
GSDLAB TECHNICAL REPORT

The Semantics of Feature Models via Formal
Languages

(Extended Version)

Aliakbar Safilian, Tom Maibaum, Zinovy Diskin

GSDLAB–TR 2015-01-02 January 2015

Generative Software Development Laboratory
University of Waterloo

200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

WWW page: http://gsd.uwaterloo.ca/

The GSDLAB technical reports are published as a means to ensure timely dissemination

of scholarly and technical work on a non-commercial basis. Copyright and all rights

therein are maintained by the authors or by other copyright holders, notwithstanding

that they have offered their works here electronically. It is understood that all persons

copying this information will adhere to the terms and constraints invoked by each author’s

copyright. These works may not be reposted without the explicit permission of the

copyright holder.

The Semantics of Feature Models via Formal
Languages

Aliakbar Safilian1, Tom Maibaum1, Zinovy Diskin1,2

1 Department of Computing and Software,
McMaster University, Canada

safiliaa | maibaum | zdiskin@mcmaster.ca
2 Generative Software Development Lab.,

Department of Electrical and Computer Engineering,
University of Waterloo, Canada
zdiskin@gsd.uwaterloo.ca

Abstract. Feature modeling is a common framework for software de-
sign. A feature model is a graphical structure presenting a hierarchical
decomposition of features, called a feature diagram, with some possi-
ble crosscutting constraints between them. Feature modeling languages
are grouped into basic and cardinality-based feature models. Cardinality-
based feature models subsume basic ones. In this paper, we provide a
reduction process, which allows us to go from a cardinality-based feature
diagram to an appropriate regular expression such that the expression
faithfully captures the semantics of the feature diagram. As for CCs, we
propose a formal language interpretation of them. In this way, we provide
a formal language-based semantics for cardinality-based feature models.
Accordingly, we describe a computational hierarchy of feature models,
which guides us in how feature models can be constructively analyzed.
We also characterize some existing analysis operations over feature mod-
els in terms of on languages and discuss the corresponding decidability
problems.

1 Introduction

Product line engineering [30] is a well-known industrial approach to software
design. A product is a set of features, where “a feature is a system property
that is relevant to some stakeholders and is used to capture commonalities or
discriminate among systems in a family” [8]. A product line (PL) is a set of
products that share some common features. The main advantage of this approach
to software production is a reduction in cost and development time, since, instead
of producing a single product, a set of similar products are produced [19,30].

Feature modeling is the most common approach for modeling the commonali-
ties and variabilities in a PL. A feature model (FM) is a graphical structure pre-
senting a hierarchical decomposition of features, called a feature diagram (FD),
with some possible crosscutting constraints (CCs) between them. There are many
feature modeling languages, which are grouped into basic and cardinality-based

FMs. We describe the feature modeling languages using a small part of the
student awards system at McMaster University.

Fig. 1(a) is a basic FD of the system. It is a tree of features, where the
edges exhibit the relationships between features. An edge with a black bullet
shows a mandatory feature: every application must include a ref (reference), and
the hollow-ended one shows an optional feature: an application can optionally
be equipped with citizen (confirming that the applicant is a citizen). These two
types of edges (mandatory and optional) are called solitary, while other edges
are grouped into two groups: OR (the black angle) and XOR (the hollow angle).
The XOR group {NSERC, GB, IE} shows that the student can apply for at most
one and only one of the awards NSERC (Natural Sciences and Engineering Re-
search Council), GB (Graham Bell Scholarship) and IE (International Excellence
Award). The OR group {markA, publication} indicates that to apply for the IE
award, the student must have either a markA, or a publication, or both in his
record.

applica&on)

NSERC) GB) IE)ref)

markA)

Ci&zen))

Publica&on)

applica&on)

NSERC) GB) IE)ref)

markA)

Ci&zen))

Publica&on)

(1, 1)

(1, *)

(2, *)

(1, 2)
(0, 1)

(1, *)

applica&on)

NSERC) GB) IE)ref)

markA)

Ci&zen))

Publica&on)

applica&on)

NSERC) GB) IE)ref)

markA)

Ci&zen))

Publica&on)

(1, 1)

(1, *)

(2, *)

(1, 2)
(0, 1)

(1, *)

(a) (b)

Fig. 1: (a) a basic FD (b) a cardinality-based FD

The set of valid products of a basic FD can be translated into a propositional
logic formula generated over the set of features [26]. For our example, the corre-
sponding formula would be the conjunction of the root feature (application) and
“ref ↔ application”, “citizen → application”, “NSERC ∨ GB ∨ IE ↔ application”,
“NSERC ∧ GB → ⊥”, “NSERC ∧ IE → ⊥”, “IE ∧ GB → ⊥”, and “markA ∨
publication ↔ IE”. In this sense, any logical formula can be seen as a CC [10].
Let us have cc1: “citizen −→ ¬IE” and cc2: “NSERC ∨ GB −→ citizen” as the
CCs stating that a “citizen student cannot apply for the IE award” and “one of
the requirements for the NSERC and GB awards is to be a citizen”, respectively.
cc1 and cc2 are called an exclusive and an inclusive CC, respectively. This FM
represents the six valid products {application, NSERC, citizen, ref}, {application,
GB, citizen, ref}, {application, IE, markA, ref}, {application, markA, publication,
ref}, and {application, IE, publication, ref}. The set of all products of a given FM
is called the product line of the FM and is denoted by PL(M).

2

Suppose that we need to specify some requirements regarding the number of
feature instances. For example, consider the following requirements: (i) There
is no upper bound on the number of instances of the features ref, markA, and
publication. (ii) If the student applies for the IE award by providing A-marks,
the number of markA in his/her record must be more than two. Clearly, basic
FMs like in Fig. 1(a) cannot model such requirements, since they do not manage
the number of instances. To address such system requirements, Czarnecki et al.
proposed cardinality-based FMs (CFMs) [7–9], where UML-like multiplicities,
called cardinalities, are used in place of traditional edge types. The FD of a
CFM (cardinality-based FD, abbreviated to CFD) is a labeled tree of features.
There are two types of cardinalities: feature and group cardinalities. Fig. 1(b)
provides a CFD for the awards system including the requirements (i) and (ii).
The group cardinalities (1, 1) and (1, 2) model XOR and OR groups in terms of
cardinalities. The feature cardinality (0, 1) on citizen models its optional presence
in an application. The feature cardinalities (1, ∗) on ref and publication, (2, ∗)
on markA together satisfy the requirements (i) and (ii). If no cardinality was
specified on a node then the cardinality (1, 1) is assumed: the cardinalities on
features NSERC, GB and IE are (1, 1).

CCs in a CFM can refer to feature instances. Take, for example, the con-
straint: cc3: “The number of instances of ref must be even”. A product of a
CFM is a multi-set of features satisfying the constraints. For an example, the
multi-set {application, IE,markA3, ref4} is a product of this model. Note that the
PL of this model is an infinite set. Obviously, CFMs subsume basic FMs [8].

The common understanding of the semantics of an FM in the literature is
its PL [34]. This semantics does not capture all essential and practically impor-
tant information of FMs. This is mainly because an FM provides a hierarchical
structure for features, which is forgotten in its PL [15, 35]. For a very simple
example, consider two FMs M1 (a is the root and b is the only mandatory child
of a) and M2 (b is the root and a is the only mandatory child of b). M1 and M2

represent the same PL consisting of the only product {a, b}, but their hierarchi-
cal structures are different. Capturing hierarchical structure of FMs is important
for several analysis operations over FMs [4], e.g., for finding the least common
ancestor (LCA) of a given set of features [27].

In [15], in order to adequately represent the hierarchical structure of basic
FMs semantically, we introduced a Kripke semantics for basic FMs, and showed
that basic feature modeling is a branch of behavioral modeling, which needs a
modal rather than Boolean logic. In the present paper, we invoke formal language
(FL) theory to approach building a semantics for cardinality-based feature mod-
eling, which is a more challenging area of feature modeling. This method allows
us to approach FM problems by translating them into FL-theory problems that
could be managed by well-elaborated FL-theory methods and tools. Indeed, we
provide an FL interpretation LM for a given FM M. To consider LM as a faithful
semantics for the FM, LM must satisfy the following two fundamental properties:

P-1 “The multi-set interpretation of LM is equal to PL(M)”.

3

P-2 “LM preserves the hierarchical structure of M”.

The meaning of P-1 is clear. P-2 says that the hierarchical structure of M
can be extracted from LM. This property is formalized in Definition 21. Later
we will show that our FL semantics does satisfy these two requirements, see
Theorem 2 and Theorem 1.

Industrial FMs may have thousands of features, and their PLs can be com-
plex [26]. Hence, analysis operations on FMs need automated support. Several
approaches, such as propositional logic- and constraint programming (CP)-based
approaches, have been proposed for automated analysis of basic FMs. In these
methods, a given FM is translated into logical formulas or CP and then off-the-
shelf tools such as SAT solvers are used for reasoning about the FM. However,
these approaches have the following deficinecies: (i) They take into account only
the PL of FMs and do not capture their hierarchical structures. Due to this
deficiency, some operations, say LCA, cannot be implemented in these methods;
(ii) These approaches cannot support CFMs, since such FMs cannot be encoded
into propositional logic or CP. Our proposed FL-based framework covers such
deficiencies. In this paper, we also show that not all of the proposed analysis
operations are decidable when applied to all kinds of FMs.

The plan for this paper is as follows. Sect. 2 provides a background on FL
theory and some preliminary definitions. In Sect. 3, we provide a formal syntax
for CFDs and a formal definition of their valid products. In Sect. 4, we describe
an important generalization of CFDs, called cardinality-based regular expression
diagrams (CRDs) in which labelling of nodes can be any regular expressions built
over an alphabet. Then we show how to translate CRDs to regular expressions.
Also, we prove that the regular expression generated in this way for a given CFD
satisfies P-1 and P-2. In Sect. 5, we show how to interperet CCs in FL and then
give a definition of CFMs (CFDs + CCs). In Sect. 6, we introduce some analysis
operations and investigate their decidability problems. Related work is discussed
in Sect. 8. Sect. 9 discusses the conclusions. Finally, we discuss some important
open problems/future work in Sect. 10.

Below we present the notations used throughout the paper. Some further
notations are introduced where they are used.

Notation.

– |A| denotes the cardinality of a set A.
– The notation f |A means the restriction of the function f to a subdomain A.
– N denotes the set of natural numbers.
– For a given set X = {x1, . . . , xn} ⊂ N: + X = x1 + . . .+ xn.

2 Background on Formal Languages

In this section, we provide a concise background on some materials in the for-
mal language theory, which are used in the current paper. Some further con-
cepts/results on the FL theory are introduced where they are used. For more

4

comprehensive background, we refer the interested reader to some standard text-
books such as Linz [25], Davis [11], Kozen [23], Hopcroft [21], and Cooper [6].

Let us, first, fix the alphabet (set of symbols) and denote it by Σ. Σ∗ denotes
the set of all finite words (sequences of instances of symbols) built over Σ. Any
subset of Σ∗ is called a language. According to their computational properties,
the languages are grouped into several kinds. The most well-known are regular,
context-free, context-sensitive, recursive, and recursively enumerable languages.
Note that, according to Turing thesis, we consider algorithms and Turing ma-
chines equivalent.

Recursively Enumerable Languages. A language L is called a recursively
enumerable language (a.k.a. semi-computable, semi-decidable, computably enu-
merable) if there exists an algorithm (Turing machine) accepting the language.
In other words, there is an algorithm such that it halts (terminates) for any
given element (word) in L and outputs a symbol indicating that the input is in
L. Note that there is no guarantee that the algorithm halts for any given words
(those that are not in the language).

