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Multi-Objective Combinatorial
Optimization (MOCO) Problems



Multi-Objective Combinatorial
Optimization (MOCO) Problems

* |n Software Engineering
— Architecture design
— Test data generation
— Project planning
* |[n other domains
— Hybrid vehicle powertrain design
— Electric vehicle battery design
— Civil infrastructure repair planning
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1. Abstract functions as features

Cross-tree constraints: Video requires Camera

[Kang et al., Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical report, CMU SEI, SEI-90-TR-21, 1990]
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1. Abstract functions as features

| e _4%5: 2. Infer quality attributes

Cross-tree constraints: Video requires Camera

[Guo et al., Variability-Aware Performance Prediction: A Statistical Learning Approach, ASE 2013] 5
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3. Find the Pareto front

Cross-tree constraints: Video requires Camera

Objectives: minimizing cost, minimizing latency



Search Space and Pareto Front
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Challenges and Trade-offs

* Most MOCO problems are NP-hard.

* Approximate methods
+ Mostly efficient
- No guarantee for accuracy
- Parameter sensitivity

* Exact methods
+ Never miss any optimal opportunity
- Mostly time-consuming



Workflow of Exact Methods
using Solvers
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Workflow of Exact Methods
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Sequential Space Exploration

* Guided Improvement Algorithm (GIA)
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[Rayside et al., A Guided Improvement Algorithm for Exact, General Purpose, Many-Objective Combinatorial Optimization.
Technical report, MIT-CSAIL-TR-2009-033, 2009]



Sequential Space Exploration

* Guided Improvement Algorithm (GIA)

[Rayside et al., A Guided Improvement Algorithm for Exact, General Purpose, Many-Objective Combinatorial Optimization.
Technical report, MIT-CSAIL-TR-2009-033, 2009]



Sequential Space Exploration

* Guided Improvement Algorithm (GIA)
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[Rayside et al., A Guided Improvement Algorithm for Exact, General Purpose, Many-Objective Combinatorial Optimization.
Technical report, MIT-CSAIL-TR-2009-033, 2009]



Our Research Question

Can parallelization improve the efficiency of
exact solving MOCO problems?

To what extent can it improve?



Parallel Space Exploration

Partition GIA (ParGIA)

— Collaborative communication
Objective Split GIA (OS-GIA)
— Geometric decomposition

OS-ParGIA
— A hybrid of OS-GIA and ParGIA

Feature Split GIA (FS-GIA)

— Problem division

FS-ParGIA
— A hybrid of FS-GIA and ParGIA



Partition GIA (ParGIA):
collaborative communication




Objective Split GIA (OS-GIA):
geometric decomposition
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Objective Split GIA (OS-GIA):
geometric decomposition
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OS-ParGlA:
geometric decomposition &
collaborative communication
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Feature Split GIA (FS-GIA):

MobilePhone
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Cross-tree constraints: Video requires Camera

Objectives: minimizing cost, minimizing latency

problem division

22



Feature Split GIA (FS-GIA):
problem division

MobilePhone
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Cross-tree constraints: Video requires Camera

Objectives: minimizing cost, minimizing latency

- Recursive division
- Load balance
- #SAT solver

23



Evaluation

FS-GIA is identified as the fastest and the most scalable algorithm.
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Evaluation

FS-GIA gains super-linear speedups that scale well up to 64 cores.

. 3 mins A case study
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Threats to Validity

* Generality to other MOCO problems,
especially in industry

#Features #Solutions #Objectives

SAS 35 D184 7
WEB PORTAL 44 2 120 800 4
E-SHop 200 5.02E+49 4

[Esfahani et al., GuideArch: Guiding the Exploration of Architectural Solution Space under Uncertainty. ICSE 2013.]

[Sayyad et al., On the Value of User Preferences in Search-Based Software Engineering: A Case Study in Software Product
Lines. ICSE 2013.]



Related Work

* According to Talbi et als recent survey,
“Parallelization of exact optimization
methods” ... “is rarely tackled in the
multiobjective context.”

e K-PPM
— Geometric decomposition into cubes
— Not scalable

[Dhaenens et al., K-PPM: A New Exact Method to Solve Multi-Objective Combinatorial Optimization Problems. European
Journal of Operational Research, 2010.]



Conclusion

* Five novel parallel MOCO algorithms

— search for exact optimal solutions using off-the-
shelf SAT/SMT/CSP solvers

— parallelize the search via collaborative
communication, divide-and-conquer, or both.

* FS-GIA outperforms all other proposed
algorithms
— Super-linear speedup that scales well up to 64 cores

* A new direction in scaling exact MOCO methods



Future Work

* Industry applications

— Automotive wire harness optimization

* Hybrid optimization
— Combine exact and approximate methods

* Theoretical guarantee
— Performance bounds of exact MOCO algorithms



Thank you!

http://gsd.uwaterloo.ca/epoal



