From State- to Delta-based Bidirectional
Model Transformations:
the Symmetric Case

Zinovy Diskin Hartmut Ehrig
Yingfei Xiong Frank Hermann

Krzysztof Czarnecki Fernando Orejas

Waterloo Berlin & Barcelona

Introduction: Model Synchronization

Problem is hard

Space of models

*»» Models are complex
heterog. struct.

¢ Relationships are
e also complex & heterog.
o often implicit!
e form non-trivial networks
¢ Changes

Tools are needed!

Introduction: Building model sync
tools requires...

 Understanding semantics of sync
procedures

e Explaining it to users concisely and
clearly (P. Stevens)

e A theoretical framework as foundation

Introduction: From the general problem to
BX (bidirectional model transformations)

General Model Sync G BX

Problem |

numberOfModels n = 2..* n=2

isDifficult: Yes isDifficult: Much easier
practical: Yes

Introduction: State-based BX

e Triple Graph Grammars (TGGS)

 PL community (the Harmony Group, B. Pierce et
al, POPL'05-10, FP,...):
— A “product line” of algebraic structures called
lenses

— Boomerang: a language for string-based data

e Models community: Symmetric BX to explain
semantics of QVT (P. Stevens)

Introduction: The message of the paper

e The bad news: state-based BX do not
work well for MDE and lead to several

essential problems in practice and theory

* The good news: the problems can be
fixed by using delta-based BX.

 Even a better news: theory of delta-
based BX is equally simple, and in some
aspects is even simpler than state-based

Background: State-based BX

e Two interrelated models

e Relations are implicit

 Propagation is state-based...

e and bidirectional...

But it’s not the end of the story!

11/24/2011 Models 2011, Wellington 7

Background: fPpg and bPpg are not

independent... iy . between

(i) ... on undoing themselves

updates

B and B”’ are to be related A and A"’ are to be related
by a sort of undoability law by a sort of invertibility law

B”’=B [Stevens'07] A”’= A [Diskin’08]

Background: Proper
invertibility/undoability laws

e Serious problem because
— Simple equality is too constraining

— But without invert./undo., the behavior of
propagating procedures is unconstrained at all.

 Non-trivial problem,
— E.g., a failed attempt by Hoffman et al, POPL'10,

* The 2" goal of the paper is to find proper
invertibility and undoability laws

Content

A simple example to explain the issues of
symmetric BX. Deltas do matter!

Problems of state-based BX
Algebra for deltas (very sketchy)
Discussion of tool architectures

Summary

Example: John vs. Jon

(\DeltaAB
Y Nt ouppuny ey iy S I
I ModeIA(by’Fa/cebeek)/ : \\ ,Modérmﬁﬁ\ :
[I

| |
: f2:Friend f1:Friend <: \) :> el:Employee e2:Employee :
: name=John name=Jon : : name=Jon name=John :
I'l age=50 age=30 I | salary=3K salary=5K
! i e L)

S —DeltaAA X 4;> Delta BB’

X] > Delta BB’ -1

f2':Friend f1':Friend

name=John name=John | =~ \// ___——_ _ _ | .
age=50 age=30 : v\ :
___________________ X : el":Employee e2’:Employee :
:_ K/Ic_)d_eI_A_’I - “/-i i name=John name=John i
! | f2’:Friend f1’:Friend : L fa_la_ry_=2lK _____ s_al_ar_y=_51(_ _ 1
| | name=John ‘name=lohn | |
: a%le/545/9011 (::\ang_e:?? ___——":: ! Models 2011, Wellington 11

FTTTmTTTETA

Example cont’d: Jon returns!

Model A’

f2:Friend

name=John
age=50

Model A”

-

f2':Friend

name=John
age=50

11/24/2011

f1:Friend

name=Johh
age=30

'/flv':Friend

name=fon
age=30

Delta A’B”

e2:Employee

name=John
salary=3K

name=John
salary=5K

e o o o o o - - -

e2 :Employee

\\\\\

name=John
salary=5K

Model B”’-1

el":Employee

name=John name={on
salary=3K salary=5K
_____ P R ———

zzzz

Lessons learned, |

Deltas do matter
Delta composition matters too

Delta reuse is important: ignoring it may lead
to erroneous propagation

We need a mathematical framework
with explicit operations on deltas!

Content

Problems of state-based BX

Algebra for deltas (very sketchy)
Discussion of tool architectures
Discussion of mathematical modeling

Summary

Jon vs. John, abstractly

Delta-based setting State-based setting

Al<r—> B A B

@ 1.bPpg @ add ‘h’ 1:bPpg

’<:r£> B A B’

del ‘ 2.fPpg
2.fPpg

A7 <) B A (B

Looks simpler but

Problems of state-based Ppg, 1

/State-based fPpg \
Models |
A A B Model B

—X

/

1.1 Semantics of DD is complex, hence
semantics of fPpg is complex too

1.2 The user cannot control result of DD

Separationofconcerns => Bad cohesion

Problems of state-based Ppg, 2

/State-based fPpg \
Models |
AA B Model B

o e %)
BB /AR /
New deltas are not recorded and hence cannot be
reused:

2.1 Low efficiency (DD is an expensive operation)
2.2 Erroneous DP-composition

State-based BX: erroneous vertical
composition of Ppgs

State-based BX: erroneous horizontal
composition of Ppgs

A B C

1fPpgap @ @ 2:fPpgge

A B’ C’

Lessons learned, Il

= State-based frameworks has two
major flaws:

— they merge rather than separate two quite
different concerns;

— they break continuity of delta propagation.