Recursive Languages. A language L is called recursive (a.k.a. computable,
decidable) if there exists an algorithm such that for any given word the algo-
rithm halts and decides whether it is in the language or not.

Context-Sensitive Languages. A language is called context-sensitive if
there exists an algorithm written in a monotonic (equivalently context-sensitive)
grammar. A grammar is monotonic if all of whose productions are in the form of
Γ → Θ, where Γ and Θ are strings generated over terminals and non-terminals,
such that Θ is not shorter than Γ .

Context-free Languages. A language is called context-free if it can be
generated by some context-free grammars. A grammar is context-free if all of its
productions are in the form of V → Θ, where V is a non-terminal symbol and Θ
is a string of terminals and non-terminals. In an equivalent way, we could define
context-free languages by using push-down automata 1 [25].

Regular Languages. A language is regular if and only if it can be expressed
by some regular expressions, regular grammars, or finite automata.

Regular expressions are defined according to the following BNF:

Reg ::= ∅ | ε | σ (for any σ ∈ Σ) | Reg +Reg | Reg.Reg | Reg∗ | (Reg).

The expressions ∅, ε, σ (for any σ ∈ Σ) are often called primitive regular
expressions.

1 Since we do not use push-down automata in this paper, we do not go into the detail
definition of such automata.

5

Languages associated to regular expressions (Semantics): The language as-
sociated to a regular expression Reg is denoted by L(Reg) and defined in an
inductive way as follows:

L(∅) = ∅,
L(ε) = {ε},
L(σ) = {ε}, for any σ ∈ Σ,
L(Reg1 +Reg2) = L(Reg1) ∪ L(Reg2),
L(Reg∗) = (L(Reg))∗,
L((Reg)) = L(Reg),
L(Reg1.Reg2) = L(Reg1).L(Reg2).

Finite Automata. A finite automaton is a tuple (S, T, F, I) where S is a
finite set of states, T : S × (Σ ∪ ε)→ 2S is a transition function, F ⊆ S is a set
of final states, and I ⊆ S is a set of initial states. The transition relation can be
extended to T ∗ : S ×Σ∗ → 2S to deal with strings rather than a single symbol.
T ∗(s, w) = S′ means that starting the state s and visiting the word w, S′ is the
set of all possible states that the automaton may be in.

Languages associated to finite automata: Let Aut = (S, T, F, I) be a finite
automaton. The language associated to Aut is denoted by L(Aut) and is equal
to {w ∈ Σ∗ : ∃i ∈ I, T ∗(i, w) ∩ F 6= ∅}.

Transition graphs are used to represent finite automata. Fig. 2 represents an
automaton for the language {w ∈ {a, b}∗ : the number of instances of a is even}.
The initial state is identified by an incoming unlabelled arrow not originating at
any state. The final states are drawn with double circles.

b

a
a

A

C

Fig. 2: A transition graph for {w ∈ {a, b}∗ : #w(a) is even}

Regular Grammars. A regular grammar is either a right or left regular
grammar. The productions of a right (left, respectively) regular grammar must
be in one of the following forms: V → ε (the same, respect.), V → σ (the same
respect.), V → σV ′ (V → V ′σ, respect.), where σ is a terminal and V, V ′ are
non-terminals.

We also need to know the concept of bounded regular language:
Bounded Regular Languages. We say a regular language L is a bounded

regular language, if there are n words w1, . . . , wn ∈ Σ∗ such that L1 ⊆ w∗1 . . . w∗n.

Fig. 3 presents a containment hierarchy of formal languages: Regular ⊂
Context-free ⊂ Context-sensitive ⊂ Recursive ⊂ Recursively enumerable (r.e.)

6

Hierarchy)(FL))

Recursively Enumerable

Recursive

Context-sensitive

Context-free

Regular

Fig. 3: A containment hierarchy of formal languages

Some Computational Properties.
The following properties of formal languages are used throughout the paper:

Closure: Regular Languages. The class of regular languages is closed under
the set operations union, intersection, complement, relative complement.
It is also closed under the language operations Kleene star, concatena-
tion, and reversal: Let L be a formal language. Its reverse is denoted
by LR and defined as follows. LR = {wR : w ∈ L} (wR is the reverse
sequence of the sequence w).

Context-free Languages. The class of context-free languages is closed un-
der the set operations union, but is not closed under intersection, comple-
ment and relative complement operations. It is also closed under Kleene
star, reversal, and concatenation. This class is also closed under inter-
section with any regular languages.

Context-sensitive Languages. The class of context-sensitive languages is
closed under intersection, union, complement, relative complement, and
Kleene star. However, it is not closed under other operations. This class
is also closed under intersection with any regular languages.

Decidability: Note that all recursive languages (including regular, context-free,
and context-sensitive languages) are decidable. Below, we state some other
decidability results that are used in the paper.
Emptiness Problem. The problem is that for a given language L, “is
L = ∅ decidable?”
The emptiness problem is decidable in both classes of regular and context-
free languages. However, it is not decidable in the class of context-
sensitive languages.

Equality Problem. Given two languages L,L′, the problem is to decide
whether the question “L= L?”’ is decidable or not.
The equality problem is decidable in the class of regular languages, but
it is not decidable in other classes of formal languages. However, if one
of the given languages is a bounded regular and the other is context-free,
then the equality problem would be still decidable.

7

Inclusion Problem. Given two languages L,L′, the question is to decide
whether “L ⊂ L′ ” is decidable or not?
The inclusion problem is decidable in the class of regular languages,
but it is not decidable in the class of other classes of formal languages.
However, if L is context-free and L′ is regular, then the above problem
would be still decidable.

In the following, we introduce some notations that are used in the subsequent
section.

Notations.

– For any REs Reg (languages L, respectively), Σ(Reg) (Σ(L), respectively)
denotes the alphabet which Reg (L, respectively) is built on.

– Let RE(Σ) denote the class of all regular expressions built over Σ.
– Let Gra, Reg and Aut be a formal grammar, regular expression and au-

tomaton over an alphabet Σ, respectively.

• Then L(Gra),L(Reg),L(Aut) denote their corresponding languages, re-
spectively.

• Let Σ′ be another alphabet with a bijection f : Σ → Σ′. Then Reg[f]
(Gra[f] and Aut[f], respectively) is a regular expression (grammar, au-
tomaton, respectively) built over Σ′ using Reg (Gra and Aut, respec-
tively) by substituting any element σ ∈ Σ with f(σ).

– The multi-set interpretation (Parikh’s image) of a word w (a formal language
L, respectively) is denoted by wbag (Lbag, respectively).

– Uw denotes the set of elements included in a word (or multi-set) w.
– #w(σ) denotes the number of instances (occurrences) of σ in a word (or

multi-set) w.
– For a given word w, we consider a partial order vw ⊆ Uw × Uw defined as

follows: ∀σ, σ′ ∈ Uw, σ vw σ′ iff any instance of σ′ is preceded by some
instances of σ in w.

– For two words w and w′, the notation w ≤seq w
′ is used to denote that w is

a subsequence of w′.
– To make the regular expressions more readable, we use iterations rather than

recursion, to express repetition, e.g., to show n repetition of a letter f , we
use the notation fn.

We will also need the following definitions:

Definition 1 (Substitution of a letter with a language). Let L and L′
be two languages and σ ∈ Σ(L). The Substitution of σ with L′ is a language
denoted by L[σ 7→L L′] and equal to: {w ∈ L : σ 6∈ w}

⋃
{ww′w′′ : (wσw′′ ∈

L) ∧ (w′ ∈ L′)}. ut

Notation. Let Σ′ = {σ1, . . . , σk} be a subset of Σ and sub be a function, which
maps each letter σi of Σ′ to an FL Li. We write L[σ 7→L sub(σ) : ∀σ ∈ Σ′] to
mean L[σ1 7→L L1] . . . [σk 7→L Lk].

8

Definition 2 (Substitution of a letter with an expression). Let E and E ′
be two regular expressions and σ ∈ Σ(E). The Substitution of σ with E ′ is a
regular expression denoted by E [σ 7→E E ′] and specified as follows: any instance
of σ in E is replaced by E ′. ut

Notation. Let Σ′ = {σ1, . . . , σk} be a subset of Σ(E) and sub be a function,
which maps each letter σi of Σ′ to an RE Ei. We write E [σ 7→E sub(σ) : ∀σ ∈ Σ′]
to mean E [σ1 7→E E1] . . . [σk 7→E Ek].

Definition 3 (Substitution of a symbol with an language). Let L and L′
be two languages and σ ∈ Σ(L). The Substitution of σ with L′ is a language
denoted by L[σ 7→L L′] and specified as follows: any instance of σ in L is replaced
by L′. ut

Notation. Let Σ′ = {σ1, . . . , σk} be a subset of Σ(E) and sub be a function,
which maps each letter σi of Σ′ to an RE Ei. We write E [σ 7→E sub(σ) : ∀σ ∈ Σ′]
to mean E [σ1 7→E E1] . . . [σk 7→E Ek].

3 CFDs: Formal Definitions

We use the CFD in Fig. 4 as an example to illustrate the definitions. The feature
label of each node is represented in parenthesis next to the node and G denotes
the grouped nodes {e, f, g }.

a"(f)"

b"(f1)" c"(f2)"

d"(f3)" g"(f1)"e"(f2)" f"(f4)"

(1,2)"(4,*)" (0,2)"

(2,3)"
G"

(3,5)" (1,1)" (1,1)" (1,2)"

Fig. 4: A CFD

To formalize the syntax of CFDs, we will first need the following notion.

Definition 4 (Cardinalities).
(i) The cardinality-set is the set C = {(k,m) ∈ N×(N]{∗}) : (k ≤∗ m)∧(m 6=

0)}, where ≤∗: (N] {∗})× (N] {∗}) is a reflexive transitive relation defined as
follows: ∀k,m ∈ N, k ≤∗ m iff k ≤ m and ∀k ∈ N, k ≤∗ ∗.

(ii) An element c = (k,m) ∈ C is called a cardinality. We call k and m
the lower-bound, denoted by low(c), and upper-bound, denoted by up(c), of c,
respectively.

9

(iii) A subset C ⊆ C is called a cardinality interval if there exists I =
{1, . . . , n} ⊂ N such that C = {(ki,mi) : i ∈ I} in which mi ≤∗ ki+1, for
all i, i + 1 ∈ I. We call k1 and mn the lower-bound, denoted by low(C), and
upper-bound, denoted by up(C), of C, respectively. ut

Consider the CFD in Fig. 4 and ignore the labels on nodes. We call such a
tree a cardinality-based diagram (CD). Indeed, a CFD is a labeled CD. A CD
itself is an unlabelled tree where some subsets of non-root nodes are grouped
(G = {e, f, g} in Fig. 4) and other nodes are called solitary (the nodes b, c, and
d in Fig. 4). In addition, non-root nodes and groups are equipped with some
cardinality intervals (e.g., {(1, 2), (4, ∗)} on the node b and {(1, 2)} on G).

Definition 5 (Cardinality-based Diagrams). A cardinality-based diagram
(CD) is a 3-tuple D = (T,G, C) consisting of the following components.

(i) T = (N, r, ↑) is a tree with set N of nodes, r ∈ N is the root, and

function ↑ maps each non-root node n ∈ N−r
def
= N \ r to its parent n↑. The

inverse function that assigns to each node n the set of its children is denoted by
n↓. The set of all descendants of n is denoted by n↓↓.

