; but their parallelization is not able to

scale well up to only 10 processors. Thus, we propose a
different geometric decomposition to partition the search
space into cones. Moreover, we further scale the exact solv-
ing of MOCO problems by collaborative communication and
equal-sized partition using #SAT. Our parallel algorithms
target all MOCO problems, as long as each solution can be
abstracted as a combination of features.

7. CONCLUSION
MOCO has been used to solve many problems in software

engineering (e.g., architecture design [1], test data genera-
tion [23, 44], and project planning [20]) and other domains
(e.g., hybrid vehicle powertrain design [34], electric vehi-
cle battery design [25], and civil infrastructure repair plan-
ning [22]). We proposed five novel parallel algorithms for
exact and efficient solving of MOCO problems. Our algo-
rithms search for Pareto-optimal solutions using off-the-shelf
solvers and parallelize the search via collaborative commu-
nication and divide-and-conquer. We conducted a series of
experiments on three case studies of software-system design,
covering a reasonable spectrum of MOCO problems with dif-
ferent characteristics. Our empirical results demonstrate the
feasibility and performance of our parallel algorithms.

The key finding from our experiments is that FS-GIA out-
performs all other proposed algorithms. FS-GIA partitions
a given MOCO problem into subproblems of relatively equal
size, which effectively balances the workload among the par-
allel processes. The result is that FS-GIA can achieve super-
linear speedups. Moreover, the speedup of FS-GIA scales
well up to 64 processors, and possibly beyond.

Our work opens a new direction in scaling exact MOCO
methods. We hope that our work encourages other researchers
to reconsider the feasibility of exact MOCO methods and
to try different ways to scale them. Appropriate paralleliza-
tion, especially given the increasing availability of multi-core
systems, is definitely a promising approach.

In future, we plan to further improve our parallel algo-
rithms and evaluate them on larger case studies. We expect
that a combination of our exact, parallel algorithms with
existing approximate approaches would further improve the
accuracy and performance of solving MOCO problems.
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