Scaling Exact Multi-Objective Combinatorial Optimization by Parallelization

Jianmei Guo, Edward Zulkoski, Rafael Olaechea, Derek Rayside, Krzysztof Czarnecki, Sven Apel, Joanne M. Atlee

Multi-Objective Combinatorial Optimization (MOCO) Problems

Multi-Objective Combinatorial Optimization (MOCO) Problems

- In Software Engineering
 - Architecture design
 - Test data generation
 - Project planning
- In other domains
 - Hybrid vehicle powertrain design
 - Electric vehicle battery design
 - Civil infrastructure repair planning

A Running Example

1. Abstract functions as features

Cross-tree constraints: Video requires Camera

[Kang et al., Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical report, CMU SEI, SEI-90-TR-21, 1990]

A Running Example

Cross-tree constraints: Video requires Camera

A Running Example

- 1. Abstract functions as features
- 3. Find the Pareto front

Cross-tree constraints: Video requires Camera

Objectives: minimizing cost, minimizing latency

Search Space and Pareto Front

Challenges and Trade-offs

- Most MOCO problems are NP-hard.
- Approximate methods
 - + Mostly efficient
 - No guarantee for accuracy
 - Parameter sensitivity
- Exact methods
 - + Never miss any optimal opportunity
 - Mostly time-consuming

Features +

Constraints +

Quality attributes +

Objectives

Features +
Constraints +
Quality attributes +
Objectives

Formal specifications

Features + Constraints + **Formal** specifications Quality attributes + Objectives **Constraint solvers** Space-exploration algorithms

Sequential Space Exploration

Guided Improvement Algorithm (GIA)

Sequential Space Exploration

Guided Improvement Algorithm (GIA)

[Rayside et al., A Guided Improvement Algorithm for Exact, General Purpose, Many-Objective Combinatorial Optimization. Technical report, MIT-CSAIL-TR-2009-033, 2009]

Sequential Space Exploration

Guided Improvement Algorithm (GIA)

[Rayside et al., A Guided Improvement Algorithm for Exact, General Purpose, Many-Objective Combinatorial Optimization. Technical report, MIT-CSAIL-TR-2009-033, 2009]

Our Research Question

Can parallelization improve the efficiency of exact solving MOCO problems?

To what extent can it improve?

Parallel Space Exploration

- Partition GIA (ParGIA)
 - Collaborative communication
- Objective Split GIA (OS-GIA)
 - Geometric decomposition
- OS-ParGIA
 - A hybrid of OS-GIA and ParGIA
- Feature Split GIA (FS-GIA)
 - Problem division
- FS-ParGIA
 - A hybrid of FS-GIA and ParGIA

Partition GIA (ParGIA): collaborative communication

Objective Split GIA (OS-GIA): geometric decomposition

Objective Split GIA (OS-GIA): geometric decomposition

OS-ParGIA: geometric decomposition & collaborative communication

Feature Split GIA (FS-GIA): problem division

Cross-tree constraints: Video requires Camera Objectives: minimizing cost, minimizing latency

Feature Split GIA (FS-GIA): problem division

Cross-tree constraints: Video requires Camera Objectives: minimizing cost, minimizing latency

- Recursive division
- Load balance
- #SAT solver

Evaluation

FS-GIA is identified as the fastest and the most scalable algorithm.

Evaluation

FS-GIA gains super-linear speedups that scale well up to 64 cores.

A case study

- 44 features
- 2,000,000 variants
- 4 objectives

Time consumption

- 229 minutes using 1 core
- -> 3 minutes using 64 cores!

Threats to Validity

 Generality to other MOCO problems, especially in industry

	#Features	#Solutions	#Objectives
SAS	35	5184	7
Web Portal	44	2120800	4
Е-Ѕнор	290	5.02E + 49	4

[Esfahani et al., GuideArch: Guiding the Exploration of Architectural Solution Space under Uncertainty. ICSE 2013.]

[Sayyad et al., On the Value of User Preferences in Search-Based Software Engineering: A Case Study in Software Product Lines. ICSE 2013.]

Related Work

 According to Talbi et al.'s recent survey, "Parallelization of exact optimization methods" ... "is rarely tackled in the multiobjective context."

- K-PPM
 - Geometric decomposition into cubes
 - Not scalable

[Dhaenens et al., K-PPM: A New Exact Method to Solve Multi-Objective Combinatorial Optimization Problems. European Journal of Operational Research, 2010.]

Conclusion

- Five novel parallel MOCO algorithms
 - search for exact optimal solutions using off-theshelf SAT/SMT/CSP solvers
 - parallelize the search via collaborative communication, divide-and-conquer, or both.
- FS-GIA outperforms all other proposed algorithms
 - Super-linear speedup that scales well up to 64 cores
- A new direction in scaling exact MOCO methods

Future Work

- Industry applications
 - Automotive wire harness optimization

- Hybrid optimization
 - Combine exact and approximate methods

- Theoretical guarantee
 - Performance bounds of exact MOCO algorithms

Thank you!

http://gsd.uwaterloo.ca/epoal