(ii) G ⊆ 2N−r is a set of grouped nodes. For all G ∈ G, |G| > 1, and all
nodes in G have the same parent, denoted by G↑. All groups in G are disjoint,
i.e., ∀G,G′ ∈ G. (G 6= G′)⇒ (G∩G′ = ∅). The nodes that are not in a group are
called solitary nodes. Let S denote the solitary nodes, i.e., S = N−r −

⋃
G∈G G.

(iii) C ⊆ (N−r] G)× C is a left-total relation called the cardinality relation.
For any element e ∈ N−r]G, C(e) is a cardinality interval as defined in Defini-
tion 4(iii). In addition, for all G ∈ G, up(C(G)) ≤ |G|. ut

Definition 6 (Cardinality-based Feature Diagrams). A cardinality-based
feature diagram (CFD) is a 3-tuple FD = (D, F, l) where D = (T,G, C) is an
CD, as defined in Definition 5, F is a set of features, and function l : N → F
labels each node with a feature. ut

Remark 1. The original definition of CFDs in [8] has two restrictions: (i) the car-
dinality of a grouped node is always (1, 1) and (ii) only one cardinality interval is
assigned to a group. However, we generalized CFDs in the above definition with-
out essentially complicating the framework and enabling useful generalizations
in feature modeling.

Notation. Let D = (T,G, C) be a CD with T = (N, r, ↑) and n ∈ N :
– depth(D) denotes the T ’s depth and depth(n) denotes the n’s depth in T .
– Nk− = {n ∈ N : depth(n) = k}, i.e., the nodes with depth k.

Let FD be a CFD with D as its underlying CD:
– By depth(FD), we mean depth(D).

Now we want to formally define a valid product of a given CFD. First, we
give a definition of a valid product of its underlying CD. Note that a CD can
be seen as a CFD in which the labelling is an inclusion from nodes to nodes.
We call a valid product of the CD a bare product of the CFD. To obtain the

10

valid products of the CFD, we just need to apply the labelling function on the
bare products. A bare product is a multi-set of nodes satisfying the following
membership and arity requirements.

(membership requirements): The root is included. If a non-root node is in-
cluded then its parent must also be included, e.g., the presence of the node d in
Fig. 4 implies the presence of the node c. If the parent of a mandatory node (a
solitary node with lower bound cardinality greater than 0) is included then it
must be included too, e.g., the presence of the node c implies the presence of the
node d. If a parent of a grouped set of nodes is included then the presence of the
grouped nodes must satisfy the associated group cardinalities, e.g., the presence
of the node c implies the presence of two or three of the nodes e, f, and g.

(arity requirements): The arity of the root node is always 1. The number
of instances of a non-root node is verified by the cardinality interval associated
with it and the number of instances of its parent node, e.g., if the number of
instances of the node c in Fig. 4 is two then the number of instances of the node
d must be at least six and at most ten. In general, for non-root nodes n included
in the bare product, there must be a cardinality c associated with n such that
its arity is less (greater, respectively) than the multiplication of its parent’s (n↑)
arity and c’s upper bound (lower bound, respectively).

Definition 7 (Product). Let FD = (D, F, l) be a CFD with D = (T,G, C) and
T = (N, r, ↑).
Bare Product: A multi-set BP over the set of nodes N is called a bare product
if:

(membership):
(i) r ∈ BP ,
(ii) ∀n ∈ N−r : n ∈ BP ⇒ n↑ ∈ BP ,
(iii) ∀n ∈ BP,∀n′ ∈ S : [(n′↑ = n) ∧ (low(C(n′)) > 0)]⇒ (n′ ∈ BP),
(iv) ∀n ∈ BP, ∀G ∈ G : (G↑ = n)⇒ [∃c ∈ C(G) : low(c) ≤ |BP∩G| ≤ up(c)],
(arities):
(v) #BP (r) = 1,
(vi) ∀n ∈ N−r,∃c ∈ C(n) :

(
#BP (n↑) × low(c)

)
≤ #BP (n) ≤

(
#BP (n↑) ×

up(c)
)

Product: A multi-set P over F is called a product if there exists a bare product
BP of FD such that P is the result of applying the labelling function l on the
elements of BP , i.e., for all features f ∈ F ,

(i) (f ∈ P)⇔ (l−1(f) ∩BP 6= ∅),
(ii) #P (f) = +n∈l−1(f) #BP (n)

The product family of FD is denoted by PL(FD). ut

The definitions stated in the rest of this section come in handy in the subsequent
sections mainly in Sect. 4.2. In the following definitions, we work on just CDs.
They can be easily transformed on CFDs using by labelling functions.

Definition 8 (Substitution of a leaf node with a CD). Consider two CDs
D = (N, r, ↑,G, C) and D′ = (N ′, n, ↑

′
,G′, C′) such that N ∩ N ′ = {n} and

11

n↓ = ∅ (n is a leaf node in D). The substitution of n with D′ is a CD, denoted

by D[n 7→D D′], equal to (N ∪N ′, r, ↑ ∪ ↑′ , G ∪ G′, C ∪ C′). ut

As an example, consider the CD in Fig. 5(a) (D). The substitution of the leaf
node b in Fig. 4 with D is shown in Fig. 4(b).

Subs%tu%on)in)CDs)
a))

b)) c)

d ge f

(1,2))(4,*)) (0,2))

(2,3))

(3,5)) (1,1)) (1,1)) (1,2))

b) c)(1,5))
(1,2))

(1,1))

(a)) (b))

b))

b) c)(1,5))
(1,2))

(1,1))

D

Fig. 5: (a) An CD D, (b) Substitution of (b) in Fig. 4 with (a)

Notation. Let D be a CD and N ′ = {n1, . . . , nk} be a subset of its set of leaf
nodes. Also, let sub be a function, which maps each element ni of N ′ to a CD
Di such that for two distinct indices i, j, the set of nodes of Di and Dj are
disjoint. For succinctness, we usually write D[n 7→D sub(n) : ∀n ∈ N ′] to mean
D[n1 7→D D1] . . . [nk 7→D Dk].

The above definition motivates us to define substitution of a feature in a PL
with another PL.

Definition 9 (Substitution of a feature with an PL). Let PL and PL′ be
two PLs over the sets of features F and F ′, respectively. For a given f ∈ F ,
the substitution of f with PL′ is an PL, denoted by PL[f 7→P PL′], specified
as follows: each instance of f in a product of PL is substituted by a product of
PL′. ut

As an example, let F = {f1, f2, f3}, F ′ = {f ′1, f ′2}, PL = {{f12, f2}, {f1, f23}, },
and PL = {{f ′1

3}}. Then, PL[f1 7→P PL′] = {{f ′1
6
, f2}, {f ′1

3
, f2

3}, }.

Notation. Let F ′′ = {f1, . . . , fk} ⊆ F and sub be a function, which maps
each feature fi of F ′′ to a PL PLi. We usually write PL[f 7→P sub(f) : ∀f ∈ F ′′]
to mean PL[f1 7→P PL1] . . . [fk 7→P PLk].

The reverse operation of the substitution of a leaf in a CD (Definition 8) is
defined as follows.

Definition 10 (Cutting of an CD by a node). Let D = (N, r, ↑,G, C) be
a CD and n ∈ N . The cutting CD of D by the node n is the CD D−↓n =
(N ′, r, ↑|N ′ ,G′, C|G′]N ′), where N ′ = N − n↓↓ and G′ = G ∩ 2N

′
, i.e., its tree

12

is the tree of D except for the tree under n; all other components are inherited
from D. ut
As an example, the Fig. 6 depicts the cutting of the CFD in Fig. 4 by the node
c.

Cu#ng&CD&(running&example)&

a
&&

b& c&

(1,2)&(4,*)& (0,2)&

Fig. 6: Cutting of Fig. 4 by c

Definition 11 (Induced Diagram by Node). Let D = (N, r, ↑,G, C) be a
CD and n ∈ N . The induced CD by n is a CD D↓n = (N ′, n, ↑|N ′ ,G′, C′), where

N ′ = {n′ ∈ N : (n′ = n) ∨ (n′ ∈ n↓↓)}, G′ = G ∩ 2N
′
, and C′ = C|N ′]G′ , i.e., its

tree is the tree under n in D’s tree and all other components are inherited from
D. ut

The CD in Fig. 7 represents the induced diagram of the node c of the CD in
Fig. 4.

Induced'Diagram'by'node'

c'

d ge f

(2,3)'

(3,5)' (1,1)' (1,1)' (1,2)'

Fig. 7: Induced diagram by c of Fig. 4

Definition 12 (Upper Induced Diagram by depth). Let D = (N, r, ↑,G, C)
be a CD and 0 ≤ k ≤ depth(D). The upper induced CD by k is a CD D↑k =
(N ′, r, ↑|N ′ ,G′, C′), where N ′ = {n ∈ N : depth(n) ≥ k}, G′ = G ∩ 2N

′
, and

C′ = C|N ′]G′ , i.e., its tree is a subtree of D’s tree where the nodes are in depth
less than or equal to k; all other components are inherited from D. ut

The CD in Fig. 8 represents the upper induced diagram by the depth 2 in the
CD in Fig. 5(b).

4 CFDs to Regular Expressions

In this section, we first define a generalization of CFDs called Cardinality-based
Regular-expression Diagrams (CRDs). Subsequently, we give a procedure to
translate a given CRD to a regular expression (RE). This provides a semantics
for CRDs by using regular languages as the semantic domain. We also prove that
the REs generated for a given CFD and its underlying CD satisfy the properties
P-1 and P-2, respectively.

13

Upper%Induced%by%Depth%

a%%

b%% c%

(1,2)%(4,*)% (0,2)%

Fig. 8: Induced diagram by depth 2 of Fig. 5

4.1 Cardinality-based Regular-expression Diagrams

Definition 13 (Cardinality-based Regular-expression Diagrams).
A cardinality-based regular-expression diagram (CRD) over an alphabet Σ is a
3-tuple RD = (LTre,G, C) of the following components:

(i) LTre = (N, r, ↑, Σ, lre) is a labeled tree where N , r, ↑, are as defined
in Definition 5(i), Σ is a finite set (the alphabet), and lre : N → RE(Σ) is a
function that labels each node with a regular expression built over Σ.

(ii) G ⊆ 2N−r is a set of grouped nodes, as defined in Definition 5(ii).
(iii) C ⊆ (N−r] G)× C is called the cardinality relation, as defined in Defi-

nition 5(iii).
The class of all CRDs over the same alphabet Σ will be denoted by RD(Σ). ut

Remark 2. CRDs subsume CFDs and CDs: A CFD is a CRD in which Σ is the
set of features and labels are primitive non-empty REs. A CD is also a CRD in
which Σ is equal to the set of nodes and labelling is an inclusion function.

Notation. Given a CRD RD, we will need the following notations in the
sequel:

– depth(RD) denotes the depth its underlying CD.
– lev(RD) denotes the set of leaf nodes, i.e., lev(RD) = {n ∈ N : n↓ = ∅}.
– glev(RD) denotes the set of the grouped leaves, i.e., glev(RD) = {G ∈ G :
∀n ∈ G. n↓ = ∅}

– plev(RD) denotes the set of non-leaf nodes all of whose children are leaves,
i.e., plev(RD) = {n ∈ N : n↓ ⊆ lev(RD)}.

– cplev(RD) denotes the nodes all of whose parents belong to plev(RD), i.e.,
cplev(RD) = {c ∈ n↓ : n ∈ plev(RD)}.

4.2 CRDs to REs

The translation of a CRD to an RE is a bottom-up procedure and includes a
finite number of steps (equal to the depth of the CRD’s tree) called shrinking
steps. Each shrinking step takes a CRD and returns another CRD such that the
depth of the output’s tree is less than that of the input. The output of the last
step is a CRD with the singleton tree (a tree consisting of a single isolated node)
whose root is labeled with an RE.