= Simplicity of state-based frameworks is
deceiving

We need an algebraic framework
operating deltas explicitly!

What is algebra?

An algebra is defined by
e Aset of of carrier sets (sorts)

— In our case, five sorts: &, B, A, , Ag , Asg
* A set of operations over these sets

-- three ones: fPpg, bPpg, update inversion,

* A set of equational laws:

— three pairs of laws: Identity propagation,
undoability, invertibility (round-tripping)

Delta Lenses: Operations

ry

A

ry

A B A
@ fPpg @
A’ B’ A’

Forward update
propagation

)

B
:bPpg @

B’

Backward update

propagation

A

854

A’

Update
iInversion

Delta lenses: Terms

A string-based term Benefits:
(A+B)*C * Honest math model

* Directly formalizable [my
A <i> B Gttse paper]
1.bPpg * Algebraically manageable:
@ @ -- composition = tiling
-- law formulations are
A’ @ B’ @ compact and graphical
2.fPpg 3:fPpg @

(B (S [Cm

Delta Ppg laws: Identity propagation

A [<r—> B

idA fPpg idB

A <> B

Doing nothing is propagated
to doing nothing

Delta Ppg laws: Invertibility
(or round-tripping)

B
1:fPpg @ 2:bPpg Cal 3.fPpg @
B’ Al’ ’

Weak invertibility: a1 #a
but a1 ~a in the following sense:

Weak undoability — see the paper

Multi-propagation scenarios and laws

Al <{—r— B

& 1
Al = B’ s
2:Ppg 3.fPpg @
A”] <= [B”] <= [C
e Complex propagation scenarios are algebraic terms
e Terms + Laws provide:

v' Compositionality (Combinators)
v’ Possibilities for Optimization

Some summary

The key question: How to get deltas

Deltas can be

e computed internally by the sync tool (but
outside the propagation module!),

— Particularly, reused
e provided by the outside applications

 both: say, update deltas are provided
externally while corrs are computed internally

How to get deltas.
Architecture 1: Delta Lenses

1:diff

N NS

from)
app.
A’ < F > B’

11/24/2011 Models 2011, Wellington

How to get deltas.
Architecture 2: Delta Maintainers

Y &

ol B

Pros: No need for update deltas at the input (loose coupling)
Cons: No reuse of corrs

11/24/2011 Models 2011, Wellington

A’

Architecture 1*: Lenses= Re-alignment + Maintainers

A
from 9
app.

A1

Theorem. Well-behaved re-alignment fwk {RF)
and constraint maintainer (CM) give rise to a
e Well-behaved delta-lens, “DL = RF + CM”.

Summary of architecture discussion

We have three delta-based operations:
1) model diff (delta discovery),

2) re-alignment (delta composition),

3) consistency restoration (delta maintainer),

Amongst the three operations, 2) and 3) are
algebraic, and subject to simple laws. Operation
1) -- diff -- is not algebraic!

Separation of concerns: Having each operation
implemented by a separate module, we can

assemble a series of sync architectures (entirely
state-based, with external update deltas, ...) .

What is in the companion paper

* A concrete implementation of delta lenses
with TGGs (Triple Graph Grammars);

e And more....

Overall summary:

e BX is an important special case of the big
problem of model sync.

 The state-based BX framework does not work
well for models. Its simplicity is deceiving.

 We need a delta-based BX framework
(operations + laws) as introduced in the paper

Overall summary cont’d

e The delta-based framework is

— Much more flexible (and delta-based architecture
subsumes the state-based one),

— Less error prone,
— More manageable algebraically.

e Tile algebra: a happy marriage of formal rigor
and graphical handiness

References

Our papers on delta-based asymm. sync -- ICMT’10
JOT'11

General algebraic framework for both asymm. and
symm. Cases in GTTSE’09 paper by Z. Diskin

Algebraic models of delta-based ppg
(problematic slide)

e Why algebra?
-- semantics

-- algebraic manipulations

	From State- to Delta-based Bidirectional Model Transformations: �the Symmetric Case
	Introduction: Model Synchronization Problem is hard
	Introduction: Building model sync tools requires…
	Introduction: From the general problem to BX (bidirectional model transformations)
	Introduction: State-based BX
	Introduction: The message of the paper
	Background: State-based BX
	Background: fPpg and bPpg are not independent…
	Background: Proper invertibility/undoability laws
	Content
	Example: John vs. Jon
	Example cont’d: Jon returns!
	Lessons learned, I
	Content
	Jon vs. John, abstractly
	Problems of state-based Ppg, 1
	Problems of state-based Ppg, 2
	State-based BX: erroneous vertical composition of Ppgs
	State-based BX: erroneous horizontal composition of Ppgs
	Lessons learned, II
	What is algebra?
	Delta Lenses: Operations
	Delta lenses: Terms
	Delta Ppg laws: Identity propagation
	Delta Ppg laws: Invertibility �(or round-tripping)
	Weak undoability – see the paper
	Multi-propagation scenarios and laws
	Some summary
	The key question: How to get deltas
	How to get deltas. �Architecture 1: Delta Lenses
	How to get deltas. �Architecture 2: Delta Maintainers
	Architecture 1*: Lenses= Re-alignment + Maintainers
	Summary of architecture discussion
	What is in the companion paper
	 Overall summary:
	Overall summary cont’d
	References
	Algebraic models of delta-based ppg�(problematic slide)