A shrinking step includes three stages: (1) Eliminating cardinalities from
leaves, (2) Eliminating grouped leaves, and (3) Depth reduction. We will use the
CFD in Fig. 4 as a running example to illustrate the translation procedure.

14

f"

r1" f2"

r3" r6"r4" r5"

(0,2)"

(2,3)"
G"

f""

r1" f2"

r3" rG"

(0,2)"

f"

r1" r2"

(0,2)"

(a)" (b)" (c)"

Fig. 9: RCD to RE: Shrinking Procedure on Fig. 4.

Stage 1: Eliminating cardinalities from leaves. At this stage, the REs
corresponding to leaf nodes are computed and their cardinalities changed to
(1, 1). For an example, the RE corresponding to the node b (Fig. 4) would
be f1 + f21 + f41 f

∗
1 . This RE represents the cardinality constraint on this node

properly, as it says that the number of instances of the feature f1 on this node
must be one or two or more than three. Then, the label of the leaves are replaced
by their REs, computed in the above way, and their associated cardinalities
change to (1, 1). Fig. 9(a) represents the result of this stage applied to the CFD
in Fig. 4 where r1 = f1 + f21 + f41 f

∗
1 , r3 = f33 + f43 + f53 , r4 = f2, r5 = f4, and

r6 = f1 + f21 .

Definition 14. Given a CRD RD = (LTre,G, C) with LTre = (N, r, ↑, Σ, lre),
lexRD : lev(RD)→ RE(Σ) is a total function which maps a leaf node in RD to
an RE built over Σ. For a given node n ∈ lev(RD) with C(n) = {(ki,mi)}1≤i≤j
(for some j ∈ N), lexRD(n) = r1 + . . .+ rj, where

ri =

{
lre(n)ki + . . .+ lre(n)mi if mi 6= ∗
lre(n)ki

(
lre(n)

)∗
o.w.

ut
The stage “eliminating cardinalities from leaves” is formalized by a function
cel : RD(Σ)→ RD(Σ), as defined in the following.

Definition 15 (Eliminating cardinalities from leaves Stage). The func-
tion cel : RD(Σ) → RD(Σ) is called the cardinality eliminator function and
for a given CRD RD = (LTre,G, C) with LTre = (N, r, ↑, Σ, lre), cel(RD) =
(LT ′re,G, C′) where LT ′re = (N, r, ↑, Σ, l′re) and

C′(e) =

{
{(1, 1)} if e ∈ lev(RD)

C(e) o.w.

l′re(n) =

{
lexRD(n) if n ∈ lev(RD)

lre(n) o.w.

ut

15

Stage 2: Eliminating the grouped leaves. At this stage, grouped leaf
nodes are replaced by new nodes with proper REs. The input of this stage is
the output of the first stage. For an example, consider the grouped leaves G in
Fig. 9(a). The group cardinality (2, 3) says that at least two and at most three
of the nodes involved in the group (i.e., the nodes e, f, and g) must be included
in a valid product for each instance of their parent (i.e., the node c) in the
product. The following REs r′G and r′′G represent the lower and upper bounds
of the cardinality, respectively: r′G = r4r5 + r5r4 + r5r6 + r6r5 + r4r6 + r6r4,
r′′G = r4r5r6 + r4r6r5 + r5r4r6 + r5r6r4 + r6r4r5 + r6r5r4. Thus, the RE cor-
responding to the group would be rG = r′G + r′′G. Then, each grouped leaf is
replaced by a new node with a cardinality (1, 1) and is labeled with the com-
puted RE. Fig. 9(b) represents the result of applying this stage to Fig. 9(a).

Notation. A concatenation permutation x of a finite set X with |X| = n is
a sequence x1 . . . xn such that

⋃
1≤i≤n{xi} = X. Let Perkm(X) denote the set of

all concatenation permutations x with length between k and m (k ≤ |x| ≤ m) of
X. For an example, Per12({r1, r2, r3}) would be the following set of expressions:
{r1, r2, r3} ∪ {r1r2, r2r1, r1r3, r2r3, r3r2}.

Definition 16. Given a CRD RD = (LTre,G, C) with LTre = (N, r, ↑, Σ, lre),
gexRD : glev(RD) → RE(Σ) is a total function. For a given group G ∈
glev(RD) with C(G) = {(ki,mi)}1≤i≤j (for some j ∈ N), gexRD(G) = r1 +
. . . + rj where for all 1 ≤ i ≤ j: ri = + Xi, and Xi = Perki

mi
(E) with

E = {lre(n) : n ∈ G}. ut

The stage “eliminating cardinalities from leaves” is formalized by a function
gle : RD(Σ)→ RD(Σ), as defined in Definition 17.

Definition 17 (Eliminating grouped leaves Stage). The function gle :
RD(Σ) → RD(Σ) is called the grouped leaves eliminator. For a given CRD
RD = (LTre,G, C) with LTre = (N, r, ↑, Σ, lre), gle(RD) is defined as follows:

For each group node G ∈ glev(RD), a node identifier nG is assigned. Let NG

denote the set of these node identifiers. In other words, we have a bijection gid :
NG → glev(RD) which assigns each grouped node in glev(RD) to a unique node

identifier in NG. Then, gle(RD) = (LT ′re,G′, C′) with LT ′re = (N ′, r, ↑
′
, Σ, l′re),

where N ′ = (N − glev(RD))]NG, G′ = G − glev(RD), and

C′(e) =

{
{(1, 1)} if e ∈ NG

C(e) o.w.

n↑
′

=

{
gid(n)↑ if n ∈ NG

n↑ o.w.

l′re(n) =

{
gexRD(gid(n)), if n ∈ NG

lre(n) o.w.

ut

16

Stage 3: Depth Reduction. This stage takes the output of the second
stage and returns a CRD whose depth is less than that of the input. To this
end, the REs corresponding to the nodes all of whose child nodes are leaves
are computed. Then, the label of such nodes are replaced by the corresponding
computed RE and their child nodes are eliminated from the given CRD. Let us
see what the result of this stage applied to the CRD in Fig. 9(b) would be. There
is only one node, labeled by f2, all of whose child nodes are leaf nodes. Fig. 9(c)
shows the result, where r2 = f2(r3rG + rGr3).

Definition 18. Given a CRD RD = (LTre,G, C) with LTre = (N, r, ↑, Σ, lre),
pexRD : plev(RD)→ RE(Σ) is a total function. For a given node n ∈ plev(RD),
pexRD(n) = lre(n)(+ X), where X = Perjj (E) and j = |n↓|, and E = {lre(n′) :
n′ ∈ n↓}. ut
The stage “eliminating cardinalities from leaves” is formalized by a function
dre : RD(Σ)→ RD(Σ), as defined in the following:

Definition 19 (Depth Reduction Stage). The function dre : RD(Σ) →
RD(Σ) is called the depth reducer function. For a given CRD RD = (LTre,G, C)
with LTre = (N, r, ↑, Σ, lre), dre(RD) is a CRD RD′ = (LT ′re,G, C′) with

LT ′re = (N ′, r, ↑
′
, Σ, l′re) where N ′ = N − cplev(RD), ↑

′
= ↑|N ′ , C′ = C|N ′∪G ,

and

l′re(n) =

{
pexRD(n) if n ∈ plev(RD)

lre(n) o.w.

ut
Hence, a shrinking step is the composition of the functions defined for the

above stages.

Definition 20 (Shrinking Step). The function shr : RD(Σ) → RD(Σ) is
called the shrinking function and is defined as shr = dre ◦ gel ◦ cel. (◦ denotes
composition.) ut
We keep doing the shrinking steps until we get a CRD which is a singleton tree.
In the running example, we need to do the shrinking step once more. The final
result would be the expression r = f(r1r

′
2 + r′2r1) where r′2 = ε + r2 + r22. The

notation ERD is used to denote the regular expression generated for a given CRD
RD. The following proposition follows obviously.

Proposition 1. Let FD = (D, F, l) be a CFD with D = (T,G, C) and T =
(N, r, ↑). Then, EFD = ED[l]. ut

4.3 The Main Properties of Generated Expressions

In this section, we show that the regular expression interpretation of a given CFD
FD with D as its underlying CD satisfies the properties P-1 and P-2. Note that
two different nodes in FD can be labeled with the same feature. Thus, to prove
the property P-2 (formalized in Definition 21) of the generative language, we
need to work on D, i.e., we prove that L(ED) satisfies P-2. The satisfaction of
the properties of P-1 and P-2 are shown in Theorems 2 and 1, respectively.

17

Definition 21 (Formalizing P-2). Consider a CD D = (T,G, C) with T =
(N, r, ↑) and let L be a language built over N . We say L preserves the hier-
archical structure of D (or simply satisfies P-2 for D) if ∀n, n′ ∈ N : (n′ ∈
n↓↓)⇐⇒

(
∀w ∈ L(ED) : (n′ ∈ w)⇒ (n vw n′)

)
. ut

Theorem 1 (Satisfying P-2). For a given CD D, L(ED) satisfies P-2 for D.
ut

Proof. We need to prove the following statements:
(1) (n′ ∈ n↓)⇒

(
∀w ∈ L(ED) : (n′ ∈ w)⇒ (n vw n′)

)
(2)

(
∀w ∈ L(ED) : (n′ ∈ w)⇒ (n vw n′)

)
⇒ (n′ ∈ n↓↓)

Note that (1) implies (n′ ∈ n↓↓)⇒
(
∀w ∈ L(ED) : (n′ ∈ w)⇒ (n vw n′)

)
.

Proof of (1):
Since D is an unlabelled tree, for any i ≤ depth(D), shri(D) is a CRD where

the labels of two different nodes would be two different REs built over two dis-
joint alphabets. Let us call such CRDs disjoint labeled CRDs (DL-CRD). It is
obvious that for any DL-CRD RD and i ≤ depth(RD), shri(RD) is also a DL-
CRD. To prove (1), we need to prove a more general statement stated as follows:

General Version of (1):
“Consider a DL-CRD RD = (LTre,G, C) with LTre = (N, r, ↑, Σ, lre). Let
n′, n′′ ∈ N with lre(n

′) = R′ and lre(n
′′) = R′′ such that n′′ ∈ n′↑. Then,

∀w ∈ L(ERD),∀w′′ ∈ L(R′′) : (w′′ ≤seq w)⇒ [∃w′ ∈ L(R′) : w′.w′′ ≤seq w].”

Let w ∈ L(ERD) and w′′ ∈ L(R′′) such that w′′ ≤seq w. We need to show
that ∃w′ ∈ L(R′) : w′.w′′ ≤seq w.

Since RD and shri(RD), for any i ≤ depth(RD), are DL-CRDs, ERD =
R.(R′.(R′′.R(3)+R(4))+R(5)) for some REs R,R(3), R(4), R(5) (note the function
dre in Definition 19 and Definition 18) such that the REsR,R′, R′, R′′, R(3), R(4), R(5)

are built over disjoint alphabets. Since w′′ ≤seq w, w ∈ L(R.R′.R′′.R(3)). The
statement is proven, since R′ precedes R′′ in R.R′.R′′.R(3), i.e., ∃w′ ∈ L(R′) :
w′.w′′ ≤seq w.

Proof of (2):
We show that the statement ¬(n′ ∈ n↓↓) ⇒ ¬

(
∀w ∈ L(ED) : (n′ ∈ w) ⇒

(n vw n′)
)

holds, which is equivalent to (2).
Suppose n′ 6∈ n↓↓. Let k be the minimum of the depths of the nodes n and

n′. Let shrd−k(D) = RD′. There are two leaves ` and `′ in RD′ with labels R
and R′ in RD′ such that n ∈ Σ(R) and n′ ∈ Σ(R′). Since RD′ is an DL-CRD,
Σ(R′) ∩ Σ(R) = ∅. Note that the nodes ` and `′ would have the same parent,
i.e., they are siblings. Let p = `↑ = `′↑. There exist the following choices for `
and `′:

(i) Both are solitary nodes.
(ii) One of them, say `, is in a group and another one, `′, is a solitary node.
(iii) Both are in a same group G.

18

(iv) One of them, say `, is in a group G and another, `′, is in another group
G′.
Applying the function gel ◦ cel (the first and second stages of shr(RD′) =
shrd−k+1(D), respectively), we will get two leaves `1 and `′1 with labels R1 and
R′1 in RD′1 = shr(RD′) such that n ∈ Σ(R1) and n′ ∈ Σ(R′1). Note that
Σ(R1) ∩Σ(R′1) = ∅ and all leaves of RD′1 are solitary with cardinalities (1, 1).

Now let us apply the function dre on RD′1 to get shrd−k+1(D). Since the
function dre considers any permutation of the p’s child nodes, there is a leaf node
`′′ in shrd−k+1(D) labeled with an RE in the form R′′` = R(2) + R1.R

′
1.R

(3) +
R′1.R1.R

(4). Since Σ(R1)∩Σ(R′1) = ∅, there are two words w1, w2 ∈ L(R′′`) such
that n vw1 n

′ and n′ vw2 n. Thus, keeping doing the shrinking steps till getting
shr(D), there would be a word w ∈ L(ED) such that n′ ∈ w but ¬(n vw n′).
The statement (2) is proven. ut

To prove that the expression generated for a given CFD satisfies the property
P-1, we will fist need the following propositions and lemmas.

Proposition 2. Let D = (N, r, ↑,G, C) be a CD and n ∈ N . Then, the following
statements hold:

(i) D = D−↓n[n 7→D D↓n].
(ii) PL(D) = PL(D−↓n)[n 7→P PL(D↓n)].
(iii) ED = ED−↓n [n 7→E ED↓n]. ut

Proof. Follows obviously! ut

Lemma 1. Let D = (N, r, ↑,G, C) be a CD and k be a number such that 0 ≤
k ≤ depth(D). Then, D = D↑k[n 7→D D↓n : ∀n ∈ Nk−]. ut

Proof. Let Nk− = {n1, . . . , ni}. We define a set of CDs {D0,D1, . . . ,Di} re-
cursively as follows: D0 = D and for any 1 ≤ j ≤ i: Dj = Dj−1

−↓nj . Note
that D↑k = Di. Due to Proposition 2(i), Dj = Dj−1[nj 7→D D↓nj

], for any
1 ≤ j ≤ i. Therefore, D = D0 = D↑k[n1 7→D D1] . . . [ni 7→D Di], which is equal
to D↑k[n 7→D D↓n : ∀n ∈ Nk−]. ut

Lemma 2. Let D = (N, r, ↑,G, C) be a CD and 0 ≤ k ≤ depth(D). Then,
PL(D) = PL(D↑k)[n 7→P PL(D↓n) : ∀n ∈ Nk−].

Proof. Let Nk− = {n1, . . . , ni}. We define a set of CDs {D0,D1, . . . ,Di} recur-
sively as follows: D0 = D and for any 1 ≤ j ≤ i: Dj = Dj−1

−↓nj . Note that
D↑k = Di. Due to Proposition 2(ii), PL(Dj−1) = PL(Dj)[nj 7→P PL(D↓nj)].
Therefore, PL(D) = PL(D0) = PL(D↑k)[n1 7→P PL(D1)] . . . [ni 7→P PL(Di)],
which is equal to PL(D↑k)[n 7→P PL(D↓n) : ∀n ∈ Nk−]. ut

Lemma 3. Let D = (N, r, ↑,G, C) be a CD and 0 ≤ k ≤ depth(D). Then,
ED = ED↑k [n 7→E ED↓n : ∀n ∈ Nk−].

Proof. Let Nk− = {n1, . . . , ni}. We define a set of CDs {D0,D1, . . . ,Di} recur-
sively as follows: D0 = D and for any 1 ≤ j ≤ i: Dj = Dj−1

−↓nj . Note that

19

D↑k = Di. Due to Proposition 2(iii), EDj−1
= EDj

[nj 7→E ED↓nj
]. Therefore,

ED = ED0
= ED↑k[n1 7→E ED1

] . . . [ni 7→E EDi
], which is equal to ED↑k [n 7→E

ED↓n : ∀n ∈ Nk−]. ut

Now we are at the point where we can prove that the generated expression
for a given CFD satisfies the property P-1.

Theorem 2 (Satisfying P-1). For a given CFD FD, L(EFD)bag = PL(FD).
ut

Proof. Let FD = (D, F, l) be a CFD. We first prove the theorem on the under-
lying CD D. Then, by applying the labelling function l on ED, we prove that
the multi-set interpretation of EFD satisfies P-1.

Let D be a CD. We use an inductive reasoning to prove the statement
L(ED)bag = PL(D).

(basic step): If D is a singleton tree, i.e., depth(D) = 0, the statement follows
obviously.

(hypothesis): Assume that the statement holds for any CD D with depth(D) ≤
k for some k ∈ N.

(inductive step): We want to prove that for any CD D with depth(D) = k+1
the statement holds, i.e., L(ED)bag = PL(D).

Let D = (N, r, ↑,G, C) be a CD with depth(D) = k + 1.
Due to Lemma 1, D = D↑k[n 7→D D↓n : ∀n ∈ Nk−].
Due to Lemma 3, ED = ED↑k [n 7→E ED↓n : ∀n ∈ Nk−].

Therefore, L(ED) = L(ED↑k)[n 7→L L(ED↓n) : ∀n ∈ Nk−].
(Note that the bag interpretation of any language L can be seen as a PL:

using FLs in place of PLs in Definition 9 is allowed, e.g., Lbag[σ 7→P L′bag] makes
sense for any σ ∈ Σ(L).)

Obviously, L(ED)bag = L(ED↑k)bag[n 7→P L(ED↓n)bag : ∀n ∈ Nk−].

According to the hypothesis, since depth(D↑k) = k, L(ED↑k)bag = PL(D↑k).
Acceding to the hypothesis, since for any n ∈ Nk−: depth(D↓n) < k, L(ED↓n)bag =

PL(D↓n).
Therefore, L(ED)bag = PL(D↑k)[n 7→P PL(D↓n) : ∀n ∈ Nk−].
Due to Lemma 2, since PL(D) = PL(D↑k)[n 7→P PL(D↓n) : ∀n ∈ Nk−],

L(ED)bag = PL(D). The theorem is proven for CDs.

PL(FD) = PL(D)[l] = L(ED)bag[l]. According to Proposition 1, ED[l] =
EFD. Therefore, L(ED)bag[l] = L(EFD)bag, which implies PL(FD) = L(EFD)bag.

ut

4.4 Complexity Analysis of CRDs to REs Transformation

In this section, we analyze computational complexity of CRDs to REs transfor-
mation. We show that the transformation algorithm is a polynomial algorithm.

Algorithm 1 presents a pseudo code for the function defined in Definition 14.
This algorithm is given a CRD and a leaf node and returns the n′s corresponding

20

regular expression in the CRD. Its time complexity is in the class O(|C(n)|). Let
us consider an upper bound on the number cardinality intervals assigned to a
node or a group. Let denote this number by upC. Then the complexity class of
this algorithm is reduced to O(1).

Algorithm 1 : lex

{Input: A CRD RD = ((N, r, ↑, Σ, lre),G, C)}
{Input: n ∈ lev(RD) with C(n) = {(ki,mi)}1≤i≤j}
R← ε
for i = 1 to j do

if mi 6= ∗ then
R← R+ lre(n)ki + . . .+ lre(n)mi

else
R← R+ lre(n)ki(lre(n))∗

end if
end for
return R {Comment: lexRD(n) = R}

Algorithm 2 presents a pseudo code for the first stage (Definition 15). It is
time complexity would be in O(|N |+ |G|) +O(N × |lev(RD)| × upC). Since the
number of nodes is always greater than the number of groups (i.e., |N | > |G|),
the complexity class of the algorithm would be O(|N |)+O(N×|lev(RD)|×upC).
Obviously, this class can be reduced to O(N2).

Algorithm 3 presents a pseudo code for the function defined in Definition 16.
This algorithm is given a CRD and a leaf group and returns the group’s cor-
responding regular expression in the CRD. Its time complexity is in the class
O(|C(G)| × |G|mi). This class can be reduced to O(upC ×Nmi). Let consider a
upper bound on the number of nodes involved in a group. Let upG. Then the
complexity class of this algorithm would be reduced to O(upC ×NupG), which
can be reduced to O(NupG).

Algorithm 4 corresponds to the second stage (Definition 17). Its time com-
plexity would in the class O(|N ′−r]G′|)+O(|N ′−r|)+O(|N ′−r|−|NG|)+O(|NG|×
NupG). This class can be reduced to O(NupG+1).

Algorithm 5 presents a pseudo code for the function defined in Definition 18.
Its time complexity would be in O(|n↓||n↓|). However, if we consider a bound on
the number of children of nodes, then the complexity of this algorithm would
be practically reasonable. Let deg denote the this bounded number. Then, this
class would be reduced to O(1).

Algorithm 6 is a pseudo code corresponding to the third stage (Definition 19).
Its time complexity would be in the class of O(|N ′|), which is equal to O(N −
cplev(RD)). This class can be reduced to O(N).

According to above complexity analyses of the stages, the shrinking step
would be a in a polynomial complexity. More precisely, it would be O(NupG+1)+

21

Algorithm 2 : cel (Stage 1)

{Input: A CRD RD = ((N, r, ↑, Σ, lre),G, C)}
{Output: A CRD RD′ = ((N, r, ↑, Σ, l′re),G, C′)}

Ensure: ∀e ∈ lev(RD′). C′(e) = {(1, 1)}

for all e ∈ N−r] G do
C′(e)← ∅

end for

for all n ∈ N do
l′re(n))← ε

end for

for all e ∈ N−r] G do

if e ∈ lev(RD) then
C′(e)← {(1, 1)}

else
C′(e)← C(e)

end if
end for

for all n ∈ N do

if n ∈ lev(RD) then
l′re(n)← lex(RD, n)

else
l′re(n))← lre(n)

end if
end for
return ((N, r, ↑, Σ, l′re),G, C′)

Algorithm 3 : gex

{Input: A CRD RD = ((N, r, ↑, Σ, lre),G, C)}
{Input: G ∈ glev(RD) with C(G) = {(ki,mi)}1≤i≤j}
R← ε
for i = 1 to j do

for all permutation R′ with ki ≤ length(R′) ≤ mi in {lre(n) : n ∈ G} do
R← R+ R′

end for
end for
return R {Comment: gexRD(n) = R}

22

Algorithm 4 : gle (Stage 2)

{Input: A CRD RD = ((N, r, ↑, Σ, lre),G, C)}
{Output: A CRD RD′ = ((N ′, r, ↑

′
, Σ, l′re),G′, C′)}

Require: ∀e ∈ lev(RD). C(e) = {(1, 1)}
Ensure: glev(RD′) = ∅
N ′ ← (N − glev(RD))]NG

G′ ← G − glev(RD)

for all e ∈ N ′−r] G′ do
C′(e)← ∅

end for

for all n ∈ N ′ do
l′re(n)← ε

end for
↑′ = ∅

for all e ∈ N ′−r] G′ do

if e ∈ NG then
C′(e)← {(1, 1)}

else
C′(e)← C(e)

end if
end for

for all n ∈ N ′−r do

if n ∈ NG then
n↑
′ ← gid(n)↑

else
n↑
′ ← n↑

end if
end for

for all n ∈ N ′ do

if n ∈ NG then
l′re(n)← gex(RD, gid(n))

else
l′re(n))← lre(n)

end if
end for
return ((N ′, r, ↑

′
, Σ, l′re),G′, C′)

23

Algorithm 5 : pex

{Input: A CRD RD = ((N, r, ↑, Σ, lre),G, C)}
{Input: n ∈ plev(RD)}
R← ε

for all permutations R′ with length(R′) = |n↓| in {lre(n′) : n′ ∈ n↓} do
R← R+R′

end for
return lre(n).R {Comment: pexRD(n) = lre(n).R}

Algorithm 6 : dre (Stage 3)

{Input: A CRD RD = ((N, r, ↑, Σ, lre),G, C)}
{Output: A CRD RD′ = ((N ′, r, ↑

′
, Σ, l′re),G, C′)}

Require: glev(RD) = ∅
Ensure: depth(RD′) = depth(RD)− 1
N ′ ← (N − cplev(RD))
↑′ ← ↑|N ′
C′ ← C|N ′∪G

for all n ∈ N ′ do
l′re(n)← ε

end for

for all n ∈ N ′ do

if n ∈ plev(RD) then
l′re(n)← pex(RD, n)

else
l′re(n))← lre(n)

end if
end for
return ((N ′, r, ↑

′
, Σ, l′re),G, C′)

24

O(N2). Thus, if the CRD has no grouped node, then the time complexity of
shrinking steps would be in O(N2). Otherwise, since upG ≥ 2 (a group is rea-
sonable if at least two nodes are involved in it), the time complexity of the
shrinking step would be in O(NupG+1).

Finally, Algorithm 7 presents a pseudo code for the transformation of CRDs
to REs. The time complexity of this algorithm would be in O(depth(RD) ×
NupG+1). In the worst case, the time complexity would be in O(NupG+1), which
implies that the transformation algorithm is a polynomial algorithm.

Algorithm 7 : Transformation Algorithm

{Input: A CRD RD = ((N, r, ↑, Σ, lre),G, C)}
{Output: A CRD RD′ = ((N ′, r, ↑

′
, Σ, l′re),G′, C′)}

Ensure: |N ′| = 1
Initiate RD′

while depth(RD) ≥ 2 do
RD′ ← dre(gle(cel(RD′)))

end while
return RD′

5 CCs and CFMs

CCs only make sense with respect to a given CFD. In the previous section, we
formalized the semantics of CFDs using formal languages (more precisely, regu-
lar languages). Hence, it makes sense to use the same framework to express CCs.
This will allow us to integrate the semantics of CCs and CFDs. In the follow-
ing, we show how to translate the most common CCs using formal languages.
Assume a CFD with a set of features F including two features f1, f2, and f3.
Several interesting CCs applied to a CFM are as follows:

(cc1) f1 requires f2
(in other words: If the number of instances of f1 is greater than 0, then the
number of instances of f2 must be greater than 0).

(cc2) f1 excludes f2
(in other words: If the number of instances of f1 is greater than 0, then the
number of instances of f2 must be 0).

(cc3) If the number of instances of f1 is even, then the number of instances

of f2 must be odd.

(cc4) The number of instances of f1 and f2 are equal.

25

(cc5) The number of instances of f1, f2, and f3 are equal.

The first two CCs are traditional inclusive and exclusive CCs. However, they
can be expressed in terms of feature instances, as we see in the parenthetical
remarks above. Our method to express CCs is to use formal languages. In this
approach, features are considered as alphabets of a language. In the following,
we see the formal language interpretation of the above CCs. The formal language
of a given CC cc is denoted by L(cc).

L(cc1) =
{
w ∈ F ∗ :

(
#f1(w) > 0

)
⇒
(
#f2(w) > 0

)}
.

L(cc2) =
{
w ∈ F ∗ :

(
#f1(w) > 0

)
⇒
(
#f2(w) = 0

)}
.

L(cc3) =
{
w ∈ F ∗ : (∃n ∈ N.#f1(w) = 2n)⇒ (∃n ∈ N.#f1(w) = 2n+ 1)

}
.

L(cc4) =
{
w ∈ F ∗ : #f1(w) = #f2(w)

}
.

L(cc5) =
{
w ∈ F ∗ : #f1(w) = #f2(w) = #f3(w)

}
.

Proposition 3. L(cc1), L(cc2), and L(cc3) are regular, L(cc4) is context-free,
and L(cc5) is context-sensitive. ut

Proof. A language is regular iff it can be expressed by some regular expressions,
regular grammars, or finite state automata (FSA). Let F = {f1, . . . , fn} for some
n ≥ 3.
L(cc1) can be expressed by the following regular expression, where r = (f1 +

. . .+ fn)∗:
f∗2 + rf1rf2r + rf2rf1r.

L(cc2) can be expressed by the following regular expression:

(f2 + . . .+ fn)∗ + (f1 + f3 + . . .+ fn)∗ + (f3 + . . .+ fn)∗.

The following FSA accepts L(cc3). The initial state is identified by an in-
coming unlabelled arrow not originating at any state. The final states are drawn
with double circles.

f2 f2

f3, … , fn

f1

f1

f1
f1

f2 f2

A

B

D

C

L(cc4) and L(cc5) are very well-known context-free and context-sensitive
languages, respectively.

26

Theorem 3. Given a context-free FM M, the operations Void Feature Models,
Dead Features, Valid Product, Core Features, and Least Common Ancestor are
decidable. ut

Proof (Proof of Theorem 3).
Let F be the set of features of M.

Since context-free languages are decidable, the Valid Product problem is
decidable.

The emptiness problem of context-free languages is decidable. Thus, the Void
Feature Model problem is decidable.

Let L be the language of the expression F ∗fF ∗. The problem of determining
whether the feature f is a dead feature of M or not is, indeed, to determine
whether L ∩ LM = ∅ or not. Note that L is regular. Hence, L ∩ LM is context-
free. Since the emptiness problem of context-free languages is decidable, the
Dead Feature problem is decidable too.

Consider a subset P ⊆ F . We want to determine whether the set of features
P is included in all products or not. Let |P | = n, L′ = {w ∈ F ∗ : wbag = P}, and
L = {w1a

′
1 w2a

′
2 . . . wna

′
n wn+1 : a′1 . . . a

′
n ∈ L′ and wi ∈ F ∗}. The problem is

reduced to determining whether LM ⊆ L or not. In other words, the problem is
reduced todetermining whether M∩Lc = ∅ or not (Lc denotes the complement
of L). Note that L is a regular language and so is Lc. Hence, the language
M ∩ Lc is context-free. Since the emptiness problem in the class of context-free
languages is decidable, the original problem, i.e., determining if P is included in
all products, is decidable. Since the number of subsets of F is finite, the problem
of finding the set of Core Features is also decidable. ut

Remark 3. What we need in cc4 is counting the number of instances of f1 and f2.
If the order of the symbols is ignored, then, according to the Parikh’s theorem
[29], L(cc4) as a context-free language is not indistinguishable from a regular
language.

Hence, a CFM is a CFD plus a set of languages expressing the CCs. In fact,
a set of CCs can be seen as the intersection of the languages expressing the CCs.

Definition 22 (Cardinality-based Feature Models). A cardinality-based
feature model (CFM) is a pair M = (FD,Lcc) with FD a CFD and Lcc a
language built over F (the set of features) expressing the CCs. ut

Thus, a CFM is basically a tuple of formal languages M = (LFD,Lcc) with LFD

and Lcc denoting the FLs of the CFD FD and CCs, respectively. The formal
language associated with the whole model is denoted by LM and is equal to
LFD ∩Lcc. Since any class of languages is closed under intersection with regular
languages [11] and LFD is regular, the type of LM is given by the type of Lcc.
Hence, CFMs can be grouped based on the types of their language, say regular
and context-free FMs. This grouping is important because it guides us in how
FMs can be constructively analyzed.

27

Definition 23 (Dynamic & Static Semantics). For a given FM M,
(i) LM is called the dynamic semantics of M. Any word w ∈ LM is called a

dynamic product. We then write w |=DY M.
Two models M and M′ are called dynamic equivalent, denoted by M ≡ST M′,

if and only if PL(M) = PL(M′).
(ii) The multi-set interpretation of LM, Lbag

M , is called the static semantics of

M. Any element P of Lbag
M is called a static product. We then write P |=ST M.

Two models M and M′ are called dynamic equivalent, M ≡ST M′, if and only
if PL(M) = PL(M′). ut

f"

f1" f2"

f3" f4"

f"

f1" f2"

f3" f4" f2"

(a)" (b)"

(2,3)" (2,*)"

(0,1)"

(2,3)" (1,*)"

(0,1)"
(1,*)"

(1,1)" (1,1)"

f"

f1" f2"

f3" f4"f1"

f1" f1"

(c)"

(2,2)" (2,*)"

(0,1)"

(0,1)"(0,1)"

(1,1)"

Fig. 10: (a) M, (b) M′ (≡DY M) , (c) M′′ (≡ST M)

As an example, consider the three models M, M′, and M′′ in Fig. 10(a), (b),
(c), respectively. The regular expression encoding of M is EM = f.(f2.f2.(f2)∗ +
f1.f1.(ε + f1).(ε + f3 + f4)). The regular expression encoding of M′ is EM′ =
f.(f2.(f2)∗.f2.(f2)∗ + f1.f1.(ε + f1).(ε + f3 + f4)). It is obvious that L(EM) =
L(EM′), which means M ≡DY M′. On the other hand, M′′ is not dynamic equiv-
alent to M. M′′ and M are static equivalent, i.e., M′′ ≡ST M.

Remark 4. The above example shows obviously that static semantics (PL) is a
poor abstract view for CFMs, while the dynamic semantics (FL) extract much
more semantics of CFMs.

6 Analysis Operations

In this section, we investigate the decidability problem for some well-known anal-
ysis operations. Some operations take only one FM (along with another potential
input that is not an FM) as input and perform some analysis on the FM. Below
is a sample list of such operations:

28

Valid Product: takes an FM and a multi-set of features as inputs and de-
cides whether it is a valid product of the FM or not.

Core Features: takes an FM and returns the set of features that are in-
cluded in all the products.

Void Feature Model: takes an FM as input and decides whether its PL is
empty or not.

Dead Feature: takes an FM and a feature and decides whether the feature
is dead in the FM or not. A feature f in an FM M is called dead if @P ∈ PL(M)
such that f ∈ P .

Least Common Ancestor: takes an FD and a set of features and returns
their lowest common ancestor feature.

Theorem 3. Given a context-free FM M, the operations Void Feature Models,
Dead Features, Valid Product, Core Features, and Least Common Ancestor are
decidable. ut

Proof. Let F be the set of features of M.
Since context-free languages are decidable, the Valid Product problem is

decidable.
The emptiness problem of context-free languages is decidable. Thus, the Void

Feature Model problem is decidable.
Let L = F ∗{f}F ∗. The problem of determining whether the feature f is

a dead feature of M or not is, indeed, to determine whether L ∩ LM = ∅ or
not. Note that L is regular. Hence, L ∩ LM is context-free. Since the emptiness
problem of context-free languages is decidable, the Dead Feature problem is
decidable too.

Let L denote the set of all prefixes of the words of LM. L is a context-
free language. To prove this, we take the grammar of LM in Chomsky Normal
Form and for every production A → BC, add productions Aε → BCε and
Aε → Bε. Also, for every production A→ f (for some terminals f), we consider
the production Aε → f . Finally, we change the starting variable S to Sε and
add the production Sε → ε. The context-free grammar generated in this way
represents the language L. Thus, L is decidable. The set of dynamic partial
products would be equal to the bag interpretation of L. Thus, Dynamic Partial
Product problem is decidable.

Let P be an input of the Static Partial Product operation. P is finite and
the arity of any feature f ∈ P is in N. Let the number of feature instances in
P be n and L′ = {w ∈ F ∗ : wbag = P}. Now consider the regular language
L = {w1a

′
1 w2a

′
2 . . . wna

′
n wn+1 : a′1 . . . a

′
n ∈ L′ and wi ∈ F ∗}. The Static

Partial Product problem is reduced to determining whether L ∩ LM is empty
or not. L ∩ LM is context free, since L is regular and LM is context-free. Since

29

the emptiness problem of context-free languages is decidable, the Static Partial
Product problem would be decidable.

Consider a subset P ⊆ F . We want to determine whether the set of features
P is included in all products or not. Let |P | = n, L′ = {w ∈ F ∗ : wbag = P}, and
L = {w1a

′
1 w2a

′
2 . . . wna

′
n wn+1 : a′1 . . . a

′
n ∈ L′ and wi ∈ F ∗}. The problem is

reduced to determining whether LM ⊆ L or not. In other words, the problem is
reduced to determining whether M∩Lc = ∅ or not (Lc denotes the complement
of L). Note that L is a regular language and so is Lc. Hence, the language
M ∩ Lc is context-free. Since the emptiness problem in the class of context-free
languages is decidable, the original problem, i.e., determining if P is included in
all products, is decidable. Since the number of subsets of F is finite, the problem
of finding the set of Core Features is also decidable. ut

Remark 5. Since the class of regular languages is a subclass of context-free lan-
guages, the above theorem holds for regular FMs too. Note that some analysis
operations are not decidable in other classes of CFMs. For example, the Void
Feature Model operation is not decidable in the class of context-sensitive CFMs,
since the emptiness problem is not decidable in the class of context-sensitive
languages.

Some other operations deal with two FMs. Such operations answer some
questions about the relationships between the FMs.

Refactoring: takes two FMs and decides whether their PL are equal or not.

Specialization: takes two FMs M1 and M2 as inputs and decides whether
the PL of M1 is a subset of the PL of M2 or not.

Theorem 4. Given two FMs M1 and M2, the following statements hold:
(i) If both are regular, then the Refactoring problem between them is decidable.
(ii) If M1 and M2 are regular and context-free, respectively, then the Refac-

toring problem is decidable iff M1 is bounded regular. ut

Proof.
(i) The equality problem between regular languages is decidable [25].
(ii) Hopcroft in [20] showed that for two given context-free languages L1 and

L2, if one of them, say L1, is a bounded regular language, then the equality
problem between these two languages is decidable. ut

Remark 6. In general, the equality problem in the class of context-free languages
is undecidable. Therefore, the Refactoring problem is not decidable in the class
of context-free FMs.

Theorem 5. Given two FMs M1 and M2, the following statements hold:
(i) If both are regular, then the Specialization problem between them is decid-

able.
(ii) If M1 and M2 are regular and context-free, respectively, then the Special-

ization problem PL(M2) ⊆ PL(M1) is decidable. ut

30

Proof.
(i) The inclusion problem in the class of regular languages is decidable [28].

Thus, the Specialization problem is decidable in the class of regular languages.
(ii) The problem “M2 is a specialization of M1” is reducible to the problem

LM2
⊆ LM1

. In other words, it is equivalent to the problem of determining
whether LM2∩Lc

M1
= ∅ or not. Since the class of regular languages is closed under

complement, Lc
M1

is regular. Thus, LM2∩Lc
M1

is context-free. Since the emptiness
problem in the class of context-free languages is decidable, the Specialization
problem in this case would be decidable. ut

7 Tool Support

As already seen, we characterize well-known analysis operations over CFMs in
terms of on formal languages. Now, what we need is automated support for
them. Since CFMs are much more complex than basic FMs, automated analysis
of such FMs is a challenging and open issue [4, 31]. As discussed in Sect. 6, all
the analysis operations are decidable over the class of regular CFMs. Therefore,
in this section, we only take into account regular CFMs. Recall that a CFM is
regular if its CCs are regular.

There are several off-the-shelf tools, which deal with finite state automata
(FSA) including HKC [5], LIBVATA [24], RABIT [1], ALASKA [13], GOAL [36],
FSA6.2xx [38], FAT [17], and JFLAP [32].

Since most of the above tools are given FSAs as inputs, we first need to
translate a given regular expression to a finite automata. Note that we transform
a given CFD to a regular expression. Fortunately, there exist some tools, which
support such a transformation. For an example, we can use FSA6.2xx for this
purpose.

Since CFDs and their CCs are translated to two different langauges, we would
need also to execute their intersection. FAT and FSA6.2xx are appropriate for
implementing the intersection problem between two FSAs.

To reduce the computational complexity (specially the space complexity)
in executing the analysis operations, we would prefer to work on an minimal
automaton semantically equal to the given automaton. This problem is so called
minimization problem, which means transformation of a given automaton to
another automaton such that the language of the generated automaton is equal
to the language of the given one and also it is minimal in terms of the number
of states. FSA6.2xx also does this mission very well. Now we are at the point
where we can utilize the above tools to do analysis operations on regular CFMs.

The valid product problem on a CFM is reduced to the membership prob-
lem on the CFM’s language interpretation. FAT, JFLAP, and FSA6.2xx are
appropriate for implementing the membership problem.

The void feature model problem is reduced to the emptiness problem on
languages. The emptiness problem for a given language L can be seen as the
equality problem between L and the empty language. The equality problem over
FSAs is supported by HKC.

31

Consider a CFM M on a set of features F and a feature f ∈ F . We want to
decide whether f is a dead feature over M or not. This problem can be reduced to
the decision problem L(M)∩L(F ∗fF ∗) = ∅. Note that the language L(F ∗fF ∗)
is regular and can be represented by an FSA. The intersection of the FSAs
corresponding to the languages L(M) and L(F ∗fF ∗) can be done by FSA6.2xx.
Let A denote the output FSA. Then the equality problem between A and the
empty FSA can be executed by HKC.

The refactoring problem between two CFMs is simply reduced to the equal-
ity problem between their languages. The equality problem between FSAs is
supported by HKC.

The specialization problem for two given CFMs can be reduced to the inclu-
sion problem for their corresponding languages. The inclusion problem is sup-
ported by several tools including HKC, LIBVATA, RABIT, ALASKA, and RA-
BIT.

8 Related Work

8.1 Connection between FDs and Context-free Grammars

In this section, we survey the literature relevant to the connection between FMs
and FLs.

The connection between basic FDs and grammars is shown by de Jong and
Visser [12]. They use textual representations of FDs written in a domain-specific
language called the feature description language [37]. The corresponding textual
representation of a given FD is similar to a context-free grammar. The grammar
generated for the model in Fig. 11, according to [12], is as follows (nonterminals
and terminals start with capital and small letters, respectively.):

RenovationFactory −→ SourceLang ImplLang
SourceLang −→ cobol | sdl | sql | cobol sdl | cobol sql | sdl sql | cobol sdl sql
ImplLang −→ asf | java | asf traversal | java traversal

Renova'onFactory-

SourceLang- ImplLang-

cobol- sdl- sql- asf- java- traversal-

Fig. 11: A model abbreviated from [12]

Batory, in [3], shows the connection between FDs and iterative tree grammars
[22]. His and [12]’s translation procedures are essentially the same. Table 1 gives

32

some basic examples showing how Batory’s encoding works. Terminals are shown
by italic letters. Optional features are surrounded by brackets.

car$

eng$ trans$

mnl$ atmgas elec$

f

g$ h$ g h$

f

g h$

f

f

h$ g$

car$

eng$ trans$

mnl$ atmgas elec$

f

g$ h$ g h$

f

g h$

f

car$

eng$ trans$

mnl$ atmgas elec$

f

g$ h$ g h$

f

g h$

f

car$

eng$ trans$

mnl$ atmgas elec$

f

g$ h$ g h$

f

g h$

f

f→ h[g] f→ [g]h f→ g | h f → t+
t → g | h

Table 1: Translating FDs to iterative tree grammars

In [12] and [3], set of atomic features, those features that appear in leaf nodes,
is considered as terminals and other features as nonterminals. Thus, a word
accepted in the above grammar generated for Fig. 11 is a subset of {cobol, sdl, sql,
asf, java, traversal} and hence the language of the corresponding grammar does
not represent the product line of the model. In other words, the corresponding
generative grammar for a given FD does not satisfy the property P-1.

Another problem of the above procedures is that they give a left-to-right
ordering on siblings (the nodes with the same parent). To illustrate why this is a
problem, note the left-most column in Table 1: the left-most feature, h, precedes
the right-most feature, g. Such an ordering forces two syntactically equivalent
FDs to have different semantics: the grammars of the two FDs in the first and
the second columns in Table 1 have different associated languages. In addition,
such an ordering on siblings forces the generative grammars to not satisfy the
property P-2.

Czarnecki et al, in [8], formalize the semantics of CFDs using context-free
grammars. Unlike in [3] and [12], this work considers the set of terminals to
be equal to the set of all features for a given CFD and generative grammars
satisfy the property P-2. However, it gives a left-to-right ordering on siblings.
Thus, this method does not satisfy the property P-1 and there are syntactically
equivalent CFDs with non-equal generative grammars.

All the above approaches may result in ambiguous grammars, which makes
them bad candidates for the semantics of models. However, there is a constructive
way [25] to fix this problem, since the languages of generated grammars are not
inherently ambiguous. A context-free language is inherently ambiguous if there
is no unambiguous grammar for it [16]. Another problem of all of the above
methods is that they do not consider CCs in their translation procedure. This
is a very important deficiency, since CCs has a central role to play in feature
modeling.

8.2 Partial Product Lines

In [15], we give a relational semantics for basic FMs. The structure correspond-
ing to a given FM is called the Partial Product Line (PPL) of the FM. The states

33

of this structure are called partial products, which are sets of features satisfy-
ing the exclusive constraints (a partial product must not violate the exclusive
constraints), subfeature relationship (a feature cannot be included in a partial
product if its parent feature is not), and the instantiation-to-completion (I2C)
principle (processing a new branch of the feature tree should only begin after
processing of the current branch has reached a full product). The initial state is
a singleton set {r} where r is the root feature. The PL of the FM is a subset of
the set of partial products. Fig. 12(a) is an FM and its PPL is represented in
Fig. 12 (b). In this figure, the full products are boxed. Singletonicity is one of

c"

e" b"

a"

c

b"e"

e"b"
a"

e"a"

c"

c,"e" c,"b"

c,"b,"a"c,"e,"b"

c,"e,"b,"a"

(a)" (b)" (c)"

Fig. 12: (a) an FM M, (b) PPL(M), (c) Aut(M)

the important properties of PPLs. This property says that if there is a transition
P −→ P ′ between two products P and P ′, then P ′ = P] {f} for some feature
f 6∈ P . This property allows us to translate PPLs into finite state automata
in a straightforward way. Fig. 12(c) shows the corresponding automaton, where
the final states are specified by black circles. Let Aut(M) denote the automaton
corresponding to an FM M.

Applying the translation procedure on M described in Sect. 4, EM = f (g(i+
j) h + h (g (i + j))). It is clear that L(EM) = L(Aut(M)). What is interesting
is that Aut(M) is the minimal automaton in the sense that there is no other
finite automaton with a smaller number of states which also accepts L(M). This
claim will be proved formally for all basic FMs in a forthcoming paper. Note
that this property of PPLs makes them effective in the sense of computational
complexity. Also, this relationship between LM and PPL(M) for a given basic
FM M proves that PPLs preserve the hierarchical structure of M.

8.3 Modeling PLs with Semirings

Höfner et al. developed an algebra, called product family algebra, for basic PLs
whose basis is the structure of idempotent semirings [18]. A product family

algebra over a set of features F is 5-tuple A = (A,+,∅,×, {∅}), where A = 22
F

,
∅ represents the empty PL, {∅} is a dummy/pseudo PL with only one product:
nothing, and +,× are defined as follows: for all P, P ′ ∈ A : P × P ′ = {p ∪ p′ :

34

p ∈ P, p′ ∈ P ′} and P + P ′ = P ∪ P ′. In this way, + and × can be seen
as choice between PLs and their mandatory presence, respectively. It is proven
that A forms a semiring ,where (A,+, 0) and (A,×, 1) are the commutative
monoid and monoid parts, respectively, such that + is idempotent and × is
commutative. Therefore, a PL is seen as a term generated in a commutative
idempotent semirings.

The PL of a given basic FM M is encoded as a term in the PL algebra
generated over the leaf features of M. As an example, consider the following
feature diagram, which is adopted from [18]. The encoded term corresponding
to this FM is as follows: car = (manual + automatic) × horsepower × (1 +
aircondition).

car$

transmission$ horsepower$

manual$ automated$

aircondi2on$

Fig. 13: an FM - adopted from [18] (page 7 , Fig. 1)

Note that the set of all formal languages (Σ∗) together with concatenation
and union operations can be seen as a semiring (Σ∗,∪,∅, ., ε). However, it is
not a commutative smearing, since concatenation is not commutative. Also, this
smearing is not idempotent.

As mentioned above, for Höfner et al., a product is the set of leaves in the
feature tree, while non-leaf features are derived terms; in contrast, we follow
a common FM-practice and consider all features in the tree to be basic. This
implies that the product family algebra does not satisfy the P-1 property.

Since there is the operation × is considered as an idempotent operation, the
product family algebra for a given model does not satisfies the P-2 property.
Also, using an idempotent operation for the product operation (×) disallows us
to use it for cardinality-based feature models.

9 Conclusions

In this paper, we have provided a formal definition of CFDs and also their valid
products in a set theoretic way. We have proposed two level of generalization
for CFDs. In the first generalization, we have relaxed some constraints on group
cardinalities. We believe that this very simple generalization provides us much
more succinct and expressive tool for system modeling. The second generalization
(emerged in the regular expression translation procedure) is called cardinality-
based regular expression diagrams (CRDs), in which the labels of nodes can be
any regular expression built over the set of features. We believe that CRDs is a

35

mean moving us to modeling much more complicated systems, in which we need
to deal with structural (non-atomic) features, e.g., programming codes, etc.

We have provided a reduction process, which allows us to go from a CFD to an
RE. The procedure works for CRDs. The generative expression for a given CFD
has two main properties: it captures the hierarchical structure of the CFD; it also
captures the product line of the CFD. These properties enable us to confidently
claim that this translation faithfully captures the semantics of CFDs.

Regular languages have some nice computational properties. These prop-
erties, such as the decidability of emptiness, inclusion, and equality problems,
help us to propose algorithmic solutions for analysis operations over CFDs. In
addition, the complexity class of all regular languages is SPACE(O(1)), i.e., the
decision problems can be solved in constant space. Due to these nice compu-
tational properties, we can also claim that regular expressions provide a nice
computable framework for reasoning about CFDs.

As for CCs, we have proposed a formal language interpretation of them. In
this way, we could integrate the formal semantics of CFDs and CCs. Also, it
allows us to group CFMs based on their semantics, which guides us how they
can be constructively analyzed.

Based on this formal language interpretation of CFMs, we have provided two
kinds of semantics, called dynamic and static. The dynamic semantics of a given
model is equal to the FL of the whole model. The dynamic semantics of CFMs is
a new concept, but the static one is, indeed, equivalent to the semantics captured
in [8].

We also have characterized some existing analysis operations over CFMs in
terms of on the FL framework. This allows us to use some off-the-shelf language
tools, such as JFLAP [33], to do analysis on CFMs. Note that automated support
for analysis over CFMs were always a challenging issue. We also have investigated
the decidability problems of the introduced analysis operations for different kinds
of CFMs. We noticed that some analysis operations are not decidable in all
classes of CFMs.

10 Open Problems/Future Work

Based on the closure properties of regular languages, say closure under inter-
section, union, complement, etc., we believe that our framework is a very good
candidate for managing multiple product lines [2]. Indeed, in a forthcoming pa-
per, we will discuss how to manage FDs using the FL-framework.

The computational complexity problem of analysis operations would be a
crucial issue in implementing them for CFMs, which needs to be investigated.

In the literature, the object-constraint language (OCL) has been proposed for
expressing CCs in CFMs [9]. Our next mission is to discover the OCL-definable
languages. It can be also fruitful for the model driven engineering (MDE) area,
since the MDE community uses mainly OCL to express constraints. This way, we
can investigate the expressiveness of OCL in terms of languages. Our conjecture

36

is that there should be some practical CCs that cannot be expressed in OCL.
Bellow, we provide some hints to support our conjectures.

It is well-known conjecture that, theoretically, OCL is first order logic (FOL)
plus transitivity and counting. FOL-definability leads to the class of star-free
regular languages [14]. Considering transitivity, the class of OCL-definable lan-
guages would be equal to the class of regular languages. Considering the count-
ing operation and equality, some context-free and sensitive languages are also
covered. However, not all context-free languages can be expressed using only
counting and equality. All the above conjectures need to be investigated theo-
retically.

References

1. Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukáš Hoĺık, Chih-Duo
Hong, Richard Mayr, and Tomáš Vojnar. Advanced ramsey-based büchi au-
tomata inclusion testing. In CONCUR 2011–Concurrency Theory, pages 187–202.
Springer, 2011.

2. Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France. Manag-
ing multiple software product lines using merging techniques. France: University-
ofNiceSophiaAntipolis. TechnicalReport, ISRN I3S/RR, 6, 2010.

3. Don Batory. Feature models, grammars, and propositional formulas. Springer,
2005.

4. David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis of
feature models 20 years later: A literature review. Information Systems, 35(6):615–
636, 2010.

5. Filippo Bonchi and Damien Pous. Checking nfa equivalence with bisimulations up
to congruence. ACM SIGPLAN Notices, 48(1):457–468, 2013.

6. S Barry Cooper. Computability theory. CRC Press, 2003.
7. Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ulrich Eisenecker. Gen-

erative programming for embedded software: An industrial experience report. In
Generative Programming and Component Engineering, pages 156–172. Springer,
2002.

8. Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing cardinality-
based feature models and their specialization. Software Process: Improvement and
Practice, 10(1):7–29, 2005.

9. Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-based feature mod-
eling and constraints: A progress report. In International Workshop on Software
Factories, pages 16–20, 2005.

10. Krzysztof Czarnecki and Andrzej Wasowski. Feature diagrams and logics: There
and back again. In Software Product Line Conference, 2007. SPLC 2007. 11th
International, pages 23–34. IEEE, 2007.

11. Martin Davis. Computability, complexity, and languages: fundamentals of theoret-
ical computer science. Academic Press, 1994.

12. Merijn de Jonge and Joost Visser. Grammars as feature diagrams. In ICSR7
Workshop on Generative Programming, pages 23–24. Citeseer, 2002.

13. Martin De Wulf, Laurent Doyen, Nicolas Maquet, and Jean-François Raskin.
Alaska. In Automated Technology for Verification and Analysis, pages 240–245.
Springer, 2008.

37

14. Volker Diekert and Paul Gastin. First-order definable languages. Logic and Au-
tomata: History and Perspectives, 2:261, 2008.

15. Zinovy Diskin, Aliakbar Safilian, Tom Maibaum, and Shoham Ben-David. Model-
ing product lines with kripke structures and modal logic. (GSDLab TR 2014-08-
01), 08/2014 2014.

16. Seymour Ginsburg. The Mathematical Theory of Context Free Languages.[Mit
Fig.]. McGraw-Hill Book Company, 1966.

17. Sandra Hilber. Finite automata tool, http://cl-
informatik.uibk.ac.at/software/fat/. 2009.

18. Peter Höfner, Ridha Khédri, and Bernhard Möller. An algebra of product families.
Software and System Modeling, 10(2):161–182, 2011.

19. Peter Höfner, Ridha Khédri, and Bernhard Möller. Supplementing product families
with behaviour. Int. J. Software and Informatics, 5(1-2):245–266, 2011.

20. John E. Hopcroft. On the equivalence and containment problems for context-free
languages. Mathematical systems theory, 3(2):119–124, 1969.

21. John E Hopcroft. Introduction to automata theory, languages, and computation.
Pearson Addison Wesley, 2007.

22. Alexander Koller, Michaela Regneri, and Stefan Thater. Regular tree grammars as
a formalism for scope underspecification. In ACL, pages 218–226. Citeseer, 2008.

23. Dexter Kozen. Automata and computability. Springer, 1997.

24. Ondřej Lengál, Jǐŕı Šimáček, and Tomáš Vojnar. Vata: A library for efficient
manipulation of non-deterministic tree automata. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 79–94. Springer, 2012.

25. Peter Linz. An introduction to formal languages and automata. Jones & Bartlett
Publishers, 2011.

26. Mike Mannion. Using first-order logic for product line model validation. In Software
Product Lines, pages 176–187. Springer, 2002.

27. Marcilio Mendonca, Andrzej Wasowski, Krzysztof Czarnecki, and Donald Cowan.
Efficient compilation techniques for large scale feature models. In Proceedings of
the 7th international conference on Generative PROGRAMMING and component
engineering, pages 13–22. ACM, 2008.

28. Albert R Meyer and Larry J Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In Switching and Automata
Theory, 1972., IEEE Conference Record of 13th Annual Symposium on, pages 125–
129. IEEE, 1972.

29. Rohit J Parikh. On context-free languages. Journal of the ACM (JACM),
13(4):570–581, 1966.

30. Klaus Pohl, Günter Böckle, and Frank Van Der Linden. Software product line
engineering: foundations, principles, and techniques. Springer, 2005.

31. Clément Quinton, Daniel Romero, and Laurence Duchien. Cardinality-based fea-
ture models with constraints: a pragmatic approach. In Proceedings of the 17th
International Software Product Line Conference, pages 162–166. ACM, 2013.

32. Susan H Rodger and Thomas W Finley. JFLAP: an interactive formal languages
and automata package. Jones & Bartlett Learning, 2006.

33. Susan H Rodger and Thomas W Finley. JFLAP: an interactive formal languages
and automata package. Jones & Bartlett Learning, 2006.

34. Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves Bon-
temps. Generic semantics of feature diagrams. Computer Networks, 51(2):456–479,
2007.

38

35. Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof
Czarnecki. Reverse engineering feature models. In ICSE 2011, pages 461–470.
IEEE, 2011.

36. Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai, Wen-Chin Chan, and Chi-Jian
Luo. Goal extended: Towards a research tool for omega automata and temporal
logic. In Tools and Algorithms for the Construction and Analysis of Systems, pages
346–350. Springer, 2008.

37. Arie Van Deursen and Paul Klint. Domain-specific language design requires feature
descriptions. Journal of Computing and Information Technology, 10(1):1–17, 2002.

38. Gertjan van Noord. Fsa6. 2xx: Finite state automata utilities. http://odur. let.
rug. nl/vannoord/Fsa/fsa. html, accessed, 3(10):2003, 2002.

39

